Bayesian Estimation of The Ex-Gaussian Distribution - Axe 1 (2017-2021) : "Langage et apprentissage : corpus, cognition, genèse des œuvres " (MSHS Poitiers)
Article Dans Une Revue Statistics, Optimization and Information Computing Année : 2021

Bayesian Estimation of The Ex-Gaussian Distribution

Résumé

Fitting of the exponential modified Gaussian distribution to model reaction times and drawing conclusions from its estimated parameter values is one of the most popular method used in psychology. This paper aims to develop a Bayesian approach to estimate the parameters of the ex-Gaussian distribution. Since the chosen priors yield to posterior densities that are not of known form and that they are not always log-concave, we suggest to use the adaptive rejection Metropolis sampling method. Applications on simulated data and on real data are provided to compare this method to the standard maximum likelihood estimation method as well as the quantile maximum likelihood estimation. Results shows the effectiveness of the proposed Bayesian method by computing the root mean square error of the estimated parameters using the three methods.
Fichier principal
Vignette du fichier
1251-Article Text-6197-1-10-20211129.pdf (353.61 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03545127 , version 1 (08-10-2024)

Identifiants

Citer

Abir El Haj, Yousri Slaoui, Clara Solier, Cyril Perret. Bayesian Estimation of The Ex-Gaussian Distribution. Statistics, Optimization and Information Computing, 2021, 9 (4), pp.809-819. ⟨10.19139/soic-2310-5070-1251⟩. ⟨hal-03545127⟩
128 Consultations
10 Téléchargements

Altmetric

Partager

More