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We show that any weak solution to the full Navier-Stokes-Fourier system emanating from the data belonging to the Sobolev space W 3,2 remains regular as long as the velocity gradient is bounded. The proof is based on the weak-strong uniqueness property and parabolic a priori estimates for the local strong solutions.

Introduction

In continuum mechanics, the motion of a general compressible, viscous, and heat conducting fluid is described by the thermostatic variables -the mass density ̺ = ̺(t, x) and the absolute temperature ϑ(t, x), and the velocity field u = u(t, x) evaluated at the time t and the spatial position x belonging to the reference physical domain Ω ⊂ R 3 . The time evolution of the fluid, emanating from the initial data

̺(0, •) = ̺ 0 , ϑ(0, •) = ϑ 0 , u(0, •) = u 0 in Ω, ( 1.1) 
is governed by the Navier-Stokes-Fourier system of partial differential equations:

Equation of continuity:

∂ t ̺ + div x (̺u) = 0; (1.2)
Momentum equation:

∂ t (̺u) + div x (̺u ⊗ u) + ∇ x p(̺, ϑ) = div x S(ϑ, ∇ x u); (1.3) 
Total energy balance:

∂ t 1 2 ̺|u| 2 + ̺e(̺, ϑ) + div x 1 2 ̺|u| 2 + ̺e(̺, ϑ) u + div x (p(̺, ϑ)u) (1.4) 
= div x (S(ϑ, ∇ x u)u) -div x q(ϑ, ∇ x ϑ).

The symbols p = p(̺, ϑ) and e = e(̺, ϑ) stand for the pressure and the (specific) internal energy, respectively. Furthermore, S = S(ϑ, ∇ x u) denotes the viscous stress given by Newton's rheological law:

S(ϑ, ∇ x u) = µ(ϑ) ∇ x u + ∇ t x u - 2 3 div x uI , (1.5) 
while q = q(ϑ, ∇ x ϑ) is the heat flux determined by Fourier's law:

q(ϑ, ∇ x u) = -κ(ϑ)∇ x ϑ. (1.6) 
We restrict ourselves to bounded regular domains Ω ⊂ R 3 , with energetically insulated boundary. More specifically, we consider the standard No slip boundary condition:

u| ∂Ω = 0, (1.7) 
together with

No-flux condition:

q • n| ∂Ω = 0, (1.8) 
where n is the (outer) normal vector to ∂Ω. Under these circumstance, the total mass as well as the total energy of the system are constants of motion, specifically, integrating equations (1.2), (1.4) over Ω we obtain

Ω ̺(t, •) dx = Ω ̺ 0 dx = M 0 , (1.9 
)

Ω 1 2 ̺|u| 2 + ̺e(̺, ϑ) (t, •) dx = Ω 1 2 ̺ 0 |u 0 | 2 + ̺ 0 e(̺ 0 , ϑ 0 ) dx = E 0 . (1.10) 
From the mathematical viewpoint, the Navier-Stokes-Fourier system suffers the same deficiency as most of its counterparts in continuum mechanics -the lack of sufficiently strong a priori bounds. It is known that the problem (1.1 -1.8) is well posed, locally in time, in the framework of classical solutions, see Tani [START_REF] Tani | On the first initial-boundary value problem of compressible viscous fluid motion[END_REF], or in slightly more general energy spaces of Sobolev type, see Valli [START_REF] Valli | A correction to the paper: "An existence theorem for compressible viscous fluids[END_REF], [START_REF] Valli | An existence theorem for compressible viscous fluids[END_REF], Valli and Zajaczkowski, [START_REF] Valli | Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case[END_REF], among others. Besides these local existence results, Matsumura and Nishida established in a series of papers [START_REF] Matsumura | Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first order dissipation[END_REF], [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF], [START_REF] Matsumura | The initial value problem for the equations of motion of compressible and heat conductive fluids[END_REF] global-in-time existence of strong/classical solutions provided the initial data are sufficiently close to an equilibrium solution. Similarly to the well known incompressible Navier-Stokes system, the existence of global-in-time smooth solutions for any physically admissible and large initial data remains an outstanding open problem.

The system (1.1 -1.8) has been also studied in the framework of weak solutions. Hoff and Jenssen [START_REF] Hoff | Symmetric nonbarotropic flows with large data and forces[END_REF] established global existence for radially symmetric data in R 3 . They also identified one of the main stumbling blocks in the analysis of the Navier-Stokes-Fourier system, namely the (hypothetical) appearance of vacuum zones, where the density vanishes and the classical understanding of the equations breaks down. More recently, Bresch and Desjardins [START_REF] Bresch | Stabilité de solutions faibles globales pour les équations de Navier-Stokes compressibles avec température[END_REF], [START_REF] Bresch | On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids[END_REF] discovered a new a priori bound on the density gradient leading to global-in-time existence in the truly 3D-setting conditioned, unfortunately, by a very specific relation satisfied by the density dependent viscosity coefficients and a rather unrealistic formula for the pressure that has to be infinite (negative) for ̺ → 0.

Weak and dissipative solutions

We adopt the approach to the Navier-Stokes-Fourier system originated in [START_REF] Feireisl | Stability of flows of real monoatomic gases[END_REF] and further developed and detailed in [START_REF] Feireisl | Singular limits in thermodynamics of viscous fluids[END_REF]. Suppose that p and e are interrelated through Gibbs' equation:

ϑDs(̺, ϑ) = De(̺, ϑ) + p(̺, ϑ)D 1 ̺ , (1.11) 
where s = s(̺, ϑ) is a new thermodynamic function called (specific) entropy. If ̺, ϑ are smooth and bounded below away from zero and if u is smooth, then the total energy balance (1.4) can be replaced by Thermal energy balance:

̺ ∂e(̺, ϑ) ∂ϑ (∂ t ϑ + u • ∇ x ϑ) -div x (κ(ϑ)∇ x ϑ) = S(ϑ, ∇ x u) : ∇ x u -ϑ ∂p(̺, ϑ) ∂ϑ div x u. (1.12)
Furthermore, dividing (1.12) on ϑ we arrive at Entropy (production) equation:

∂ t (̺s(̺, ϑ)) + div x (̺s(̺, ϑ)u) + div x q(ϑ, ∇ x ϑ) ϑ = σ, (1.13) 
with Entropy production rate: Another crucial observation, which is the platform of the approach developed in [START_REF] Feireisl | Singular limits in thermodynamics of viscous fluids[END_REF], is that we can relax (1.14) to

σ = 1 ϑ S(ϑ, ∇ x u) : ∇ x u - q • ∇ x ϑ ̺ . ( 1 
σ ≥ 1 ϑ S(ϑ, ∇ x u) : ∇ x u - q • ∇ x ϑ ̺ (1.15)
provided the system is supplemented by the integrated total energy balance (1.10 • Weak-strong uniqueness. Any weak solution coincides with a classical solution emanating from the same initial data provided the latter exists, see [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF].

Relative entropy and dissipative solutions

The property of weak-strong uniqueness mentioned above is closely related to the relative entropy inequality introduced in [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF]. We start by introducing another thermodynamic function: Ballistic free energy:

H Θ (̺, ϑ) = ̺e(̺, ϑ) -Θ̺s(̺, ϑ), (1.16) 
see [START_REF] Ericksen | Introduction to the thermodynamics of solids[END_REF], together with Relative entropy functional:

E ̺, ϑ, u r, Θ, U = Ω 1 2 ̺|u -U| 2 + H Θ (̺, ϑ) - ∂H Θ (r, Θ) ∂̺ (̺ -r) -H Θ (r, Θ) dx,
(1.17) where {̺, ϑ, u} is a weak solution of the Navier-Stokes-Fourier system and {r, Θ, u} is an arbitrary trio of smooth functions satisfying r > 0, Θ > 0, U| ∂Ω = 0.

(1.18)

As observed in [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF], the weak solutions of the Navier-Stokes-Fourier system satisfy Relative entropy inequality:

E ̺, ϑ, u r, Θ, U t=τ t=0 + τ 0 Ω Θ ϑ S(ϑ, ∇ x u) : ∇ x u - q(ϑ, ∇ x ϑ) • ∇ x ϑ ϑ dx dt (1.19) ≤ τ 0 Ω ̺(U -u) • ∂ t U + ̺(U -u) ⊗ u : ∇ x U -p(̺, ϑ)div x U dx dt + τ 0 Ω S(ϑ, ∇ x u) : ∇ x U dx dt - τ 0 Ω ̺ s(̺, ϑ) -s(r, Θ) ∂ t Θ + ̺ s(̺, ϑ) -s(r, Θ) u • ∇ x Θ dx dt - τ 0 Ω q(̺, ∇ x ϑ) ϑ • ∇ x Θ dx dt + τ 0 Ω 1 - ̺ r ∂ t p(r, Θ) - ̺ r u • ∇ x p(r, Θ) dx dt
for any trio {r, Θ, U} satisfying (1.18). Taking {r, Θ, U} the strong solution of the same system emanating from the same initial data gives rise to a Gronwall type inequality for E yielding ̺ = r, ϑ = Θ, u = U, see [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF].

As the proof of the weak-strong uniqueness principle uses only the integral inequality (1.19) without any reference to the original system of equations, we may introduce a new class of dissipative solutions satisfying solely the relative entropy inequality (1.19) for any trio of admissible test functions {r, Θ, U}. Note that a similar concept was introduced by DiPerna and Lions [START_REF] Lions | Mathematical topics in fluid dynamics[END_REF] in the context of the Euler system.

Regularity criteria

A conditional regularity criterion is a condition which, if satisfied by a weak solution, implies that the latter is regular. Similarly, such a condition may be applied to guarantee that a local (strong) solution can be extended to a given time interval. The most celebrated conditional regularity criteria are due to Prodi and Serrin [START_REF] Prodi | Un teorema di unicità per le equazioni di Navier-Stokes[END_REF], [START_REF] Serrin | On the interior regularity of weak solutions of the Navier-Stokes equations[END_REF] and Beal, Kato and Majda [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF], Constantin and Fefferman [START_REF] Constantin | Direction of vorticity and the problem of global regularity for the Navier-Stokes equations[END_REF] for solutions to the incompressible Navier-Stokes and Euler systems. Recently, similar conditions were obtained also in the context of compressible barotropic fluids and the full Navier-Stokes-Fourier system, see Fan, Jiang and Ou [START_REF] Fan | A blow-up criterion for compressible viscous heatconductive flows[END_REF], Sun et al. [START_REF] Sun | A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navies-Stokes equations[END_REF], and the references cited therein.

In view of the results of Hoff et al. [START_REF] Hoff | Dynamics of singularity surfaces for compressible viscous flows in two space dimensions[END_REF], [START_REF] Hoff | Lagrangean structure and propagation of singularities in multidimensional compressible flow[END_REF], certain discontinuities imposed through the initial data in the compressible Navier-Stokes system propagate in time. In other words, unlike its incompressible counterpart, the hyperbolic-parabolic compressible Navier-Stokes system does not enjoy the smoothing property typical for purely parabolic equations. Analogously, a solution of the full Navier-Stokes-Fourier system can be regular only if regularity is enforced by a proper choice of the initial data.

Our approach to conditional regularity is based on the concept of weak (dissipative) solutions satisfying the relative entropy inequality (1.19):

• In Section 2, we introduce the structural restrictions imposed on the thermodynamic functions p, e, s and the transport coefficients µ, κ so that the Navier-Stokes-Fourier system may possess a global in time weak (dissipative) solution for any finite energy initial data.

• Now, suppose that the initial data are more regular, specifically,

0 < ̺ ≤ ̺ 0 , 0 < ϑ ≤ ϑ 0 , ̺ 0 , ϑ 0 ∈ W 3,2 (Ω), u 0 ∈ W 3,2 (Ω; R 3 ), (1.20) 
satisfying, in addition, the necessary compatibility conditions

u 0 | ∂Ω = 0, ∇ x ϑ 0 • n| ∂Ω = 0, ∇ x p(̺ 0 , ϑ 0 )| ∂Ω = div x S(ϑ 0 , u 0 )| ∂Ω . (1.21) 
Under these circumstance, the Navier-Stokes-Fouries system admits a local-in-time strong solution {̺, θ, ũ} constructed by Valli [START_REF] Valli | An existence theorem for compressible viscous fluids[END_REF] such that

̺, θ ∈ C([0, T ]; W 3,2 (Ω)), θ ∈ L 2 (0, T ; W 4,2 (Ω)), ∂ t θ ∈ L 2 (0, T ; W 2,2 (Ω)), (1.22) ũ ∈ C([0, T ]; W 3,2 (Ω; R 3 )) ∩ L 2 (0, T ; W 4,2 (Ω; R 3 )), ∂ t ũ ∈ L 2 (0, T ; W 2,2 (Ω; R 3 )).
(1.23)

• Modifying slightly the arguments of [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF] to accommodate the strong solutions belonging to the regularity class (1.22) we show in Section 3 that the associated (globalin-time) weak solution {̺, ϑ, u} emanating from the initial data coincides with the strong solution {̺, θ, ũ} on its existence interval [0, T ].

• We show that if lim sup t→ T - ̺(t, •) W 3,2 (Ω) + ϑ(t, •) W 3,2 (Ω) + u(t, •) W 3,2 (Ω;R 3 ) = ∞, (1.24) 
then, necessarily, lim sup

t→ T - ∇ x u(t, •) L ∞ (Ω;R 3×3 ) = ∞, (1.25) 
see Section 4.

• Finally, in Section 5, we observe that the solutions constructed by Valli are classical (all necessary derivatives are continuous) for any t > 0. We conclude by the following conditional regularity result for the weak solutions of the Navier-Stokes-Fourier system:

Suppose that {̺, ϑ, u} is a weak (dissipative) solution of the Navier-Stokes-Fourier system in (0, T ) × Ω, emanating from the initial data belonging to the regularity class specified through (1.20), (1.21), and satisfying ess sup

t∈(0,T ) ∇ x u(t, •) L ∞ (Ω;R 3×3 ) < ∞.
Then u is a classical solution of the Navier-Stokes-Fourier system, unique in the class of weak (dissipative) solutions, see Theorem 2.1 below.

Preliminaries, main results

We start with a list of structural restrictions imposed on the functions p, e, s, µ, and κ. The interested reader may consult [11, Chapter 1] for the physical background and possible relaxations. We suppose that the pressure is given by the formula

p(̺, ϑ) = ϑ 5/2 P ̺ ϑ 3/2 + a 3 ϑ 4 , a > 0, (2.1) 
with

P ∈ C 1 [0, ∞) ∩ C 3 (0, ∞) satisfying P (0) = 0, P ′ (Z) > 0, 0 < 5 3 P (Z) -P ′ (Z)Z Z < c for all Z > 0, (2.2) lim Z→∞ P (Z) Z 5/3 > 0. (2.3)
Accordingly, in agreement with Gibbs' equation (1.11), e(̺, ϑ) = 3 2

ϑ 5/2 ̺ P ̺ ϑ 3/2 + a ̺ ϑ 4 , (2.4) 
and

s(̺, ϑ) = S ̺ ϑ 3/2 + 4a 3 ϑ 3 ̺ , (2.5) 
where

S ′ (Z) = - 3 2 5 3 P (Z) -P ′ (Z)Z Z 2 , lim Z→∞ S(Z) = 0. (2.6)
Finally, the transport coefficients are continuously differentiable functions of the temperature satisfying

µ(1 + ϑ Λ ) ≤ µ(ϑ) ≤ µ(1 + ϑ Λ ), |µ ′ (ϑ)| < c for all ϑ ∈ [0, ∞), 2 5 < Λ ≤ 1, (2.7 
) 

κ(1 + ϑ 3 ) ≤ κ(ϑ) ≤ κ(1 + ϑ 3 ) for all ϑ ∈ [0, ∞). ( 2 
, ϑ 0 ∈ L ∞ (Ω), ̺ 0 , ϑ 0 > 0 a.a. in Ω, u 0 ∈ L 2 (Ω; R 3 ). (2.9)
Moreover, the weak solution {̺, ϑ, u} satisfies the relative entropy inequality (1.19), see [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF].

Accordingly, a trio {̺, ϑ, u} will be called dissipative solution of the Navier-Stokes-Fourier system (1.1 -1.8) provided it obeys the relative entropy (1.19) for any choice of smooth functions {r, Θ, U} satisfying (1.18).

Summarizing the results of [START_REF] Feireisl | Singular limits in thermodynamics of viscous fluids[END_REF]Chapter 3] and [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF] we obtain:

Proposition 2.1 Let Ω ⊂ R 3 be a bounded domain of class C 2+ν
. Suppose that the thermodynamic functions p, e, s and the transport coefficients µ, κ obey the structural hypotheses (2.1 -2.8). Finally, let the initial data belong to the class specified in (2.9). Then the Navier-Stokes-Fourier system possesses a dissipative solution {̺, ϑ, u} on an arbitrary time interval (0, T ) that enjoys the following regularity properties:

̺ ≥ 0 a.a. in (0, T ) × Ω, ̺ ∈ C([0, T ]; L 1 (Ω)) ∩ L ∞ (0, T ; L 5/3 (Ω)) ∩ L β ((0, T ) × Ω) (2.10)
for a certain β > 5 3 ;

ϑ > 0 a.a. in (0, T ) × Ω, ϑ ∈ L ∞ (0, T ; L 4 (Ω)) ∩ L 2 (0, T ; W 1,2 (Ω)), (2.11) 
ϑ 3 , log(ϑ) ∈ L 2 (0, T ; W 1,2 (Ω)); (2.12) u ∈ L 2 (0, T ; W α 0 (Ω; R 3 )), α = 8 5 -Λ , ̺u ∈ C weak (0, T ; L 5/4 (Ω; R 3 )).
(2.13)

Main result

In accordance with the programme delineated in the introductory part, our main goal is to show that for regular data the weak solution remains regular as long as we can control the gradient of the velocity field. More specifically, we will show the following result. Suppose, in addition, that ess sup t∈(0,T )

∇ x u(t, •) L ∞ (Ω;R 3×3 ) < ∞. (2.14)
Then {̺, ϑ, u} is a classical solution of the Navier-Stokes-Fourier system satisfying (1.1 -1.8) in (0, T ) × Ω.

Remark: For technical reasons, we have omitted the effect of the bulk viscosity in the viscous stress S(ϑ, ∇ x u). The possibility to extend the result to more general forms of the viscous stress is discussed in Section 5.

Here, classical solution means that all functions and all derivatives appearing in the equations (1.2 -1.4) are continuous in (0, T ) × Ω, the functions ̺, ϑ, u, together with their first order derivatives, are continuous in [0, T ] × Ω and satisfy the initial conditions (1.1) as well as the boundary conditions (1.7), (1.8).

Although the rest of the paper is essentially devoted to the proof of Theorem 2.1, we will obtain a few other results that may be of independent interest.

Local existence and weak-strong uniqueness

To begin, it is convenient to introduce a scaled temperature

Ξ = K(ϑ), where K(ϑ) = ϑ 0 κ(z) dz.
Accordingly, the thermal energy balance (1.12) reads

̺ κ(ϑ) ∂e(̺, ϑ) ∂ϑ (∂ t Ξ + u • ∇ x Ξ) -∆Ξ (3.1) = 1 K(ϑ) S(ϑ, ∇ x u) : ∇ x u Ξ - ϑ K(ϑ) ∂p(̺, ϑ) ∂ϑ div x u Ξ.

First a priori bounds

Our goal is to derive a lower and upper bounds on the temperature. We first rewrite (3.1) in the form

(∂ t Ξ + u • ∇ x Ξ) -D∆Ξ = DAΞ -Bdiv x u Ξ,
where

D = ̺ κ(ϑ) ∂e(̺, ϑ) ∂ϑ -1 , A = 1 K(ϑ) S(ϑ, ∇ x u) : ∇ x u, B = ϑκ(ϑ) K(ϑ) ∂p(̺, ϑ) ∂ϑ ̺ ∂e(̺, ϑ) ∂ϑ -1
. Now, in view of the hypotheses (2.1), (2.4), and (2.8), it is easy to check that the exist constants B, B such that 0 < B ≤ B(t, x) ≤ B for all t, x.

Applying the standard comparison argument, we therefore deduce that

Ξ(τ, •) ≥ inf x∈Ω Ξ(0, x) exp -B τ 0 div x u(t, •) L ∞ (Ω) dt , τ ≥ 0. (3.2)
In order to obtain an upper bound, we need a similar estimate for the density, namely

inf x∈Ω ̺ 0 (x) exp - τ 0 div x u(t, •) L ∞ (Ω) dt (3.3) ≤ ̺(τ, •) ≤ sup x∈Ω ̺ 0 (x) exp τ 0 div x u(t, •) L ∞ (Ω) dt
that follows easily from the equation of continuity (1.2). Now, we may use hypotheses (2.7 -2.8) to observe that 

A(t, •) ≤ A ∇ x u(t, •) 2 L ∞ (Ω;R 3×3 ) ; whence Ξ(τ, •) ≤ (3.4) sup x∈Ω Ξ(0, x) exp D A τ 0 ∇ x u(t, •) 2 L ∞ (Ω;R 3×3 ) dt + exp B τ 0 div x u(t, •) L ∞ (Ω) dt for τ ∈ [0, T ],

Local existence of strong solutions

Rewriting the system of equations (1.2), ( Then there exists a positive time T such that the Navier-Stokes-Fourier system (1.1 -1.8) admits a unique strong solution {̺, θ, ũ} in the class

̺, θ ∈ C([0, T ]; W 3,2 (Ω)), ũ ∈ C([0, T ]; W 3,2 (Ω; R 3 )), (3.5) θ ∈ L 2 (0, T ; W 4,2 (Ω)), ∂ t θ ∈ L 2 (0, T ; W 2,2 (Ω)), (3.6) ũ ∈ L 2 (0, T ; W 4,2 (Ω; R 3 )), ∂ t ũ ∈ L 2 (0, T ; W 2,2 (Ω; R 3 )). (3.7)
Moreover, there exist scalar functions ̺, ̺, ϑ, ϑ, depending solely on

inf Ω ̺ 0 , sup Ω ̺ 0 , inf Ω ϑ 0 , sup Ω ϑ 0 , and on T 0 ∇ x ũ 2 L ∞ (Ω;R 3×3 ) dt, such that 0 < ̺(τ ) ≤ ̺(τ, •) ≤ ̺(τ ), 0 < ϑ(τ ) ≤ θ(τ, •) ≤ ϑ(τ ) (3.8)
for any τ ∈ [0, T ].

Weak strong uniqueness

We claim that in view of the result [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF] and its generalizations obtained in [START_REF] Feireisl | Relative entropies in thermodynamics of complete fluid systems[END_REF], the dissipative solution obtained in Proposition 2.1 coincides with the strong solution of Proposition 3.1 on the time interval [0, T ] provided they start from the same initial data (1.20), (1.21). This deserves some comments since both [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF] and [START_REF] Feireisl | Relative entropies in thermodynamics of complete fluid systems[END_REF] deal with classical solutions having all relevant derivatives continuous and bounded in (0, T ) × Ω.

Given the integrability properties of the dissipative solutions stated in (2.10 -2.13) and the regularity of the strong solutions (3.5 -3.7), we can easily check that the trio {r = ̺, Θ = θ, U = ũ} can be taken as test functions in the relative entropy inequality (1.19). Now, following step by step the arguments of [10, Section 6, formula (79)] we deduce from (1.19) the estimate

E ̺, ϑ, u ̺, θ, ũ t=τ t=0 + c τ 0 u -ũ 2 W 1,α (Ω;R 3 ) + ϑ -θ 2 W 1,2 (Ω) dt (3.9) ≤ τ 0 χ 1 (t)E ̺, ϑ, u ̺, θ, ũ dt + τ 0 χ 2 (t) Ω 1 + ̺ + ̺|s(̺, ϑ)| res 1 + |u -ũ| res + ϑ -θ res dxdt,
where, similarly to [START_REF] Feireisl | Relative entropies in thermodynamics of complete fluid systems[END_REF], we have denoted

h = [h] ess + [h] res = h -[h] ess , [h] ess = Φ(̺, ϑ)h, Φ ∈ C ∞ c ((0, ∞) 2 ), 0 ≤ Φ ≤ 1, Φ = 1 in an open neighborhood of a compact K ⊂ (0, ∞) 2
where K is chosen to contain the range of [̺, θ], specifically,

[̺(t, x), θ(t, x)] ∈ K for all x ∈ Ω, t ∈ [0, T ].
The functions χ i , i = 1, 2 are of the form

χ i (t) = b i (t) 1 + ∂ t θ L ∞ ((0, T )×Ω) + ∇ 2 θ L ∞ ((0, T )×Ω) + ∂ t ũ L ∞ ((0, T )×Ω) + ∇ 2 ũ L ∞ ((0, T )×Ω)
, where b i are bounded positive functions determined in terms of the amplitude of ̺, θ, ũ and their spatial gradients in [0, T ] × Ω. Focusing on the most difficult term, we have

χ 2 (t) Ω ̺|s(̺, ϑ)|| [u -ũ] res | dx ≤ χ 2 (t) [̺s(̺, ϑ)] res L 4/3 (Ω) u -ũ L 4 (Ω;R 3 ) ≤ ε u -ũ 2 W 1,α (Ω;R 3 ) + c(ε)χ 2 2 (t) [̺s(̺, ϑ)] res 2 L 4/3 (Ω) ≤ ε u -ũ 2 W 1,α (Ω;R 3 ) + c(ε)χ 2 2 (t)E 3/2 ̺
, ϑ, u ̺, θ, ũ for any ε > 0, where, exactly as in [10, Section 6.1], we have used the structural properties of s and the embedding

W 1,α (Ω) ֒→ L 4 , α = 8 5 -Λ , 2 5 < Λ ≤ 1.
Going back to (3.9) we may infer that

E ̺, ϑ, u ̺, θ, ũ t=τ t=0 + c τ 0 u -ũ 2 W 1,α (Ω;R 3 ) + ϑ -θ 2 W 1,2 (Ω) dt (3.10) ≤ τ 0 χ(t)E ̺, ϑ, u ̺, θ, ũ dt,
where, by virtue of (3.6), (3.7), χ ∈ L 1 (0, T ).

Applying Gronwall's lemma we obtain the following conclusion: 

Conditional regularity

Our goal is to show that the energy norm

̺(t, •) W 3,2 (Ω) + θ(t, •) W 3,2 (Ω) + ũ(t, •) W 3,2 (Ω;R 3 )
associated to a strong solution of the Navier-Stokes-Fourier system remains bounded in [0, T ] as long as sup t∈(0, T )

∇ x ũ(t, •) L ∞ (Ω;R 3×3 ) ≤ G < ∞. (4.1)
We remark that we already know that

0 < ̺(τ ) ≤ ̺(τ, •) ≤ ̺(τ ), 0 < ϑ ≤ θ(τ, •) ≤ ϑ (4.2)
for any τ ∈ [0, T ], see (3.8), where the bounds depend only on G, the initial data, and the length of the time interval.

Energy bounds, temperature

Multiplying equation (3.1) on ̺ κ( θ)

∂e(̺, θ) ∂ϑ -1 ∆ Ξ, Ξ = K( θ),
we obtain, after a routine manipulation, ess sup

t∈(0, T ) Ξ(t, •) W 1,2 (Ω) + ∂ t Ξ 2 L 2 (0,T ;L 2 (Ω)) + Ξ 2 L 2 (0,T ;W 2,2 (Ω)) ≤ c(B, data). (4.3) 
Since θ is already known to be bounded, the estimates (4.3) transfer to θ. Indeed note that

D 2 x θ = K -1 ( Ξ) -1 D 2 x Ξ + K -1 ( Ξ) |D x Ξ| 2 ,
where, since Ξ satisfies the homogeneous Neumann boundary condition, the term ∇ x Ξ may be estimates in terms of the Gagliardo-Nirenberg inequality

∇ x Ξ 2 L 4 (Ω;R 3 ) ≤ Ξ L ∞ (Ω) ∆Ξ L 2 (Ω) . (4.4) 
Consequently, relation (4.3) implies ess sup t∈(0, T )

θ(t, •) W 1,2 (Ω) + ∂ t θ 2 L 2 (0,T ;L 2 (Ω)) + θ 2 L 2 (0,T ;W 2,2 (Ω))
≤ c(B, data). (4.5)

Energy bounds, velocity

Our next goal is to deduce similar bounds for the velocity field. To this end, we write the momentum equation in the form

∂ t ũ - 1 ̺ div x S( θ, ∇ x ũ) = -ũ • ∇ x ũ - 1 ̺ ∂p(̺, θ) ∂ϑ ∇ x θ + 1 ̺ ∂p(̺, θ) ∂̺ ∇ x ̺ (4.6) = h 1 + 1 ̺ ∂p(̺, θ) ∂̺ ∇ x ̺,
where, in accordance with the previous estimates sup

t∈[0, T ] h 1 (t, •) L 2 (Ω;R 3 ) ≤ c(B, data).
Taking the scalar product of (4.6) with -div x S( θ, ∇ x ũ) we obtain Ω S( θ, ũ) :

∂ t ∇ x ũ dx + Ω 1 ̺ div x S( θ, ∇ x ũ) 2 dx = - Ω h 1 + 1 ̺ ∂p(̺, θ) ∂̺ ∇ x ̺ • div x S( θ, ∇ x ũ) dx,
where, furthermore,

Ω S( θ, ũ) : ∂ t ∇ x ũ dx = d dt Ω µ( θ) 4 ∇ x ũ + ∇ t x ũ - 2 3 div x ũI 2 dx - Ω µ ′ ( θ) 4 ∂ t θ ∇ x ũ + ∇ t x ũ - 2 3 div x ũI 2 dx.
In view of the estimate (4.5) we conclude that

d dt Ω µ( θ) 4 ∇ x ũ + ∇ t x ũ - 2 3 div x ũI 2 dx + Ω 1 ̺ div x S( θ, ∇ x ũ) 2 dx (4.7) 
= -

Ω h 1 + 1 ̺ ∂p(̺, θ) ∂̺ ∇ x ̺ • div x S( θ, ∇ x ũ) dx + Ω h 2 dx,
where h 2 L 2 (0, T ;L 2 (Ω) ≤ c(B, data).

Elliptic estimates

In order to exploit (4.7), we have to show that the L 2 -norm of div x S( θ, ∇ x ũ) is "equivalent" to the L 2 -norm of ∇ 2 ũ. We have

H ≡ div x S( θ, ∇ x ũ) = µ( θ) ∆ũ + 1 3 ∇ x div x ũ + h 3 ,
where, in accordance with (4.5),

h 3 L ∞ (0, T ;L 2 (Ω;R 3 ) ≤ c(B, data).
Consequently, we may integrate (4.7) with respect to t and use the standard elliptic estimates to obtain

τ 0 ũ 2 W 2,2 (Ω;R 3 ) dt ≤ c(B, data) 1 + τ 0 ∇ x ̺ 2 L 2 (Ω;R 3 ) , τ ∈ [0, T ]. (4.8) 
Now, we differentiate the equation of continuity with respect to x to obtain

∂ t (∂ x i ̺) + ũ • ∇ x (∂ x i ̺) = -∂ x i (ũ) • ∇ x ̺ -(∂ x i ̺) div x ũ -̺∂ x i div x ũ; (4.9) whence d dt Ω |∇ x ̺| 2 dx ≤ c(B, data) Ω |∇ x ̺| 2 + |∇ x ̺||∇ x div x ũ| dx. (4.10) 
Combining (4.8), (4.10) with the standard Gronwall type argument we get the following estimates: sup

t∈[0, T ] ∇ x ̺(t, •) L 2 (Ω;R 3 ) ≤ c(B, data). (4.11)
Next, due to (4.6),

∂ t ũ L 2 (0, T ;L 2 (Ω;R 3 )) + ũ L 2 (0, T ;W 2,2 (Ω;R 3 )) ≤ c(B, data), (4.12) 
and, finally, by means of the equation of continuity,

∂ t ̺ L 2 (0, T ;L 2 (Ω)) ≤ c(B, data). (4.13) 

Energy estimates for the time derivatives

Differentiating the momentum equation (1.3) with respect to t and setting Ṽ = ∂ t ũ we obtain

̺ ∂ t Ṽ + ũ • ∇ x Ṽ -div x S( θ, ∇ x Ṽ) = -∂ t ̺ Ṽ + ̺ Ṽ • ∇ x ũ + h 1 , (4.14) 
with

h 1 = -∂ t ̺ũ • ∇ x ũ + div x µ ′ ( θ)∂ t θ ∇ x ũ + ∇ t x ũ - 2 3 div x ũI -∇ x ∂ t p(̺, θ) ,
where, in accordance with the previous estimates,

h 1 L 2 (0, T ;W -1,2 (Ω;R 3 )) ≤ c(G, data). (4.15)
Seeing that

-∂ t ̺ Ṽ + ̺ Ṽ • ∇ x ũ • V = | Ṽ| 2 ̺div x ũ
we may take the scalar product of (4.14) with Ṽ and, integrating over Ω, we deduce the energy estimates for Ṽ = ∂ t ũ:

sup t∈[0, T ] ∂ t ũ L 2 (Ω;R 3 ) + ∂ t ũ L 2 (0, T ;W 1,2 (Ω;R 3 )) ≤ c(G, data). (4.16)
and, according to Sobolev's embedding theorem, Going back to (1.3) we compute 

∂ t ũ L 2 (0, T ;L 6 (Ω;R 3 )) ≤ c(G, data). (4.
µ( θ) ∆ũ + 1 3 ∇ x div x ũ (4.18) = ̺ (∂ t ũ + ũ • ∇ x ũ) -µ ′ ( θ) ∇ x ũ + ∇ x ũt - 2 3 div x ũI ∇ x θ + ∇ x p(̺,
ũ(t, •) 2 W 2,6 (Ω;R 3 ) dt ≤ c 1 + τ 0 ∇ x ̺(t, •) 2 L 6 (Ω;R 3 ) dt . (4.20) 
Furthermore, multiplying (4.9) on |∇ x ̺| 4 ∇ x ̺ yields 

d dt ∇ x ̺ 6 L 6 (Ω;R 3 ) ≤ c ∇ x ̺ 6 L 6 (Ω;R 3 ) + ũ W 2,6 (Ω;R 3 ) ∇ x ̺ 5 L 6 (Ω;R 3 ) . ( 4 
∇ x ̺(t, •) L 6 (Ω;R 3 ) + ∂ t ̺(t, •) L 6 (Ω;R 3 ) + ũ L 2 (0, T ;W 2,6 (Ω;R 3 )) ≤ c(G, data). (4.22)
4.5 L p -L q estimates for the temperature Our next goal is to apply the technique of L p -L q estimates to the parabolic equation (1.12). For this purpose, we first need Hölder continuity for θ. To this end, let us write equation (1.12) in terms of ẽ(̺, Ξ) = e(̺, K -1 ( Ξ)).

̺∂ t ẽ(̺, Ξ) + ̺ũ • ∇ x ẽ(̺, Ξ) -∆ x Ξ = S( θ, ∇ x ũ) : ∇ x ũ -p(̺, θ)div x ũ := h. Note that ∆ x Ξ = div x ∇ x e e Θ (̺, Ξ) -div x ∂ ̺ ẽ(̺, Ξ) ∂ Θ ẽ(̺, Ξ) ∇ x ̺ .
We obtain

̺∂ t ẽ(̺, Ξ) + ̺ũ • ∇ x ẽ(̺, Ξ) -div x ∇ x ẽ ∂ Θ ẽ(̺, Ξ) = h + div x ∂ ̺ ẽ( ̺, Ξ) ∂ Θ ẽ(̺, Ξ) ∇ x ̺ ,
which, after dividing on both sides by ̺, yields Now we write (1.12) in the following form: being Hölder continuous. The L p -L q theory for parabolic equations is now applicable yielding

∂ t ẽ(̺, Ξ) + ũ - ∇ x ̺ ̺2 ∂ Θ ẽ(̺, Ξ) • ∇ x ẽ(̺, Ξ) -div x ∇ x e ̺∂ Θ ẽ(̺, Ξ) = h ̺ + ∂ ̺ ẽ(̺, Ξ) ̺2 ∂ Θ ẽ(̺, Ξ) |∇ x ̺| 2 + div x ∂ ̺ ẽ(̺, Ξ) ̺∂ Θ ẽ(̺, Ξ) ∇ x ̺ . (4.23) Note that ∇ x ̺ ∈ L ∞ (0, T ; L 6 (Ω, R 3 
∂ t Ξ + ũ • ∇ x Ξ -D∆ x Ξ = Dh. ( 4 
θ ∈ L p (0, T ; W 2,6 (Ω)), ∂ t θ ∈ L p (0, T ; L 6 (Ω)) for any 1 < p < ∞. (4.26) 
see Amann [START_REF] Amann | Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems[END_REF], [START_REF] Amann | Linear and quasilinear parabolic problems[END_REF], Krylov [START_REF] Krylov | Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms[END_REF]. Note that the integrability in the spatial variable is limited by the integrability of the initial data.

Remark: Applying similar arguments to the momentum equation (1.3), we could obtain analogous estimates for the velocity field:

ũ ∈ L p (0, T ; W 2,6 (Ω; R 3 )), ∂ t ũ ∈ L p (0, T ; L 6 (Ω; R 3 )) for any 1 < p < ∞, (4.27) 
however, we do not need this refinement in the future analysis.

Full regularity

Differentiating (4.25) with respect to time yields As for the final estimates

∂ t Ξt -D∆ x Ξt = (Dh) t + D t ∆ x Ξ -(ũ • ∇ x Ξ) t := h. ( 4 
(Ω)) + Ξt L 2 (0, T ;W 1,2 (Ω)) ≤ c(G, data), (4.30) Ξ L ∞ (0, T ;W 2,2 (Ω)) + Ξ L 2 (0, T ;W 3,2 (Ω)) ≤ c(G, data), (4.31) as well as Ξt L ∞ (0, T ;W 1,2 (Ω)) + Ξtt L 2 (0, T ;L 2 (Ω)) ≤ c(G, data), (4.32) Ξ L ∞ (0, T ;W 3,2 (Ω)) + Ξt L 2 (0, T ;W 2,2 (Ω)) ≤ c(G, data), (4.33) Ξ L 2 (0, T ;W 4,2 (Ω)) ≤ c(G, data). ( 4 
ũ L 2 (0, T ;W 4,2 (Ω,R 3 )) + ̺ L ∞ (0, T ;W 3,2 (Ω)) ≤ c(G, data), (4.37) 
one needs to combine with the transport equation. The treatment is similar to Section 4.3 and we omit the details. Summarizing the previous considerations, we are allowed to state the following result. In particular, if T is the maximal existence time, then T = T .

Conclusion

To begin, the standard parabolic regularity theory implies that the solutions belonging to the class specified in Proposition 3.1 are, in fact, classical solutions, meaning all relevant derivatives appearing in the system (1.2 -1.4) are continuous in the open set (0, T ) × Ω, the fields θ, ̺ are continuously differentiable up to the boundary ∂Ω, and the boundary conditions (1.7), (1.8) hold, see Matsumura and Nishida [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF], [START_REF] Matsumura | The initial value problem for the equations of motion of compressible and heat conductive fluids[END_REF]. Consequently, combining Proposition 3.1 with Proposition 4.1 we obtain the conclusion of Theorem 2.1. We conclude the paper by comments concerning the hypotheses of Theorem 2.1. In the light of the results obtained by Fan et al. [START_REF] Fan | A blow-up criterion for compressible viscous heatconductive flows[END_REF], the "optimal" regularity criterion is expected to be the bound

T 0 ∇ x u L ∞ (Ω;R 3×3 ) dt < ∞.
Note, however, that, unlike [START_REF] Fan | A blow-up criterion for compressible viscous heatconductive flows[END_REF], we have to handle the transport coefficients that depend effectively on the temperature. The advantage of this approach is that, again unlike [START_REF] Fan | A blow-up criterion for compressible viscous heatconductive flows[END_REF], the Navier-Stokes-Fourier system is known to possess a global in time dissipative solution.

The regularity of the strong solutions seems optimal, at least in view of the result [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF]. Indeed the time derivative ∂ t ũ of the strong solutions should be at least of class L 2 (0, T ; L ∞ (Ω; R 3 )) for the technique of [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF] to be applicable.

The next remark concerns the possibility to include the more general class of Newtonian stress, namely S(ϑ, ∇ x u) = µ(ϑ) ∇ x u + ∇ t x u -2 3 div x uI + η(ϑ)div x uI,

where we have added the bulk viscosity, with the coefficient η = η(ϑ). Clearly, we can show the same result if η(ϑ) µ(ϑ) = A -a constant.

Moreover, our method still applies if η(ϑ) µ(ϑ) ≈ "small", where small is determined in terms of the optimal constant λ in the elliptic estimate ∆v + 1 3 div x vI L 2 (Ω;R 3×3 ) ≥ λ v W 2,2 (Ω;R 3 ) , v| ∂Ω = 0.

The general case may be handled in the following way:

1. After establishing the uniform bounds in Section 3.1, apply the theory of Krylov and Safonov [START_REF] Krylov | A certain property of solutions of parabolic equations with measurable coefficients[END_REF] for parabolic equation in non-divergence form to equation (3.1) to obtain uniform bounds on θ in the Hölderian norm.

2. Use the regularity theory for elliptic systems with Hölder coefficients in Section 4.3.

Finally, we remark that the methods of the present paper could be extended to other types of boundary conditions of the Navier type for the velocity and to more general classes of domains Ω including certain unbounded domains like exterior domains or a half-space.
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Theorem 2 . 1

 21 Under the hypotheses of Proposition 2.1, let {̺, ϑ, u} be a dissipative solution of the Navier-Stokes-Fourier system on the time interval (0, T ) belonging to the regularity class (2.10 -2.13), with the (regular) initial data satisfying (1.20), together with the compatibility conditions (1.21).

  where D depends only on inf x∈Ω ̺ 0 (x), inf x∈Ω Ξ(0, x), and T 0 div x u L ∞ (Ω) dt.

Proposition 3 . 1

 31 , (1.12) in terms of the new unknowns {̺, Ξ, u} and taking the a priori bounds (3.2), (3.4) into account, we can apply the local existence result of Valli [28, Theorem A and Remark 3.3]. Going back to the original variables, we obtain: Under the hypotheses of Proposition 2.1, suppose that the initial data {̺ 0 , ϑ 0 , u 0 } satisfy (1.20), and the compatibility conditions (1.21).

Proposition 3 . 2

 32 Under the hypotheses of Proposition 3.1, let {̺, θ, ũ} be the local strong solution specified in Proposition 3.1 and {̺, ϑ, u} a dissipative solution obtained in Proposition 2.1, emanating from the same initial data. Then ̺ = ̺, ϑ = θ, u = ũ in [0, T ] × Ω.

17

 17 

  )

  )) according to(4.22), we can apply the standard theory of parabolic equations with bounded measurable coefficients to deduce that ẽ(̺, Ξ) is Hölder continuous in [0, T ] × Ω.See Ladyzhenskaya et al.[START_REF] Ladyzhenskaya | Linear and qusilinear equations of parabolic type[END_REF]. Since ̺ is already Hölder continuous in the set [0, T ] × Ω (cf. the estimates (4.22)), we find Ξ(hence θ) is Hölder continuous in [0, T ] × Ω.(4.24) 

. 25 )

 25 with the diffusion coefficient D = ̺∂e(̺, θ) ∂ϑ -1

  .34) Similar estimates for θ hold. With these estimates in hand, we can go back to equation (4.14) for Ṽ = ∂ t ũ and in a similar way to conclude ũt L ∞ (0, T ;W 1,2 (Ω,R 3 )) + ũtt L 2 (0, T ;L 2 (Ω,R 3 )) ≤ c(G, data), (4.35)ũ L ∞ (0, T ;W 3,2 (Ω,R 3 )) + ũt L 2 (0, T ;W 2,2 (Ω,R 3 )) ≤ c(G, data). (4.36)

Proposition 4 . 1

 41 Let T > 0 be given. Suppose that {̺, θ, ũ} is a strong solution of the Navier-Stokes-Fourier on the time interval [0, T ], T ≤ T , the existence of which is claimed in Proposition 3.1. Assume, in addition, thatsup t∈[0, T ] ∇ x ũ(t, •) L ∞ (Ω;R 3 ) ≤ G. (4.38) Then sup t∈[0, T ] ̺(t, •) W 3,2 (Ω) + θ(t, •) W 3,2 (Ω) + ũ(t, •) W 3,2(Ω;R 3 ) ≤ c(G, data, T ). (4.39)
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