Error Reduction in Neural Network Approximations of Boundary-Value Problems by a Multi-level Approach - 16ème Colloque National en Calcul de Structures
Communication Dans Un Congrès Année : 2024

Error Reduction in Neural Network Approximations of Boundary-Value Problems by a Multi-level Approach

Ziad Aldirany
  • Fonction : Auteur
  • PersonId : 1474655
Marc Laforest
  • Fonction : Auteur
  • PersonId : 1106116

Résumé

A new methodology to control the error in approximations of solutions to boundary-value problems obtained with deep learning methods is presented here. The main idea consists in computing an initial approximation to the problem using a simple neural network and in estimating, in an iterative manner, a correction by solving the problem for the residual error with a new network of increasing complexity. This sequential reduction of the residual of the partial differential equation allows one to decrease the solution error, which, in some cases, can be reduced to machine precision.
Fichier principal
Vignette du fichier
hal-04822982.pdf (573.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04822982 , version 1 (06-12-2024)

Identifiants

  • HAL Id : hal-04822982 , version 1

Citer

Ziad Aldirany, Régis Cottereau, Serge Prudhomme, Marc Laforest. Error Reduction in Neural Network Approximations of Boundary-Value Problems by a Multi-level Approach. CSMA 2024, CNRS, CSMA, ENS Paris-Saclay, Centrale Supélec, May 2024, Giens, France. ⟨hal-04822982⟩
0 Consultations
0 Téléchargements

Partager

More