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Multiple scales and singular limits for compressible rotating fluids with general initial data

We study the singular limit of a rotating compressible fluid described by a scaled barotropic Navier-Stokes system, where the Rossby number = ε, the Mach number = ε m , the Reynolds number = ε -α , and the Froude number = ε n are proportional to a small parameter ε → 0. The inviscid planar Euler system is identified as the limit problem. The proof is based on the application of the method of relative entropies and careful analysis of oscillatory integrals describing the propagation of Rossby-acoustic waves.

Introduction

The basic system of equations considered in this paper are the continuity equation and the momentum equation describing the time evolution of the mass density ̺ = ̺(t, x) and the (relative) velocity u = u(t, x) of a compressible, rotating fluid:

∂ t ̺ + div x (̺u) = 0, (1.1) ∂ t (̺u) + div x (̺u ⊗ u) + 1 ε ̺(f × u) + 1 ε 2m ∇ x p(̺) = ε α div x S(∇ x u) + 1 ε 2n ̺∇ x G, (1.2) 
S(∇ x u) = µ ∇ x u + ∇ t x u -2 3 div x uI + ηdiv x uI, µ > 0, η ≥ 0.

(1.

3

)
The fluid is confined to an infinite slab Ω = R 2 × (0, 1), (1.4) where it satisfies the slip condition

u • n| ∂Ω = [S(∇ x u) • n] tan | ∂Ω = 0 (1.5)
imposed on the horizontal boundary.

The model (1.1 -1.5) may be viewed as a crude approximation (f -plane model) of the Earth atmosphere in a plane tangent to the Earth at a certain latitude, see Vallis [34, Chapter 2, Section 2.3]. Accordingly, the gravitational force is taken parallel to the vertical projection of the rotation axis:

f = [0, 0, 1], ∇ x G = [0, 0, -1],

The momentum equation (1.2) contains a small parameter ε related to different characteristic numbers resulting from the scale analysis: Rossby number = ε, Mach number = ε m , Reynolds number = ε -α , Froude number = ε n , see Klein [START_REF] Klein | Scale-dependent models for atmospheric flows[END_REF]. We consider the singular limit problem for ε ց 0 in the multiscale regime:

m 2 > n ≥ 1, α > 0 (1.6)
for the ill-prepared initial data

̺(0, •) = ̺ 0,ε = ̺ε + ε m ̺ (1) ε , u(0, •) = u 0 , (1.7) 
where ̺ε is a solution to the static problem

∇ x p(̺ ε ) = ε 2(m-n) ̺ε ∇ x G in Ω. (1.8)
In particular, since n ≥ 1, the centrifugal force, parallel to the vertical axis, is dominated by gravitation (cf. Durran [START_REF] Durran | Is the Coriolis force really responsible for the inertial oscillation ?[END_REF]).

Formally, it is not difficult to identify the limit problem. Indeed fast rotation is expected to eliminate the vertical motion, the vanishing viscosity (high Reynolds number) makes the limit system inviscid (hyperbolic), while the low Mach number regime drives the fluid to incompressibility. The limit problem is therefore expected to be the incompressible Euler system for the planar velocity field

v = [v 1 , v 2 ], ∂ t v + div x (v ⊗ v) + ∇ x Π = 0, div x v = 0 in (0, T ) × R 2 .
(1.9)

Our main goal is to put these formal arguments on rigorous grounds. The phenomena discussed above have been investigated by many authors. The fact that highly rotating fluids become planar (two-dimensional), and, accordingly, fast rotation has a regularizing effect, was observed by Babin, Mahalov, and Nicolaenko [START_REF] Babin | Global regularity of 3D rotating Navier-Stokes equations for resonant domains[END_REF], [START_REF] Babin | 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity[END_REF], Bresch, Desjardins, and Gerard-Varet, [START_REF] Bresch | Rotating fluids in a cylinder[END_REF], Chemin et al. [START_REF] Chemin | Mathematical geophysics[END_REF], among others. The inviscid limit is a well studied and partially still open challenging problem, see Clopeau, Mikelic, Robert [START_REF] Clopeau | On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions[END_REF], Kato [START_REF] Kato | Remarks on the zero viscosity limit for nonstationary Navier-Stokes flows with boundary[END_REF], Masmoudi [START_REF] Masmoudi | The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary[END_REF], [START_REF] Masmoudi | Incompressible, inviscid limit of the compressible Navier-Stokes system[END_REF], [START_REF] Masmoudi | Examples of singular limits in hydrodynamics[END_REF], Sammartino and Caflisch [START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space I, Existence for Euler and Prandtl equations[END_REF], [START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space II, Construction of the Navier-Stokes solution[END_REF], Swann [START_REF] Swann | The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in R 3[END_REF], Temam and Wang [START_REF] Temam | On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity[END_REF], [START_REF] Temam | Boundary layers associated with incompressible NavierStokes equations: The noncharacteristic boundary case[END_REF], to name only a few. The low Mach number limits were proposed in the pioneering papers by Ebin [START_REF] Ebin | The motion of slightly compressible fluids viewed as a motion with strong constraining force[END_REF], and Klainerman and Majda [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[END_REF], and later reexamined in the context of weak solutions by Lions and Masmoudi [START_REF] Lions | Incompressible limit for a viscous compressible fluid[END_REF], see also the survey by Danchin [6], Gallagher [START_REF] Gallagher | Résultats récents sur la limite incompressible[END_REF], and Schochet [START_REF] Schochet | The mathematical theory of low Mach number flows. M2ANMath[END_REF]. To the best of our knowledge, the simultaneous effects of these three mechanisms has not yet been treated in the literature.

The present paper may be viewed as complementary to our previous study [START_REF] Feireisl | Scale interactions in compressible rotating fluids[END_REF], where we examined the "single-scale" limit corresponding to n = 0, m = 1, α > 0.

(1.10)

Although this problem looks formally very similar to the present setting, the methods employed as well as the limit system are different, cf. [START_REF] Feireisl | Scale interactions in compressible rotating fluids[END_REF]. The central issue to be discussed is the behavior of the oscillatory part of solutions to the scaled system. These are described in the case (1.10) by a system of linear equations with constant coefficients, while the situation (1.6) gives rise to a problem with coefficients depending on the scaling parameter ε.

Similarly to [START_REF] Feireisl | Scale interactions in compressible rotating fluids[END_REF], our approach is based on the concept of finite energy weak solutions satisfying the relative entropy inequality identified in [START_REF] Feireisl | Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids[END_REF], see Section 2. After collecting the necessary preliminary material, we state the main result in Section 3. Section 4 reviews the basic estimates, independent of ε ց 0, for solutions of the family of scaled problems. Section 5 is the heart of the paper. We establish decay estimates on the oscillatory part of solutions to the scaled problems by means of careful analysis of certain oscillatory integrals. Here, inspired by the analysis of Guo, Peng, and Wang [START_REF] Guo | Decay estimates for a class of wave equations[END_REF], we make use of frequency cut-off operators and estimates based on van Corput's lemma. The proof of convergence towards the limit system is completed in Section 6.

Preliminaries, weak solutions, relative entropy inequality

We suppose that the pressure p ∈ C[0, ∞) ∩ C 3 (0, ∞) is a given function of the density enjoying the following property

p(0) = 0, p ′ (̺) > 0 for all ̺ > 0, lim ̺→∞ p ′ (̺) ̺ γ-1 , γ > 3 2
.

(2.1)

In addition, without loss of generality, we assume that p is "normalized" setting

p ′ (1) = 1. (2.2)
Finally, we introduce the pressure potential H,

H(̺) = ̺ ̺ 1 p(z) z 2 dz, (2.3) 
noting that

H ′′ (̺) = p ′ (̺) ̺ , H ′′ (1) = 1.

Static solutions

As already mentioned above, the static solutions ̺ε solve the problem (1.8), specifically, we take

H ′ (̺ ε ) = ε 2(m-n) G + H ′ (1)
, where G(x) = -x 3 ;

(2.4) whence ̺ε (x) = ̺ε (x 3 ), sup

x 3 ∈[0,1] |̺ ε (x 3 ) -1| ≤ cε 2(m-n) . (2.5) 
As indicated by our choice of the initial data (1.7), the solutions of the evolutionary problem (1.1 -1.3), (1.5), (1.7) satisfy far field conditions in the form

̺ → ̺ε , u → 0 as |x| → ∞.
(2.6)

Finite energy weak solutions

We say that [̺, u] is a finite energy weak solution of the problem (1.1 -1.3), (1.5), (1.7), (2.6) on the space-time cylinder (0, T ) × Ω if the following holds:

• Regularity. The functions ̺, u belong to the class

̺ ≥ 0, (̺ -̺ε ) ∈ L ∞ (0, T ; L 2 + L γ (Ω)), u ∈ L 2 (0, T ; W 1,2 (Ω; R 3 )), u • n = u 3 | ∂Ω = 0. (2.7)
• Equations. The equation of continuity (1.1) and the momentum equation (1.2) are replaced by integral identities

T 0 Ω (̺∂ t ϕ + ̺u • ∇ x ϕ) dx dt = - Ω ̺ 0,ε ϕ(0, •) dx (2.8)
for any ϕ ∈ C ∞ c ([0, T ) × Ω), and

T 0 Ω ̺ ε u ε • ∂ t ϕ + (̺u ⊗ u) : ∇ x ϕ - 1 ε ̺(f × u)•ϕ + 1 ε 2m p(̺)div x ϕ dx dt (2.9) = T 0 Ω ε α S(∇ x u) : ∇ x ϕ - 1 ε 2n ̺∇ x G • ϕ dx dt - Ω ̺ 0,ε u 0,ε • ϕ(0, •) dx for any ϕ ∈ C ∞ c ([0, T ) × Ω; R 3 ), ϕ • n| ∂Ω = 0.
• Energy. The energy inequality

Ω 1 2 ̺|u| 2 + 1 ε 2m (H(̺) -H ′ (̺ ε )(̺ -̺ε ) -H(̺ ε )) (τ, •) dx + ε α τ 0 Ω S(∇ x u) : ∇ x u dx dt (2.10) ≤ Ω 1 2 ̺ 0,ε |u 0,ε | 2 + 1 ε 2m (H(̺ 0,ε ) -H ′ (̺ ε )(̺ 0,ε -̺ε ) -H(̺ ε )) dx holds for a.a. τ ∈ (0, T ).
Note that the existence theory in the class of finite energy weak solutions was developed by Lions [START_REF] Lions | Mathematical topics in fluid dynamics[END_REF] and later extended in [START_REF] Feireisl | On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids[END_REF] to the sofar "critical" adiabatic exponent γ > 3 2 .

Relative entropy

For future analysis, it is convenient to replace the energy inequality (2.10) by the relative entropy inequality containing more transparent piece of information on the asymptotic behavior of solutions for ε → 0. To this end, we introduce the relative entropy functional

E ε ̺, u r, U = Ω 1 2 ̺|u -U| 2 + 1 ε 2m H(̺) -H ′ (r)(̺ -r) -H(r) dx, (2.11) 
cf. [START_REF] Feireisl | Relative entropies, suitable weak solutions, and weakstrong uniqueness for the compressible Navier-Stokes system[END_REF], [START_REF] Feireisl | Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids[END_REF], Germain [START_REF] Germain | Weak-strong uniqueness for the isentropic compressible Navier-Stokes system[END_REF]. It can be shown, see [START_REF] Feireisl | Relative entropies, suitable weak solutions, and weakstrong uniqueness for the compressible Navier-Stokes system[END_REF], that any finite energy weak solution [̺, u] specified in Section 2.2 satisfies the relative entropy inequality:

E ε ̺, u r, U (τ ) + ε α τ 0 Ω S(∇ x u) -S(∇ x U) : ∇ x u -∇ x U dx dt ≤ (2.
12)

E ε ̺ 0,ε , u 0,ε r(0, •), U(0, •) + τ 0 Ω ̺ (∂ t U + u • ∇ x U) • (U -u) dx dt +ε α τ 0 Ω S(∇ x U) : ∇ x (U -u) dx dt + 1 ε τ 0 Ω ̺(f × u) • (U -u) dx dt + 1 ε 2m τ 0 Ω (r -̺)∂ t H ′ (r) + ∇ x H ′ (r) -H ′ (̺ ε ) • (rU -̺u) dx dt - 1 ε 2m τ 0 Ω div x U p(̺) -p(r) dx dt- 1 ε 2n τ 0 Ω (̺ -r)∇ x G • U dx dt
for all sufficiently smooth "test functions" r, U satisfying

U • n| ∂Ω = 0, r > 0, U, (r -̺ε ) compactly supported in Ω.
Note the assumptions concerning the decay and regularity can be relaxed to basically any couple [r, U] for which (2.12) makes sense via the standard density argument, see [START_REF] Feireisl | Relative entropies, suitable weak solutions, and weakstrong uniqueness for the compressible Navier-Stokes system[END_REF].

3 Main result . Similarly, we use the symbols ∇ h , div h to denote the differential operators acting on the horizontal variables only. Finally, the symbol H denotes the Helmholtz projection onto the space of solenoidal functions in Ω, while H h is the Helmholtz projection in R 2 . Let v 0 ∈ W k,2 (R 2 ; R 2 ), k ≥ 3, divv 0 = 0, be given. It is well known (see for instance Kato and Lai [START_REF] Kato | Nonlinear evolution equations and the Euler flow[END_REF]) that the Euler system (1.9) supplemented with the initial data

v(0) = v 0 admits a regular solution (v, Π), unique in the class v ∈ C([0, T ]; W k,2 (R 2 ; R 2 )), ∂ t v ∈ C([0, T ]; W k-1,2 (R 2 ; R 2 )), Π ∈ C([0, T ]; W k,2 (R 2 )).
We are ready to formulate our main result.

Theorem 3.1 Let the pressure p = p(̺) satisfy the hypotheses (2.1), (2.2). Suppose that the exponents α, m, n are given such that

α > 0, m 2 > n ≥ 1.
Let the initial data [̺ 0,ε , u 0,ε ] be given by (1.7), where the stationary states ̺ε satisfy (2.4),

̺ (1) 0,ε L 2 ∩L ∞ (Ω) ≤ c, ̺ (1) 
0,ε → ̺ (1) 0 in L 2 (Ω), u 0,ε → u 0 in L 2 (Ω; R 3 ), (3.1) 
with ̺

(1)

0 ∈ W k-1,2 (Ω), u 0 ∈ W k,2 (Ω; R 3 ) for a certain k ≥ 3. (3.2) Let [̺ ε , u ε ] be a finite energy weak solution of the problem (1.1 -1.3), (1.5), (1.7), (2.6) in the space-time cylinder (0, T ) × Ω.
Then ess sup

t∈(0,T ) ̺ ε (t, •) -̺ε (L 2 +L γ )(Ω) ≤ ε m c (3.3) √ ̺ ε u ε → v      weakly-(*) in L ∞ (0, T ; L 2 (Ω; R 3 )), strongly in L 1 loc ((0, T ) × Ω; R 3 ), (3.4 
)

where v = [v h , 0]
is the unique solution of the Euler system (1.9), with the initial data

v(0, •) = H h 1 0 u 0 (x h , x 3 ) dx 3 .
The rest of the paper is devoted to the proof of Theorem 3.1.

Uniform bounds

We start with the nowadays standard estimates that follow directly from the energy inequality (2.10). These are conveniently formulated in terms of the essential and residual components of a measurable function h,

h = h ess + h res , h ess = χ(̺ ε )h, χ ∈ C ∞ c (0, ∞), 0 ≤ χ ≤ 1, χ = 1 in an open interval contaning 1, h res = (1 -χ(̺ ε ))h.
Since the initial data are given by (1.7), where the functions ̺

(1) 0,ε , u 0,ε satisfy the hypotheses (3.1), (3.2), the integral on the right-hand side of (2.2) is bounded uniformly for ε ց 0. As the stationary states ̺ε are chosen to satisfy (2.5), we deduce the following bounds independent of ε:

ess sup t∈(0,T ) √ ̺ ε u ε L 2 (Ω;R 3 ) ≤ c, (4.1) 
ess sup

t∈(0,T ) ̺ ε -̺ε ε m ess L 2 (Ω) ≤ c, (4.2) 
ess sup

t∈(0,T ) [̺ ε ] res γ L γ (Ω) + ess sup t∈(0,T ) [1] res L 1 (Ω) ≤ ε 2m c, (4.3) 
and

ε α T 0 Ω ∇ x u ε + ∇ x u t ε - 2 3 div x u ε I 2 dx dt ≤ c, (4.4) 
cf. [9, Section 2]. Obviously, the estimates (4.1), (4.2) yield (3.3), which, combined with (2.5) gives rise to

̺ ε → 1 in L ∞ (0, T ; L q loc (Ω)) for any 1 ≤ q < γ. (4.5)
Moreover, combining (4.5) with (4.1 -4.3) we obtain

√ ̺ ε u ε → u weakly-(*) in L ∞ (0, T ; L 2 (Ω; R 3 )), (4.6) 
and

̺ ε u ε → u weakly-(*) in L ∞ (0, T ; L 2 + L 2γ/(γ+1) (Ω; R 3 )), (4.7) 
passing to suitable subsequences as the case may be. Finally, we may let ε → 0 in the equation of continuity to deduce that

div x u = 0, u • n| ∂Ω = 0 in the sense of distributions in (0, T ) × Ω. (4.8)

Decay estimates and oscillatory integrals

With our convention (2.2), the equation describing the oscillatory part of solutions reads

ε m ∂ t s + div x V = 0, (5.1) 
ε m ∂ t V + ωf × V + ∇ x s = 0, ω = ε m-1 , V • n| ∂Ω = 0, (5.2) 
cf. [START_REF] Feireisl | Scale interactions in compressible rotating fluids[END_REF]. Re-scaling in the time we arrive at

∂ t s + div x V = 0, (5.3) 
∂ t V + ωb × V + ∇ x s = 0, V • n| ∂Ω = 0, (5.4) 
with the operator

B(ω) : s V → div x V ωf × V + ∇ x s .
The operator B is skew symmetric in the space L 2 (Ω) × L 2 (Ω; R 3 ), with the domain of definition

D[B(ω)] = [r, V] r ∈ W 1,2 (Ω), V ∈ L 2 (Ω; R 3 ), div x V ∈ L 2 (Ω), V • n = V 3 | ∂Ω = 0 ,
and the kernel

N (B(ω)) = [q, v] q = q(x h ), q ∈ W 1,2 (R 2 ), v = [v h (x h ), 0], div h v h = 0, ωf × v + ∇ x q = 0 .
Let P(ω) denote the projection

P(ω) : L 2 (Ω) × L 2 (Ω; R 3 ) → N (B(ω)).
Exactly as in [11, Section 4.1.1] we can show that

P(ω)[r, U] = [q, v] if -∆ h q+ω 2 q = ω 1 0 curl h U h dx 3 +ω 2 1 0 r dx 3 in R 2 , v = [v 1 , v 2 , 0], ωv 1 = -∂ x 2 q, ωv 2 = ∂ x 1 q. (5.5)

Spectral analysis

Thanks to our special choice of the geometry of the spatial domain Ω, we may reformulate the problem (5.3), (5.4) in terms of the Fourier variables. To this end, we observe, exactly as in [START_REF] Feireisl | Scale interactions in compressible rotating fluids[END_REF], that the underlying spatial domain Ω may be equivalently replaced by

Ω = R 2 × T 1 ,
where

T 1 = [-1, 1] {-1,1}
is a "flat" sphere, and where s, V h were extended as even functions of the vertical variable x 3 , while V 3 was extended as odd in x 3 . In other words, all quantities are understood as 2-periodic functions in the vertical x 3 variable. Accordingly, for each function g ∈ L 2 ( Ω), we introduce its Fourier representation

ĝ(ξ, k), ξ = [ξ 1 , ξ 2 ] ∈ R 2 , k ∈ Z, where ĝ(ξ, k) = 1 √ 2 1 -1 R 2 exp (-iξ • x h ) g(x h , x 3 ) exp (-ikx 3 ) dx h dx 3 .
We have

g(x h , x 3 ) = k∈Z F -1 ξ→x h [ĝ(ξ, k)] exp (ikx 3 ) ,
where the symbol F x h →ξ denotes the standard Fourier transform on R 2 . Thus the problem (5.3), (5.4) can be written in the form

d dt       ŝ(t, ξ, k) V1 (t, ξ, k) V2 (t, ξ, k) V3 (t, ξ, k)       + i      0 ξ 1 ξ 2 k ξ 1 0 ωi 0 ξ 2 -ωi 0 0 k 0 0 0            ŝ(t, ξ, k) V1 (t, ξ, k) V2 (t, ξ, k) V3 (t, ξ, k)       = 0, ŝ(0, ξ, k) V(0, ξ, k) = ŝ0 (ξ, k) V0 (ξ, k) ; (5.6)
with the Hermitian matrix

A(ξ, k, ω) =      0 ξ 1 ξ 2 k ξ 1 0 ωi 0 ξ 2 -ωi 0 0 k 0 0 0      .
Of course, solutions of (5.6) depend also on the parameter ω = ε m-1 .

Spectral properties of the matrix A

After a bit tedious but straightforward manipulation (see [START_REF] Feireisl | A singular limit for compressible rotating fluids[END_REF]), we can check that A(ξ, k, ω) possesses four eigenvalues

λ 1 (|ξ| 2 , k, ω) = ω 2 +|ξ| 2 +k 2 + √ (ω 2 +|ξ| 2 +k 2 ) 2 -4ω 2 k 2 2 1/2 , λ 2 (|ξ| 2 , k, ω) = -λ 1 (|ξ| 2 , k, ω), λ 3 (|ξ| 2 , k, ω) = ω 2 +|ξ| 2 +k 2 - √ (ω 2 +|ξ| 2 +k 2 ) 2 -4ω 2 k 2 2 1/2 , λ 4 (|ξ| 2 , k, ω) = -λ 3 (|ξ| 2 , k, ω).
(5.7)

Note that λ 3 (|ξ| 2 , 0, ω) = λ 4 (|ξ| 2 , 0, ω) = 0 are the zero eigenvalues corresponding to the non-void kernel of the matrix Athe Fourier image of the null-space of the operator B(ω), see [START_REF] Feireisl | A singular limit for compressible rotating fluids[END_REF]. As for the eigenvectors [q, v 1 , v 2 , v 3 ], we have

ξ 1 v 1 + ξ 2 v 2 + kv 3 = λq, ξ 1 q + iωv 2 = λv 1 , ξ 2 q -iωv 1 = λv 2 , kq = λv 3 , (5.8) 
from which we immediately deduce

v 1 = µ(λξ 1 + iωξ 2 ), v 2 = µ(λξ 2 -iωξ 1 ), µλ|ξ| 2 = λq -kv 3 , , kq = λv 3 , (5.9) 
where µ is a free parameter that is fixed to normalize the norm of the eigenvector to be one.

Eigenvectors

We denote by E = E(ξ, k, ω) = [q, v 1 , v 2 , v 3 ] the normalized eigenvectors. Our goal is to show that diagonalizing matrices Q, Q T , formed by the eigenvectors, are L p -multipliers in the ξ variable restricted to compact subsets of R 2 \ {0}. This amounts to showing that sup ω∈(0,1)

max 0<a≤|ξ|≤b<∞ ∇ A ξ E j (ξ, k, ω) ≤ c = c(A, a, b, k), j = 1, 2, 3, 4, k ∈ Z (5.10) with any multi-index A = (A 1 , A 2 ).
We distinguish two cases:

Case λ = 0:

In this case, we necessarily have k = 0 and λ = ±λ 3 , and the orthonormal basis of eigenvectors can be taken in the form

E 1 = µ -iω, -ξ 2 , ξ 1 , 0 , µ = |ξ| 2 + ω 2 -1/2 , E 2 = [0, 0, 0, 1].
Clearly (5.10) holds.

Case λ = 0 :

We find that

v 1 = µ(λξ 1 + iωξ 2 ), v 2 = µ(λξ 2 -iωξ 1 ), λ 2 -k 2 λ 2 q = µ(ξ 2 1 + ξ 2 2 ), v 3 = k λ q.
Thus, the corresponding normalized eigenvector has the form

E = µ λ 2 |ξ| 2 λ 2 -k 2 , λξ 1 + iωξ 2 , λξ 2 -iωξ 1 , kλ|ξ| 2 λ 2 -k 2 , with µ = λ 4 + |k| 2 λ 2 (λ 2 -k 2 ) 2 |ξ| 4 + (λ 2 + ω 2 )|ξ| 2 -1/2
.

We consider first the case λ = ±λ 1 . We check that

λ 2 1 ≥ |ξ| 2 /2, (ω 2 + |ξ| 2 + k 2 ) 2 -4ω 2 k 2 ≥ |ξ| 4 , (5.11) 
λ 2 1 -k 2 = ω 2 -k 2 + |ξ| 2 + (ω 2 -k 2 ) 2 + |ξ| 2 (|ξ| 2 + 2(ω 2 + k 2 )) 2 ≥ |ξ| 2 2 .
Consequently (5.10) is satisfied. Finally, if 0 = λ = ±λ 3 , we note that

λ 3 (|ξ| 2 , k, ω) = ω|k| 1 λ 1 (|ξ| 2 , k, ω) , λ 2 3 -k 2 = k 2 (ω 2 -λ 2 1 ) λ 2 1 ,
(5.12)

λ 2 1 -ω 2 = -ω 2 + |ξ| 2 + |k| 2 + (ω 2 + |ξ| 2 + k 2 ) 2 -4k 2 ω 2 2 ≥ |ξ| 2 /2.
Using identity (5.12) 1 , we write E in terms of λ 1 and verify (5.10) employing this explicit formula and estimates (5.11), (5.12).

Frequency cut-off

As we shall see below, it will be convenient to approximate the initial data for the problem (5.3), (5.4) by a frequency truncation represented by a function ψ ∈ C ∞ c (0, ∞). Accordingly, solutions of the problem (5.3), (5.4) will be, in a certain way, composed of the quantities

Z(t, x h , k, ω) = F -1
ξ→x h exp ± iλ j (|ξ| 2 , k, ω)t ψ(|ξ|) ĥ(ξ) , j = 1, 2, 3, 4, k ∈ Z, ω ∈ (0, 1), (5.13) where ĥ stands for the Fourier transform of the "initial data". Our goal will be to derive suitable dispersive estimates for the mapping h → Z.

We start with the L 1 -L ∞ decay estimates. To this end, write

Z(t, •, k, ω) L ∞ (R 2 ) ≤ F -1 ξ→x h exp ± iλ j (|ξ| 2 , k, ω)t ψ(|ξ|) L ∞ (R 2 ) h L 1 (R 2 ) . (5.14) 
Consequently,

F -1 ξ→x h exp ± iλ j (|ξ| 2 , k, ω)t ψ(|ξ|) (x h ) (5.15) = π √ 2 2π 0 ∞ 0 exp ± iλ j (|ξ| 2 , k, ω)t ψ(|ξ|) exp i|ξ||x h | sin θ |ξ| d|ξ|dθ = π √ 2 ∞ 0 exp ± iλ j (r 2 , k, ω)t ψ(r)rJ 0 (r|x h |) dr,
where the symbols J m , m = 0, 1, . . . denote the Bessel functions, cf. Guo, Peng, and Wang [START_REF] Guo | Decay estimates for a class of wave equations[END_REF].

Finally, performing a simple change of variables, we get

F -1 ξ→x h exp ± iλ j (|ξ| 2 , k, ω)t ψ(|ξ|) (x h ) = π √ 2 2 ∞ 0 exp ± iλ j (z, k, ω)t ψ( √ z)J 0 ( √ z|x h |) dz.
(5.16)

Decay estimates

Supposing λ j = 0 we derive the desired decay estimates. To this end, we use van Corput's lemma, see Stein [30, Chapter 8.1.2, Proposition 2 and Corollary]:

Lemma 5.1 Let Λ = Λ(z) be a smooth function away from the origin,

∂ z Λ(z) monotone, |∂ z Λ(z)| ≥ Λ 0 > 0 for all z ∈ [a, b], 0 < a < b < ∞. Let Φ be a smooth function on [a, b]. Then b a exp (iΛ(z)t) Φ(z) dz ≤ c 1 tΛ 0 |Φ(b)| + b a |∂ z Φ(z)| dz ,
where c is an absolute constant independent of Λ and Φ.

Going back to the oscillatory integral (5.16), we distinguish two cases.

Case |x h | > t β

Using the decay properties of J 0 and the fact that ψ is compactly supported away from zero, we get

F -1 ξ→x h exp ± iλ j (|ξ| 2 , k, ω)t ψ(|ξ|) (x h ) ≤ c(ψ)t -β/2 whenever |x h | > t β .
(5.17)

5.3.2 Case |x h | ≤ t β
The idea is to use van Corput's lemma. Let [a, b] be a closed interval, a > 0, containing the support of ψ( √ z). In accordance with the hypotheses of Lemma 5.1, we have to verify that

• |∂ z λ j (z, k, ω)| ≥ Λ 0 (a, b, ω, k) > 0 for all z ∈ [a, b], ω ∈ (0, 1); • ∂ z Λ j is monotone on [a, b].
If the two conditions are satisfied, we get

F -1 ξ→x h exp ± iλ j (|ξ| 2 , k, ω)t ψ(|ξ|) (x h ) ≤ c(ψ) 1 Λ 0 (a, b, k, ω)t 1 + t β/2 for |x h | ≤ t β , (5.18) 
where again we have used the properties of the Bessel functions, namely,

J ′ 0 (z) = -J 1 (z).
Now, our goal is to verify the hypotheses of Lemma 5.1. We have

∂ z λ 1 (z, k, ω) = 1 2 1 λ 1 (z, k, ω) β 1 (z, k, ω), β 1 (z, k, ω) = 1 2   1 + ω 2 + z + k 2 (ω 2 + z + k 2 ) 2 -4ω 2 k 2   ,
and, similarly,

∂ z λ 3 (z, k, ω) = 1 2 1 λ 3 (z, k, ω) β 3 (z, k, ω), β 3 (z, k, ω) = 1 2   1 - ω 2 + z + k 2 (ω 2 + z + k 2 ) 2 -4ω 2 k 2   , k = 0.
Furthermore,

∂ z β 1 (z, k, ω) = - 2ω 2 k 2 [(ω 2 + z + k 2 ) 2 -4ω 2 k 2 ] 3/2 , ∂ z β 3 (z, k, ω) = 2ω 2 k 2 [(ω 2 + z + k 2 ) 2 -4ω 2 k 2 ] 3/2 .
Summing up the previous relations, we conclude that

∂ z λ 1 (z, k, ω) is a decreasing functions of z, while ∂ z λ 3 (z, k, ω
) is an increasing functions of z for k = 0.

Consequently, we deduce that

∂ z λ 1 (z, k, ω) ≥ ∂ z Λ 1 (b, k, ω) ≥ Λ(ψ, k) for z ∈ [a, b], ω ∈ (0, 1). (5.19)
Finally, we have

∂ z λ 3 (z, k, ω) < 0, |∂ z λ 3 (z, k, ω)| ≥ |∂ z λ 3 (b, k, ω)|,
where

|∂ z λ 3 (b, k, ω)| ≥ 1 2   ω 2 + b + k 2 (ω 2 + b + k 2 ) 2 -4ω 2 k 2 -1     ω 2 + b + k 2 -(ω 2 + b + k 2 ) 2 -4ω 2 k 2 2   -1/2 = √ 2ω|k| (ω 2 + b + k 2 ) 2 -4ω 2 k 2 -1/2 ω 2 + b + k 2 + (ω 2 + b + k 2 ) 2 -4ω 2 k 2 -1/2
≥ c(ψ, k)ω for k = 0, ω ∈ (0, 1).

Thus, reviewing (5.17), (5.18) we may infer that

F -1 ξ→x h exp ± iλ j (|ξ| 2 , k, ω)t ψ(|ξ|) L ∞ (R 2 )
≤ c(ψ, k) max 1 ωt 1-β/2 ; 1 t β/2 , t > 0, (5.20) as soon as λ j = 0, which gives rise to the decay estimates

Z(t, •, k, ω) L ∞ (R 2 ) ≤ c(ψ, k) max 1 ωt 1-β/2 ; 1 t β/2 h L 1 (R 2 ) .
(5.21)

Next, seeing that the mapping h → exp iλ j (ξ, k, ω)t h is an isometry on L 2 (R 2 ), we deduce

Z(t, •, k, ω) L 2 (R 2 ) ≤ c h L 2 (R 2 ) (5.22)
Finally, interpolating (5.21) and (5.22), we obtain the

L p -L q estimates Z(t, •, k, ω) L p (R 2 ) ≤ c(ψ, p, k) max 1 ωt 1-β/2 ; 1 t β/2 1-2 p h L p ′ (R 2 ) for p ≥ 2, 1 p + 1 p ′ = 1, λ j = 0. (5.23)
Keeping in mind that ω scales like ε m-1 while the time t is proportional to ε -m we observe that taking 0 < β < 2 m yields the effective decay of Z ε = Z(t/ε m , k, ω) on any compact subinterval of (0, T ]. In particular, the optimal choice β = 1/m gives rise to

Z t ε m , •, k, ω L p (R 2 ) ≤ c ε 1 2 -1 p max 1 t 1-1/2m ; 1 t 1/2m 1-2 p h L p ′ (R 2 ) , p ≥ 2, λ j = 0, t ∈ (0, T ].
(5.24)

Convergence

In this final part, we complete the proof of Theorem 3.1. The basic idea is to use the relative entropy inequality (2.12) for a suitable choice of test functions r and U.

Initial data decomposition

We start be introducing suitable smoothing operators imposed on the initial data. Taking a family of smooth functions

ψ δ ∈ C ∞ c (0, ∞), 0 ≤ ψ δ ≤ 1, ψ δ ր 1 as δ → 0, and φ δ = φ δ (x h ) ∈ C ∞ c (R 2 ), 0 ≤ φ δ ≤ 1, φ δ ր 1 as δ → 0, we introduce ̺ (1) 0 δ (x h , x 3 ) = 1 √ 2 |k|≤1/δ F -1 ξ→x h ψ δ (|ξ|) ̺ (1) 0 φ δ (ξ, k) exp (-ikx 3 ) , (6.1) 
and, similarly,

[u 0,j ] δ (x h , x 3 ) = 1 √ 2 |k|≤1/δ F -1 ξ→x h ψ δ (|ξ|) (u 0,j φ δ )(ξ, k) exp (-ikx 3 ) , j = 1, 2, 3. (6.2)
Now, we write the initial data in the form

̺ (1) 0 δ = s 0,ε,δ + q 0,ε,δ , where -∆ h q 0,ε,δ + ω 2 q 0,δ = ω 1 0 curl h [[u 0 ] h ] δ dx 3 + ω 2 1 0 ̺ (1) 0 δ dx 3 (6.3) [u 0 ] δ = V 0,ε,δ + v 0,ε,δ , with ω[v 0,ε,δ ] 1 = -∂ x 2 q 0,ε,δ , ω[v 0,ε,δ ] 2 = ∂ x 1 q 0,ε,δ . (6.4)
Finally, we choose the functions r, U in the relative entropy inequality as

r = r ε,δ = ̺ε + ε m (q ε,δ + s ε,δ ), U = U ε,δ = v ε,δ + V ε,δ , (6.5) 
where [s ε,δ , V ε,δ ] is the unique solution of the acoustic-Rossby system (5.1), (5.2), emanating from the initial data

s ε,δ (0, •) = s 0,ε,δ , V ε,δ (0, •) = V 0,ε,δ , while the functions q ε,δ , v ε,δ are interrelated through ωf × v ε,δ + ∇ x q ε,δ = 0, (6.6) 
where q ε,δ is the unique solution of the problem

∂ t ∆ h q ε,δ -ω 2 q ε,δ + 1 ω ∇ ⊥ h q ε,δ • ∇ x ∆ h q ε,δ -ω 2 q ε,δ = 0, q ε,δ (0, •) = q 0,ε,δ . (6.7) 

Decay of the oscillatory component

First we claim that, in view of the dispersive estimates (5.24) (with 0 < β < 2/m), and the properties of the eigenvectors of the matrix A, discussed in detail in Section 5.1.2, we get

s ε,δ → 0 in L p (0, T ; W l,q (Ω)), V ε,δ → 0 in L p (0, T ; W l,q (Ω)) as ε → 0 (6.8) 
for any fixed δ > 0, 1 ≤ p < ∞, 2 < q ≤ ∞ and l = 0, 1, . . . We note that

   s ε,δ (t, x h , k) V ε,δ (t, x h , k    = F -1 ξ→x h                Q T (ξ, ω, k)                exp iλ 1 (ξ, ω, k) t ε m , 0, 0, 0 0, exp iλ 2 (ξ, ω, k) t ε m , 0, 0 0, 0, exp iλ 3 (ξ, ω, k) t ε m , 0 0, 0, 0, exp iλ 4 (ξ, ω, k) t ε m                Q(ξ, ω, k)ψ(|ξ|) ĥ0 (ξ)                = F -1 ξ→x h                ψ(|ξ|)Q T (ξ, ω, k)                exp iλ 1 (ξ, ω, k) t ε m , 0, 0, 0 0, exp iλ 2 (ξ, ω, k) t ε m , 0, 0 0, 0, exp iλ 3 (ξ, ω, k) t ε m , 0 0, 0, 0, exp iλ 4 (ξ, ω, k) t ε m                ψ(|ξ|)Q(ξ, ω, k)ψ(|ξ|) ĥ0 (ξ)                , ω = ε m-1 ,
where ψ ∈ C ∞ c (0, ∞) has been chosen so that ψ ψ = ψ. In accordance with Section 5.1.2, the quantities ψQ, ψQ T are L p -Fourier multipliers with norm independent of ω. Thus the desired decay estimates (6.8) follow from (5.24).

Convergence of the non-oscillatory component

We introduce the scaled function qε,δ = q ε,δ /ω and observe that

∂ t ∆ h qε,δ -ω 2 qε,δ + ∇ ⊥ h qε,δ • ∇ h ∆ h qε,δ -ω 2 qε,δ , q ε,δ (0) = q 0,ε,δ , (6.9) 
∆ h q0,ε,δ -ω 2 q0,δ = 1 0 curl h [[u 0 ] h ] δ dx 3 + ω 1 0 ̺ (1) 0 δ dx 3 .
Since the initial data are regular, we may use the result of Oliver [START_REF] Oliver | Classical solutions for a generalized Euler equation in two dimensions[END_REF]Theorem 3] to deduce that

{∆q ε,δ + ε 2 qε,δ } ε>0 is bounded in C r ([0, T ]; W l,2 (Ω)), r ≥ 0, l = 0, 1, . . . (6.10) 
Moreover, as ∆q ε,δ satisfies that transport equation (6.9) with the initial data in L p (R 2 ), we get

{∆q ε,δ + ω 2 qε,δ } ε>0 is bounded in L ∞ ([0, T ]; L p (Ω)) for any 1 < p < ∞. (6.11) 
Next, we recall the "energy estimates" that can be obtained multiplying (6.9) on qε,δ and integrating by parts:

R 2 |∇ x qε,δ | 2 + ω 2 |q ε,δ | 2 (τ, •) dx = R 2 |∇ x q0,ε,δ | 2 + ω 2 |q 0,ε,δ | 2 dx. (6.12) Note that R 2 ∇ ⊥ h qε,δ • ∇ h ∆ h qε,δ qε,δ dx = - R 2 ∇ ⊥ h qε,δ • ∇ h qε,δ ∆ h qε,δ dx = 0. Since v ε,δ = ∇ ⊥ h qε,δ , we get {v ε,δ } ε>0 is bounded in C r ([0, T ]; W l,2 (R 2 )), r ≥ 0, l = 0, 1, . . . (6.13) 
Finally, we compute

∂ t qε,δ = (∆ h -ω 2 ) -1 [∇ h (v ε,δ curlv ε,δ )] ,
where, furthermore,

vcurl h v = v 1 (∂ x 1 v 2 -∂ x 2 v 1 ) ; v 2 (∂ x 1 v 2 -∂ x 2 v 1 ) , with v 1 ∂ x 1 v 2 = ∂ x 1 (v 1 v 2 ) + 1 2 ∂ x 2 v 2 2 , v 2 ∂ x 2 v 1 = ∂ x 2 (v 1 v 2 ) + 1 2 ∂ x 1 v 2 1 .
Consequently, we may infer that {∂ t qε,δ } ε>0 is bounded in C r ([0, T ]; W l,q (R 2 )), r ≥ 0, q > 1, l = 0, 1, . . . (6.14) All the above estimates may depend on δ but are uniform with respect to ε ց 0.

In view of the above estimates, it is easy to pass to the limit for ε → 0 in order to get

v ε,δ → v δ , ∂ t v ε,δ → ∂ t v δ weakly-(*) in L ∞ (0, T ; W l,2 (R 2 )), l = 0, 1, . . . , (6.15) 
where

v δ , ∂ t v δ ∈ C([0, T ]; W l,2 (R 2 )), l = 0, 1, 2, . . . . (6.16) 
We have, in particular,

v ε,δ → v δ in L q (0, T ; L q loc (Ω)), 1 ≤ q < ∞;
whence, by virtue of (6.9),

∂ t curl h v δ + v δ • ∇ h curl h v δ = 0. Seeing that curl h div h (v δ ⊗ v δ ) = curl h (v δ • ∇ h v δ ) = v δ • ∇ h curl h v δ ,
we deduce existence of Π δ ∈ C([0, T ]; W l,2 (R 2 )), l = 0, 1, 2, . . . , (6.17) where the couple (v δ , Π δ ) is the unique solution of the Euler system (1.9), emanating from the initial data

v δ (0, •) = 1 0 H h [[u 0 ] δ ] dx 3 . (6.18)

Relative entropy inequality

We return to the relative entropy inequality (2.12), where ̺ = ̺ ε , u = u ε and the test functions r and U are given by (6.5). In what follows, we examine step by step all terms on the right-hand side of (2.12) and perform the limits; first for ε → 0, then for δ → 0.

Initial data

We have

E ε ̺ 0,ε , u 0,ε r(0, •), U(0, •) (6.19) = Ω 1 2 ̺ 0,ε |u 0,ε -[u 0 ] δ | 2 dx + Ω 1 ε 2m H 1 + ε m ̺ (1) 0,ε -H ′ (1 + ε m [̺ (1) 0 ] δ ) (̺ (1) 0,ε -[̺ (1) 0 ] δ -H(1 + ε m [̺ (1) 0 ] δ ) dx ≤ c u 0,ε -[u 0 ] δ 2 L 2 (Ω;R 3 ) + ̺ (1) 0,ε -[̺ (1) 0 ] δ 2 L 2 (Ω;R 3 ) → c u 0 -[u 0 ] δ 2 L 2 (Ω;R 3 ) + ̺ (1) 0 -[̺ (1) 0 ] δ 2 L 2 (Ω;R 3 ) as ε → 0.
The most left quantity obviously tends to zero as δ ց 0.

Viscosity

We write

ε α τ 0 Ω S(∇ x U ε,δ ) : ∇ x (U ε,δ -u ε ) dx dt ≤ ε α c 1 (δ) τ 0 Ω |∇ x (U ε,δ -u ε )| dx dt, (6.20) 
and, by Korn's inequality,

ε α τ 0 Ω |∇ x (U ε,δ -u ε )| dx dt ≤ ε α 2 τ 0 Ω (S ε (∇ x u ε ) -S ε (∇ x U ε,δ ) : ∇ x (U ε,δ -u ε ) dx dt + c 2 ε α .

Forcing term

We have

1 ε 2m (r ε,δ -̺ ε )∂ t H ′ (r ε,δ ) + ∇ x H ′ (r ε,δ ) -H ′ (̺ ε ) • (r ε,δ U ε,δ -̺ ε u ε ) (6.21) + 1 ε 2m div x U ε,δ p(r ε,δ ) -p(̺ ε ) + 1 ε 2n (r ε,δ -̺ ε )∇ x G • U ε,δ = 1 ε 2m p(r ε,δ ) -p ′ (r ε,δ )(r ε,δ -̺ ε ) -p(̺ ε ) div x U ε,δ + 1 ε 2m (r ε,δ -̺ ε )H ′′ (r ε,δ ) ∂ t r ε,δ + div x (r ε,δ U ε,δ ) + 1 ε 2m ̺ ε ∇ x H ′ (r ε,δ ) • (U ε,δ -u ε )-∇ x H ′ (̺ ε ) • (r ε,δ U ε,δ -̺ ε u ε ) + 1 ε 2n (r ε,δ -̺ ε )∇ x G • U ε,δ , where ∂ t r ε,δ + div x (r ε,δ U ε,δ ) = (̺ ε -1)div x V ε,δ + ∇ x ̺ε • U ε,δ + (6.22) ε m ∂ t q ε,δ + ε m div x ((s ε,δ + q ε,δ )(v ε,δ + V ε,δ )) .
and

̺ ε ∇ x H ′ (r ε,δ ) • (U ε,δ -u ε ) -∇ x H ′ (̺ ε ) • (r ε,δ U ε,δ -̺ ε u ε ) (6.23) = ̺ ε ∇ x H ′ (r ε,δ ) -H ′′ (̺ ε )(r ε,δ -̺ε ) -H ′ (̺ ε ) • (U ε,δ -u ε ) +̺ ε ∇ x H ′′ (̺ ε ) • (U ε,δ -u ε )(r ε,δ -̺ε ) + ̺ ε ε m H ′′ (̺ ε ) ∇ x s ε,δ + ∇ x q ε,δ • (U ε,δ -u ε ) +(̺ ε -r ε,δ )∇ x H ′ (̺ ε ) • U ε,δ .
Here we have used the fact that the term

̺ ε ∇ x H ′ (̺ ε ) • (U ε,δ -u ε ) in the expansion of ̺ ε ∇ x H ′ (r ε,δ ) • (U ε,δ -u ε ) cancels with the same term in the expansion of ∇ x H ′ (̺ ε ) • (r ε,δ U ε,δ -̺ ε u ε ).
Now we use formula (6.21) with the second and third terms at the right hand side expressed through formulas (6.22) and (6.23): we keep the terms

1 ε m ̺ ε H ′′ (̺ ε ) ∇ x s ε,δ + ∇ x q ε,δ • (U ε,δ -u ε ) and 1 ε m (r ε,δ -̺ ε )∇ x H ′ (r ε,δ ) [∂ t q ε,δ + div x ((s ε,δ + q ε,δ )(v ε,δ + V ε,δ
))] as they are, and estimate the decay of all remaining terms as ε → 0. We observe that, thanks to (6.9), (6.12), sup t∈(0,T )

q ε,δ (t, •) L 2 (R 2 ) ≤ c, sup t∈(0,T ) ∆q ε,δ (t, •) L 2 (R 2 ) ≤ cε m-1 , sup t∈(0,T ) ∂ t q ε,δ (t, •) L 2 (R 2 ) ≤ cε m-1 .
(6.24) Now, we use (2.4-2.5), (4.1-4.4), (6.5), (6.8), (6.13), (6.24) to deduce the following estimates:

1 ε 2n τ 0 Ω (r ε,δ -̺ ε )∇ x G • U ε,δ dxdt ≤ cε m-2n , (6.25) 1 ε 2m τ 0 Ω p(r ε,δ ) -p ′ (r ε,δ )(r ε,δ -̺ ε ) -p(̺ ε ) div x U ε,δ dxdt (6.26) = 1 ε 2m τ 0 Ω p(r ε,δ ) -p ′ (r ε,δ )(r ε,δ -̺ ε ) -p(̺ ε ) res div x V ε,δ dxdt + 1 ε 2m τ 0 Ω p(r ε,δ ) -p ′ (r ε,δ )(r ε,δ -̺ ε ) -p(̺ ε ) ess div x V ε,δ dxdt = h(ε, δ), 1 ε 2m τ 0 Ω (r ε,δ -̺ ε )H ′′ (r ε,δ ) (̺ ε -1)div x V ε,δ + ∇ x ̺ε • U ε,δ dxdt ≤ cε m-2n , (6.27) 1 ε 2m τ 0 Ω ̺ ε ∇ x H ′ (r ε,δ ) -H ′′ (̺ ε )(r ε,δ -̺ε ) -H ′ (̺ ε ) • (U ε,δ -u ε ) dxdt = h(ε, δ), (6.28) 1 ε 2m Ω ̺ ε ∇ x H ′′ (̺ ε ) • (U ε,δ -u ε )(r ε,δ -̺ε ) dxdt + τ 0 Ω (̺ ε -r ε,δ )∇ x H ′ (̺ ε ) • U ε,δ dxdt ≤ cε m-2n .
(6.29) Here and hereafter, h(ε, δ) denotes a generic function having the property h(ε, δ) → h(δ) as ε → 0, h(δ) → 0 as δ → 0. (6.30)

Note that the dispersive decay estimates (6.8) play a crucial role in the analysis.

Taking into account (6. [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[END_REF]), (6.20), using the identity (6.21) with the third and fourth terms expressed through (6.22-6.23), and employing the asymptotic behavior from formulas (6.25-6.29), we may rewrite the relative entropy inequality (2.12) in the form

E ε ̺ ε , u ε r ε,δ , U ε,δ (τ ) ≤ τ 0 Ω ̺ ε (∂ t U ε,δ + u ε • ∇ x U ε,δ ) • (U ε,δ -u ε ) dx dt (6.31) + 1 ε τ 0 Ω ̺ ε (f × u ε ) • (U ε,δ -u ε ) dx dt + 1 ε m τ 0 Ω (r ε,δ -̺ ε )H ′′ (r ε,δ ) ∂ t q ε,δ + div x ((s ε,δ + q ε,δ )U ε,δ ) dx dt + 1 ε m τ 0 Ω
̺ ε H ′′ (̺ ε ) ∇ x s ε,δ + ∇ x q ε,δ • (U ε,δu ε ) dx dt + h(ε, δ).

Coriolis force

We may write ̺ ε H ′′ (̺ ε ) ∇ x s ε,δ + ∇ x q ε,δ • (U ε,δu ε ) (6.32)

= ̺ ε (H ′′ (̺ ε ) -H ′′ (1)) ∇ x s ε,δ + ∇ x q ε,δ • (U ε,δ -u ε ) + ̺ ε H ′′ (1) ∇ x s ε,δ + ∇ x q ε,δ • (U ε,δ -u ε ),
where, by the same reasoning as in estimates (6.25-6.29),

1 ε 2m τ 0 Ω ̺ ε (H ′′ (̺ ε ) -H ′′ (1)) ∇ x s ε,δ + ∇ x q ε,δ • (U ε,δ -u ε ) dxdt ≤ cε m-2n
Recalling our convention H ′′ (1) = 1 we get for the second term in (6.32),

1 ε m ̺ ε H ′′ (1) ∇ x s ε,δ + ∇ x q ε,δ • (U ε,δ -u ε ) = ̺ ε -∂ t V ε,δ - 1 ε f × V ε,δ - 1 ε f × v ε,δ • (U ε,δ -u ε ) = -∂ t V ε,δ - 1 ε (f × U ε,δ ) • u ε ,
where the last term cancels out with the Coriolis force term

1 ε f × u ε • (U ε,δ -u ε ) = 1 ε (f × u ε ) • U ε,δ
. Thanks to formula (6.32) the relative entropy inequality (6.31) reduces to

E ε ̺ ε , u ε r ε,δ , U ε,δ (τ ) ≤ τ 0 Ω ̺ ε (∂ t v ε,δ + u ε • ∇ x U ε,δ ) • (U ε,δ -u ε ) dx dt (6.33) + 1 ε m τ 0 Ω
(r ε,δ -̺ ε )H ′′ (r ε,δ ) ∂ t q ε,δ + div x ((s ε,δ + q ε,δ )U ε,δ ) dx dt + h(ε, δ).

Estimating the remaining terms

We observe that

τ 0 Ω ̺ ε (∂ t v ε,δ + u ε • ∇ x U ε,δ ) • (U ε,δ -u ε ) dx dt = τ 0 Ω ̺ ε (v ε,δ + U ε,δ • ∇ x U ε,δ ) • (U ε,δ -u ε ) dx dt - τ 0 Ω ̺ ε (U ε,δ -u ε ) • ∇ x U ε,δ • (U ε,δ -u ε ) dx dt,
where the terms in the first expression at the right hand side containing the quantities s ε,δ , V ε,δ tend to 0 in the limit lim δ→0 lim ε→0 thanks to dispersive estimates (6.8). Consequently, employing (2.5), we obtain

τ 0 Ω ̺ ε (∂ t v ε,δ + u ε • ∇ x U ε,δ ) • (U ε,δ -u ε ) dx dt ≤ τ 0 Ω (∂ t v ε,δ + v ε,δ • ∇ x v ε,δ ) • (v ε,δ -u ε ) dx dt + c τ 0 E ε ̺ ε , u ε r ε,δ , U ε,δ dt + h(ε, δ).
Similarly, we deduce 1 ε m τ 0 Ω (r ε,δ -̺ ε )H ′′ (r ε,δ ) ∂ t q ε,δ + div x ((s ε,δ + q ε,δ )U ε,δ ) dx dt = τ 0 Ω q ε,δ ∂ t q ε,δ dx dt + h(ε, δ),

where we have used (4.1-4.3),(6.6), (6.24). Now, we employ the energy equality (6.12) to observe that

τ 0 Ω v ε,δ • ∂ t v ε,δ + q δ,ε • ∂ t q ε,δ dx dt = 0. Consequently, τ 0 Ω (∂ t v ε,δ + v ε,δ • ∇ x v ε,δ ) • (v ε,δ -u ε ) dxdt + τ 0 Ω q ε,δ ∂ t q ε,δ dx dt = - τ 0 Ω (∂ t v ε,δ + v ε,δ • ∇ x v ε,δ ) • u ε dxdt,
where we have used the identity τ 0 Ω v ε,δ • ∇ x v ε,δ • v ε,δ dxdt = 0. We remark that

τ 0 Ω (∂ t v ε,δ + v ε,δ • ∇ x v ε,δ ) • u ε dx dt → τ 0 Ω (∂ t v δ + v δ • ∇ x v δ ) • u dx dt = τ 0 Ω ∇ x Π δ • u dx dt = 0,
where we have used (4.7-4.8), (6.15) and equations (1.9) with (v, Π) replaced by (v δ , Π δ ). Consequently, the entropy inequality (6.33) takes the form

E ε ̺ ε , u ε r ε,δ , U ε,δ (τ ) ≤ h(ε, δ),
where the function h satisfies (6.30). This finishes the proof of Theorem 3.1

For a vector field b = [b 1

 1 , b 2 , b 2 ], we introduce the horizontal component b h = [b 1 , b 2 ] writing b = [b h , b 3 ]
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