Motion by curvature and large deviations for an interface dynamics on Z 2 - Centre de mathématiques appliquées (CMAP)
Article Dans Une Revue Probability and Mathematical Physics Année : 2024

Motion by curvature and large deviations for an interface dynamics on Z 2

Résumé

We study large deviations for a Markov process on curves in Z 2 mimicking the motion of an interface. Our dynamics can be tuned with a parameter β, which plays the role of an inverse temperature, and coincides at β = ∞ with the zero-temperature Ising model with Glauber dynamics, where curves correspond to the boundaries of droplets of one phase immersed in a sea of the other one. We prove that contours typically follow a motion by curvature with an influence of the parameter β, and establish large deviations bounds at all large enough β < ∞. The diffusion coefficient and mobility of the model are identified and correspond to those predicted in the literature.
Fichier principal
Vignette du fichier
Contour_dynamics_vfinal.pdf (1.97 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02615668 , version 1 (23-05-2020)
hal-02615668 , version 2 (18-02-2022)
hal-02615668 , version 3 (18-12-2024)

Identifiants

Citer

B Dagallier. Motion by curvature and large deviations for an interface dynamics on Z 2. Probability and Mathematical Physics, 2024, 5 (3), pp.609-734. ⟨10.2140/pmp.2024.5.609⟩. ⟨hal-02615668v3⟩
115 Consultations
44 Téléchargements

Altmetric

Partager

More