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Abstract 
 
The aim of this paper is to present results concerning a three-dimensional model 
including a prey, a predator and top-predator, which we have named the Volterra-
Gause because it combines the original model of V. Volterra incorporating a logisitic 
limitation of the P.F. Verhulst type on growth of the prey and a limitation of the G.F. 
Gause type on the intensity of predation of the predator on the prey and of the top-
predator on the predator. This study highlights that this model has several Hopf 
bifurcations and a period doubling cascade generating a snail shell-shaped chaotic 
attractor.  
 
With the aim of facilitating the choice of  the simplest and most consistent model  a 
comparison is established between this model and the so-called Rosenzweig - 
MacArthur and Hastings-Powell models. Many resemblances and differences are 
highlighted and could be used by the modellers. 
The exact values of the parameters of the Hopf bifurcation are provided for each 
model as well as the values of the parameters making it possible to carry out the 
transition from a typical phase portrait characterising one model to another 
(Rosenzweig-MacArthur to Hastings-Powell and vice versa).  
The equations of the Volterra-Gause model cannot be derived from those of the other 
models, but  this study shows similarities between the three models. 
In cases in which the top-predator has no effect on the predator and consequently on 
the prey, the models can be reduced to two dimensions.    
  
 Under certain conditions, these models present slow-fast dynamics and their 
attractors are lying on a slow manifold surface, the equation of which is given. 
 
 
 
 
Keywords: Chaos; strange attractors; predator-prey models; slow-fast dynamics. 
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1. Introduction 
 

The paper is organized as follows. In the following section we will study a three-dimensional 

Volterra-Gause* model in the most general case. The stability of the fixed points according to 

the works of Freedman and Waltman [1977] and the occurrence of Hopf bifurcation in this 

model are examined. This analysis shows that such a bifurcation exists in the xy plane and is 

possible apart from the xy plane. 

 

Then, the study of the Volterra-Gause model for particular values of parameters (k = p = 1/2),  

checking for the existence of bifurcations in the xy plane and apart from the xy plane and 

determining the values of the bifurcation parameters.  

Dynamic analysis of this particular case demonstrate the existence of a chaotic attractor in the 

shape of a snail shell.  

The bifurcation diagrams indicates the existence of a period doubling cascade leading to 

chaos.  

The section ends with another particularly dynamical aspect which is, that under certain 

conditions, this model presents slow-fast dynamics.  

So, according to the works of Ramdani et al., [2000], we give the slow manifold equation of 

the surface on which trajectories of the attractor are lying on.  

 

The aim of the last section is to compare the most used predator – prey models.  

We begin by summarising the general properties of the Rosenzweig-MacArthur [1963] and 

Hastings-Powell [1991] models, including the stability of fixed points, the value of the Hopf 

bifurcation parameter and the equation of the slow manifold surface. 

 

In the Hastings-Powell [1991] model, we show, against expectations, that some of the 

trajectories of the so-called “teacup” also lie on a surface. 

Similarities in behaviour between these three models are highlighted:  

the nature and number of fixed points, type of  bifurcation, shape of the attractor. 

 

Variation of a parameter to obtain a Hopf bifurcation also makes it possible to emphasize a 

transition from one model to another.   

Indeed, the modification of certain parameter values for a given model can be used to 

determine the behavior phase portrait of another model. 

This comparison exhibits that the phase portrait of the Volterra-Gause model can be 

transformed into that of the Hastings-Powell [1991] model and vice versa. 

Similarly, the phase portrait of the Rosenzweig-MacArthur [1963] model can be transformed 

into a “teacup” and vice versa. 

The phase portrait of the Volterra-Gause model is similar to that of Rosenzweig-MacArthur 

[1963] in a number of respects. 

 

These results are potentially of great value to modellers as they provide a panoply of models 

that are "equivalent" in terms of phase portrait but differents in terms of dynamic. 

 
* Strictly, in the general case this model should be called the Volterra-Rosenzweig model because  the functional 

response corresponds to that used by M.L. Rosenzweig in his famous article: Paradox of enrichment 

[Rosenzweig, 1971]. However, to avoid confusion with the  Rosenzweig-MacArthur [1963] model we prefer to 

use the name of  G.F. Gause, who was the first to use this kind of functional response but in a particular case 

[Gause, 1935] corresponding to the object of our study. 
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2. General Volterra-Gause Model 
 
2.1. Model equations 
 

We consider the Volterra-Gause model for three species interacting in a predator-prey mode. 
 

dx

dt
= a J1− λ

a
 xN x−bxk y= xg HxL −byp HxL

dy

dt
= d xk y−cy−eyp z =y@−c+d p HxLD −ezq HyL H1L

dz

dt
= Hfyp−gLz= z@−g+f q HyLD

 
 

This model consists of a Verhulst [1838] logistic functional response for the prey (x), and a 

Gause [1935] functional response for the predator (y), and for the top-predator (z).  

Parameter a is the maximum per-capita growth rate for the prey in the absence of predator and 

a / l is the carrying capacity.  

The  per-capita predation for the predator rate is of the Gause [1935] type. 
 

p HxL = xk 
 

Parameter b is the maximum per-capita predation rate. 

Parameter c is the per-capita natural death rate for the predator.  

Parameter d is the maximum per-capita growth rate of the predator in the absence of the top-

predator.  

Parameters e is similar to b, except that, in each case, the predator y is the prey for the top-

predator z.  

 
 
2.2. Dynamic aspects 
 

2.2.1. Equilibrium points 

 

The non-algebraic structure of the polynomials forming the right hand side of the equations 

(1) make it impossible to determine the fixed points by the classical nullclines method. 

However, this model possesses two obvious fixed points: O (0, 0, 0), K (a / l, 0, 0).  

This makes it possible to look for fixed points within the xy plane, by fixing z = 0. 

Nullcline analysis of the system (1) identifies the point I, with the following co-ordinates: 
 

I ikjjJc
d

N 1
k ,

d

bc
 J c
d

N 1
kAa− λ Jc

d
N 1
k E, 0

y{zz  
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2.2.2. Conditions of existence of  the fixed points in the xy plane (CEFP 2D) 

 

Fixed points are only of biological importance if they are positive or null. This generates the 

following condition: 

 

a− λ J c
d

N 1
k >0 w d J a

λ Nk −c >0 H2L
 

 

2.2.3. Functional Jacobian matrix 
 

 Hx, y, zL =
i
k
jjjjjjj
a−bkx−1+k y−2x λ −bxk 0

dkx−1+ky −c+dxk−e py−1+p z −eyp
0 fpy−1+p z −g+fyp

y
{
zzzzzzz = i

kjjjjj
m11 m12 m13
m21 m22 m23
m31 m32 m33

y
{zzzzz H3L

 
 

2.2.4. Nature and stability of the fixed points in the xy plane 

 

The point O (0, 0, 0), with eigenvalues {a, -c, -g}, is unstable (a > 0), attractive according to 

y'y and z'z and repulsive according to x'x. 

The point K (a / l, 0, 0), with eigenvalues {-a, -g, -c + d (a / l)
k}, is unstable (-c + d (a / l)

k
 > 

0, according to (2)), attractive according to x'x and z'z and repulsive according to: 
 

y= − a−c+dI a

λ Mk
bI a

λ Mk  x = −κ x
 

 

because according to (2): -c + d(a / l)
k
 > 0 and thus k > 0 

The method described by Freedman and Waltman [1977] can be used to study the stability of 

the point 

 

I ikjjJc
d

N 1
k ,

d

bc
 J c
d

N 1
kAa− λ Jc

d
N 1
k E, 0

y{zz  
 

The characteristic polynomial of the functional Jacobian matrix can be factorised in the 

following form: 
 Hm33− σL Iσ2− m11σ − m12 m21M = 0; m13 = m31 = m32 = m22 =0 
 

and provides three eigenvalues: s1, s2 and s3 
 

σ1 = m33 = −g+fyp H4L 
 

The sign of the first of these eigenvalues cannot be determined under any condition and it is 

therefore impossible to draw conclusions concerning the stability. 

However, Hopf bifurcation in the xy plane can occur only if this eigenvalue is negative. 
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For the other two eigenvalues, resolution of the second-order polynomial provides a pair of 

eigenvalues s2 and s3. 

 

σ2,3 = m11± è!!!!∆
2

= m11± "#########################
m11
2 +4 m12 m21
2

H5L
 

 

If we assume that D < 0, then the two eigenvalues are complex conjugated.  

For Hopf bifurcation to occur, the real part of these eigenvalues must be positive and 

cancelled for a certain value of a parameter.  

Let us choose l this parameter and calculate the real part of these eigenvalues. 
 

2 Re@σ2D = m11 = a− bkx−1+k y−2x λ = AH1−kL bc
d

 y− λx2E J 1
x

N
 

 

As a - lx
2
 = bx

k 
y and x

k
 = c / d 

Re[s2] > 0 if and only if (1- k)y bc/d - lx
2
 ¥0, providing a condition for y  

 

y≥ d

bc
 λ
1−k x2

 
 

by replacing x and y by the co-ordinates of I 
 

λ ≤ a J1−k
2−kN J c

d
N− 1

k H6L
 

 

One can demonstrate that whatever the parameters of the model the discriminant D is always 

negative. Thus the point I is always a stable or unstable focus. 

  

 

2.2.5. Conditions for the existence of a Hopf bifurcation in the xy plane 

 

Provided that l remains below this value and the first eigenvalue (4) is negative, so that the 

associated eigendirection is attractive and the flow is directed towards the basin of attraction 

of the point I, a limit cycle exists in the xy plane and a Hopf bifurcation may occur in that 

plane. The point 

 

I ikjjJc
d

N 1
k ,

d

bc
 J c
d

N 1
kAa− λ Jc

d
N 1
k E, 0

y{zz  
 

is then unstable, and acts as an attractive focus in the xy plane. 
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2.2.6. Fixed points in the first octant 

 

We will now investigate the existence of fixed points in the first octant with biological 

significance, i.e., for z > 0.  

The non-algebraic form of the right hand side of the first equation of (1) precludes solution by 

means of analytical calculation.  

Nevertheless, expressing this polynomial as a function of x makes it possible to specify the 

number of fixed points and the interval in which they belong. There are only two possible 

solutions to this non-algebraic polynomial.  

We will call these two solutions x1,2 = a. They lie in the following interval: 
 

x1 <x∗ < a

λ  J1−k
2−k N < x2 < a

λ H7L
 

 

According to the third equation of (1), the second co-ordinate y can be expressed as follows: 
 

 
Hfyp−gLz= 0 w y = J g

f
N 1
p

 
 

If we set 
 

β = y= Jg
f

N 1
p

 
 

from the second equation of (1), the third co-ordinate z can be expressed in terms of x: 
 

−cy+dxk y−eyp z =0 w z = fβ
eg

 Idxk −cM
 

 

2.2.7. Conditions for the existence of fixed points in the first octant (CEFP 3D) 

 

From this third co-ordinate, another condition for the biological relevance of the fixed point 

can be determined. 
 

dx
k−c> 0 w x > J c

d
N 1
k H8L

 
 

The fixed point J can therefore be defined in terms of all of its co-ordinates, and the 

conditions justifying its biological existence. 
 

J ikjjα, β, fβ
eg

 Idαk−cMy{zz  
 

with 
 

x> Jc
d

N 1
k H9L
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A bifurcation can only occur apart from the xy plane if there is no possible bifurcation in the 

xy plane. This can be translated into a condition deduced from the following inequality (7): 
 

λ ≥ a J1−k
2−kN J c

d
N− 1

k w a

λ  J 1−k
2−kN ≤ J c

d
N 1
k H10L

 
 

By combining inequalities (7) and (9), we obtain: 
 

x1 <x∗ < a

λ  J1−k
2−k N < Jc

d
N 1

k < x2 < a

λ H11L
 

 

2.2.8. Nature and stability of the fixed points in the first octant  

 

The method descibed by Freedman and Waltman [1977] can still be used to investigate the 

stability of the point 

 

J ikjjα, β, fβ
eg

 Idαk−cMy{zz  
 

According to this method, if m11 > 0, then the point J is unstable.  

If m11 < 0 and m22 § 0, then the point J is stable. 

Furthermore, if m11 < 0, then the point J is asymptotically stable.   

The trace and the determinant of the functional Jacobian matrix evaluated at point J give:  

 

σ1+ σ2+ σ3 =Tr@ D = m11 +m22
= a H1−kL − λx H2−kL + H1− pL I−c+dxkM

σ1 σ2 σ3 = Det@ D = m11 m23 m32
= @a H1−kL − λx H2−kLDAeg pyp−1 zE
= @a H1−kL − λx H2−kLD I−c+dxkM gp  

 

2.2.9. Conditions for the existence of a Hopf bifurcation in the first octant 

 

Based on the conditions for the biological existence of a fixed point J (CEFP 3D), we can 

conclude: 

If x1 is the solution of the first nullcline, then the point J does not exist because, according to 

condition (11), x1 < (c/d)
1/k

 and therefore z1 <0. A Hopf bifurcation may then occur at point I  

in the xy plane if the first eigenvalue (4) is negative. In this case, the associated eigendirection 

is attractive and the flow is directed towards the basin of attraction of the point I. This is 

consistent with condition (6), which implies that: 
 

x1 < J c
d

N 1
k < x∗ < a

λ  J1−k
2−k N
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If x2 is the solution of the first nullcline, then the point J exists because according to the 

condition (11),  
 

x1 <x∗ < a

λ  J1−k
2−k N < Jc

d
N 1

k < x2 < a

λ  
 

In this case, points I and J co-exist and it is necessary to determine the stability of J, even if 

the first eigenvalue (4) is positive, resulting in the associated eigendirection being repulsive 

and the flow being directed towards the basin of attraction of the point J.  

Nevertheless in this precise case: m11 = a (1 - k) - l x2 (2 - k) < 0.  

This implies that the determinant is negative and the sign of the trace is unspecified because 

we deal with a difference.   

If we assume that the characteristic polynomial of the functional Jacobian matrix has two 

complex conjugated eigenvalues, the trace and the determinant will be written: 
 

σ1+2 Re@σ2D =Tr@ D
σ1 » σ2 »2 = Det@ D < 0 

 

We can deduce from these expressions that the first eigenvalue is negative. Thus the 

associated eigendirection is attractive and the flow is directed towards the basin of attraction 

of the point J. Moreover, the indeterminate nature of the sign of the trace is consistent with the 

possibility that the real part of the eigenvalues can change. Thus, in this case, the possibility 

of Hopf bifurcation apart from the xy plane may be considered. 

 
 
2.3. Volterra-Gause model for k = p = 1/2 
 

2.3.1. Dimensionless equations 

 

Expressing equations in a dimensionless form makes it possible to reduce the number of 

parameters of the model.  

Let us assume:  
 

x→ a

λ  x

y→ a

b
 J aλ N 1

2  y

z→ d

e
 J a
b

N 1
2  J aλ N 3

4  z

t→ t

d I a

λ M 1
2

 
 

and 
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δ1 = c

d
 1I a

λ M 1
2

δ2 = 1

f
 g

A a

b
 I a

λ M 1
2E 1

2

ξ = d

a
 J aλ N 1

2

∂ = f

d
 I a

b
M1
2

I a

λ M 1
4

 
 

This generates a dimensionless model with four parameters instead of eight. In fact, as we 

have decided to set k = p =1/2, the final model actually has six parameters rather than eight. 
 

ξ d x

d t
= x H1−xL −x12 y

dy

dt
= −δ1 y+x12  y−y12  z H12L

dz

dt
= ∂ ikjjy12 − δ2y{zzz  

 

2.3.2. Fixed points of dimension in the xy plane 

 

The two previously identified fixed points are again found: O (0, 0, 0) and K (1, 0, 0).  

In addition, the setting of the k and p parameters makes it possible to solve the first nullcline 

simply by  changing variable.  

However, the method developed above remains valid and exact knowledge of the solutions of 

this equation is not necessary for determination of the stability of the fixed points.  

It is therefore possible to look for fixed points in the xy plane by setting z = 0 for k = p = 1/2.  

This gives the following co-ordinates of point I: 
 

I Iδ12, δ1 I1−δ12M,0M  
 

2.3.3. Conditions for the existence of  fixed points in the xy plane (CEFP 2D) 

 

Fixed points are only of biological significance if they are positive or null. This generates the 

following condition:  
 

1− δ12 > 0 w δ1 < 1 H13L 
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2.3.4. Functional Jacobian matrix 
 

 Hx, y, zL =
i

k

jjjjjjjjjjjjjjjj
1

ξ  J1−2x− 1

2

yè!!!!
x

N − 1

ξ  è!!!!
x 0

1

2
 yè!!!!

x

è!!!!
x − 1

2
 zè!!!!!

y
− δ1 −è!!!!

y

0 1

2
 ∂ zè!!!!!

y
∂ Iè!!!!

y − δ2M
y

{

zzzzzzzzzzzzzzzz
= i

kjjjjj
m11 m12 m13
m21 m22 m23
m31 m32 m33

y
{zzzzz H14L

 
 

2.3.5. Nature and stability of the fixed points in the xy plane  

 

The point O (0, 0, 0), with the eigenvalues {1/x, -d1, -∂d2}, is unstable (1/x > 0), and the 

eigendirections associated with the eigenvalues -d1, -∂d2 are attractive according to y'y and 

z'z and repulsive according to x'x for 1/x. 
The point K (1, 0, 0), with the eigenvalues {-1/x, 1-d1, -∂d2}, is unstable (1-d1 > 0, 

according to (10)), and the eigendirections associated with the eigenvalues -1/x, -∂d2 are 

attractive according to x'x and z'z and repulsive according to the direction of the straight line 

defined by the following equation: 

 

y= −@ξ H1− δ1L +1D x 
 

The method of Freedman and Waltman[1977] can again be used to assess the stability of the 

point  

 

IIδ12, δ1 I1−δ12M,0M  
 

The characteristic polynomial of the functional Jacobian matrix can be factorised in the 

following form: 
 Hm33− σL Iσ2− m11σ − m12 m21M = 0; m13 = m31 = m32 = m22 =0 
 

and provides three eigenvalues: s1, s2 and s3 

 

σ1 = m33 = ∂ Aδ1
1
2  I1− δ12M 1

2 − δ2E H15L  
 

 

For the first eigenvalue, the conditions for the existence of a fixed point in the first octant 

(CEFP 3D) make it possible to define the sign of the eigenvalue, and therefore to draw 

conclusions concerning the stability. For the other two eigenvalues, resolution of the secon-

order polynomial gives a pair of eigenvalues, s2 and s3. 
 

σ2,3 = m11± è!!!!∆
2

= m11± "#########################
m11
2 +4 m12 m21
2

H16L
 

 

If we assume that D < 0, then the two eigenvalues are then complex conjugated.  

For Hopf bifurcation to occur, the real part of these eigenvalues must be positive and 

cancelled for a certain value of a parameter.  
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Let us choose d1 this parameter and calculate the real part of these eigenvalues. 
 

2 Re@σ2D = m11 = 1

ξ  I1−3 δ12M ≥ 0 w δ1 ≤ 1è!!!!
3

H17L
 

 

For this bifurcation occurs in the xy plane, the first eigenvalue (15) must be negative, so that 

the associated eigendirection is attractive and the flow is directed towards the basin of 

attraction of point I.  

If this eigenvalue is considered as a function of d1, one can show that it will remain negative 

provided that: 
 

δ2 ≥ &''''''''''''''2

3 è!!!!
3

H18L
 

 

This condition rules out the existence of a point J in the first octant. 

 

2.3.6. Conditions for the existence of a Hopf bifurcation in the xy plane 

 

If conditions (17) and (18) are met, a limit cycle exists in the xy plane and a Hopf bifurcation 

may occur in that plane. Point J of dimension three cannot exist and the point 

I Id1
2, d1 I1- d1

2M, 0M  is unstable. It acts as  an attracive focus in the xy plane. 

 

2.3.7. Fixed points in the first octant 

 

We will now focus on the existence of fixed points of biological importance in the first octant, 

i.e., for z > 0. We can specify the number of solutions of the non-algebraic polynomial of the 

first equation (12) and the interval in which they lie as described above.  

We will once again call the two possible solutions x1,2 = a these solutions. These solutions lie 

in the following interval: 
 

0< x1 <x∗ < 1

3
< x2 <1

 
 

Mathematical study of the first nullcline as a function of x generates the following condition 

for the existence of the fixed points in the first octant (CEFP 3D): 
 

δ2 ≤ &''''''''''''''2

3 è!!!!
3

H19L
 

 

From the third equation of (12), the second co-ordinate y may be expressed as follows:  
 

∂ ikjjy12 − δ2y{zz =0 w y = δ22
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From the second equation of (12), the third co-ordinate z can be expressed in terms of x: 
 

−δ1 y+x12  y−y12  z =0 w z = δ2 ikjjx12 − δ1y{zz  
 

2.3.8. Conditions for the existence of fixed points in the first octant (CEFP 3D) 

 

From this third co-ordinate, we can deduce another condition for the biological existence of 

the fixed point: 
 

x
1
2 − δ1 >0 w x > δ12 H20L 

 

The fixed point J can therefore be defined in terms of its co-ordinates in all three dimensions 

and the conditions justifying its biological existence.  
 

J ikjjα, δ22, δ2 ikjjα 1
2 − δ1y{zzy{zz  

 

with 
 

x> δ12 H21L  
 

If a bifurcation is to occur apart from the xy plane, bifurcation must not be possible in the xy 

plane. This translates into a condition that can be deduced from inequality (17): 
 

δ1 > 1è!!!!
3  

or 
 

1è!!!!
3

> 1

3
 

 

By combining inequalities (20) and (21), we obtain:  
 

x1 <x∗ < 1

3
< δ1 <x2 < 1 H22L

 
 

2.3.9. Nature and stability of the fixed points in the first octant 

 

The method of Freedman and Waltman [1977] can be used to study the stability of the point 
 

J ikjjα, δ22, δ2 ikjjα 1
2 − δ1y{zzy{zz  

 

According to this method, if m11 > 0, then the point J is unstable.  

If m11 < 0 and m22 § 0, then the point J is stable. 
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Furthermore, if m11 < 0, then the point J is asymptotically stable.   

The trace and the determinant of the functional Jacobian matrix evaluated at point J give:  
 

σ1+ σ2+ σ3 =Tr@ D = m11 +m22 = 1

2 ξ  H1−3 xL + 1

2
 ikjjx12 − δ1y{zz

σ1 σ2 σ3 = Det@ D = m11 m23 m32 = ∂

2ξ  H1−3xL z
 

 

2.3.10. Conditions for the existence of a Hopf bifurcation in the first octant 

 

From the conditions for the biological existence of the fixed point J (CEFP 3D), we can 

conclude: 

If x1 is the solution of the first nullcline, then point J does not exist because according to 

condition (22), x1 < d1 and therefore z1 < 0. 

A Hopf bifurcation may occur in the xy plane at point I if the first eigenvalue (15) is negative. 

In this case, the associated eigendirection is attractive and the flow is directed towards the 

basin of attraction of  point I, consistent with condition (17), which implies that: 
 

x1 < δ1 < x∗ < 1

3  
 

If x2 is the solution of the first nullcline, then the point J exists because according to condition 

(22),  
 

0< x1 <x∗ < 1

3
< δ1 < x2 < 1

 
 

In this case, points I and J co-exist and it is necessary to determine the stability of J, even if 

the first eigenvalue (15) is positive, resulting in the associated eigendirection being repulsive 

and the flow being directed towards the basin of attraction of the point J.  

Nevertheless in this precise case: 1-3x < 0.  

This implies that the determinant is negative and the sign of the trace is unspecified as we are 

dealing with a difference.   

If we assume that the characteristic polynomial of the functional Jacobian matrix has two 

conjugated complex eigenvalues, then the trace and the determinant can be expressed as 

follows: 
 

σ1+2 Re@σ2D =Tr@ D
σ1 » σ2 »2 = Det@ D < 0 

 

We can deduce from this that the first eigenvalue is negative, so the associated eigendirection 

is attractive and the flow is directed towards the basin of attraction of the point J. Moreover, 

the indeterminate nature of the sign of the trace makes it possible for the real part of the 

eigenvalues to change. Hopf bifurcation apart from the xy plane may therefore be considered. 

 

 

 

 

 



 15

2.3.11. Bifurcation parameter value 

 

Numerically, the value of the selected bifurcation parameter can be calculated with a high 

level of accuracy. The technique used involves calculating the fixed points according to the 

parameter and evaluating the eigenvalues of the functional Jacobian matrix at this point. 

These eigenvalues are thus themselves a function of the selected parameter. Their real parts 

can therefore be expressed as a function of this parameter, making it possible to determine the 

value for which two of these eigenvalues cancel out, corresponding to the value of the 

bifurcation parameter. Applied to system (12) by setting x = 0.866, ¶ = 1.428, d2 = 0.376, we 

obtained for the parameter d1: 
 d1 = 0.747413 
 

 

 

2.3.12. Phase portrait 
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Fig. 1. Phase portrait of  system (12). The chaotic attractor takes the shape of a snail shell. 

Parameter values are: x = 0.866, ¶ = 1.428, d1 = 0.577, d2 = 0.376. 

 

 

 

 

 

Despite its familiar appearance, this attractor behaves in a complex manner.  

Starting from any initial condition in the first octant, the flow is directed towards point K, 

which is attractive according to the x'x eigendirection. 
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Following the repulsive eigendirection y = -[x (1 - d1) + 1] x of the point K, the flow reaches 

the basin of attraction of the point I, which exhibits an attractive focus behaviour in the xy 

plane and turns around the point I.  

However, as this point has a repulsive eigendirection, the flow leaves the xy plane and moves 

towards the basin of attraction of the point J which has an attractive eigendirection. 

As the point J behaves as a repulsive focus, the flow turns around this point while moving 

away in the direction of the point K which has an attractive eigendirection according to z'z.  

The flow is therefore "reinjected" by this "saddle-point".  

  

  

2.3.13. Bifurcation diagrams 

 

As pointed out by Glass and Mackey [1988], the construction of a bifurcation diagram is a 

good means of locating the signature of chaos in a system.  

We present below the bifurcation diagram of the dimensionless system (12) to highlight the 

period doubling induced by the parameter d1. 
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Fig. 2. Bifurcation diagram of system (12) for the parameter d1 ; zmax =  f (d1) 
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2.3.13. Poincaré section and Poincaré map 

 

The Poincaré section corresponds here to a plane with z = 1/2, i.e., a plane dividing the snail 

shell into two parts. It therefore consists of a set of x and y values. 

Taking x (n) as the value of x at the nth intersection of the trajectory with the Poincaré section, 

we can construct the Poincaré map: the function relating x (n + 1) to x (n) 

 
In Fig. 3., we can see that the slope of the multimodal Poincaré map is steep, a feature typical 

of chaos. 
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Fig. 3. Poincaré map of system (12) for the same parameters 
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2.4. Slow-fast dynamics 
 

Given all the condtions for the existence of fixed points (CEFP 2D & 3D), it is reasonable to 

assume "trophic time diversification" occurs, implying that: 

 

a > d > f 

 

 i.e., the maximum per-capita growth rate decreases from the bottom to the top of the food 

chain.  

We can then consider the case in which:  

 

a á d á f 

 

or 

 

0  < x Ü 1 

and 

 

0< ¶ Ü 1 

 

Under these conditions, system (12) becomes a singularly perturbed system of three time 

scales.The rates of change for the prey, the predator and top-predator from fast to intermediate 

to slow, respectively [B.Deng,2001]. Based on the works of Ramdani et al., [2000], we 

consider system (12) to be a slow-fast autonomous dynamic system defined by a slow 

manifold equation on which the attractor lies. A state equation binding the three variables can 

then be established. 

 

2.4.1. Slow manifold equation based on the orthogonality principle 

 

Using the method developped by Ramdani et al., [2000], we can obtain the slow manifold 

equation defined by the layer of planes locally orthogonal to the fast eigenvector on the left. 
 

λ1 Hx,y,zL zλ1 H1, β Hx,y,zL, γ Hx,y, zLL 
 

Let us call l1(x, y, z) the fast eigenvalue of  (x, y, z) and zl1(1, b(x, y, z), g(x, y, z)) the fast 

eigenvectors on the left of (x, y, z). 

Transposing the characteristic equation, 
 

t H  Hx,y,zLLzλ1 Hx, y,zL = λ1 Hx, y, zLzλ1 Hx,y,zL  
 

we can find b and g. 
 

β = 1

1

2
x

− 1
2 y

 ikjjλ1− 1

ξ  ikjj1−2x− 1

2
 x−1

2 yy{zzy{zz
 

γ = β y
1
2

∂ ikjjy12 − δ2y{zz − λ1
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The slow manifold equation is thus given by:   
 

x
‰ + β Hx, y, zL y‰ + γ Hx,y, zL z‰ = 0 H23L 

 

This leads to an implicit equation which can be simulated numerically.  

We have used Mathematica software in this study.  
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Fig. 4. Slow manifold surface based on the orthogonality principle and phase portrait of the 

Volterra-Gause system (12) with the same parameter values. In this figure, we can see the 

slow manifold on which the solutions of the system (12) are based. 

 

2.4.2. Slow manifold equation based on the  slow eigenvectors 

 

The slow manifold equation could also have been obtained as descibed by Ramdani et al., 

[2000], by assuming that the three components of the system (12) are always parallel to a 

plane containing the two slow eigenvectors.    
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2.5. Conclusion 
 

This work demonstrates the presence of chaos in a Volterra-Gause model of predator-prey 

type. Nevertheless, a more profound mathematical approach, such as investigation of the 

possible existence of Shilnikov orbits, should make it possible to confirm the presence of 

chaos in this system. Our work has also demonstrated that this model has five key 

characteristics:  

- Presence of limit cycles  

- Existence of Hopf bifurcation  

- Chaos by period doubling cascade 

- Slow-fast dynamics  

- Existence of a slow manifold on which the attractor lies.  

The Volterra-Gause model is also similar to other models, such as those of Rosenzweig-Mac 

Arthur and Hastings and Powell. These similarites will be considered in the next section. 
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3. Similarity to the Rosenzweig-MacArthur and 
Hastings-Powell Models 
 
3.1. Rosenzweig-MacArthur model 
 

We considered the Rosenzweig-MacArthur model [1963] for a three trophic level interaction 

involving a prey (x), a predator (y) and a top-predator (z). 
 

dx

dt
= a J1− λ

a
xN x− bxy

H1+x = xg HxL− byp HxL
dy

dt
= y ikjj dx

H1 +x −cy{zz − eyz

H2+y = y@−c+d p HxLD −ezq HyL H24L
dz

dt
= z ikjj fy

H2 +y −gy{zz = z@−g+fq HyLD
 

 

This model includes a Verhulst [1838] logistic prey (x), a Holling [1959] type 2 predator (y), 

and a Holling [1959] type 2 top-predator (z).  

Parameter a is the maximum per-capita growth rate for the prey in the absence of predator and 

K = a / l is the carrying capacity.  

The per-capita predation rate of the predator has the Holling [1959] type 2 form. 
 

p HxL = bx

H1+x  
 

Parameter b is the maximum per-capita predation rate and H1 is the semi-saturation constant 

at which the per-capita predation rate is half its maximum, b/ 2. 

Parameter c is the per-capita natural death rate for the predator. 

Parameter d is the maximum per-capita growth rate of the predator in the absence of the top-

predator.  

Parameters e and H2 are similar to b and H1, except that the predator y is the prey for the top-

predator z. Parameters f and g are similar to c and d, except that the predator y is the prey for 

the top-predator z.   

Note that the Rosenzweig-MacArthur model was developed from the seminal works of Lotka 

[1925] and Volterra [1926]. 

 

3.1.1. Dimensionless equations 

 

With the following changes of variables and parameters,  
 

t|d t, x | λ
a

 x, y| b λ
a2

 y, z| be λ
da2

 z,
ξ = d

a
, ∂ = f

d
, β1 = λ H1

a
, β2 = H2

Y0
,

Y0 = a2

b λ, δ1 = c

d
, δ2 = g

f  
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3.1.2. Biological hypothesis 

 

We have made several assumptions to provide biological reality to our study:  

- Positivity of the fixed points 

- "Trophic time diversification hypothesis" such that the maximum per-capita growth rate 

decreases from the bottom to the top of the food chain as follows 

 

a > d > f > 0 

 

We also assumed major changes over time 

 

a á d á f > 0    (25) 

 

Detailed comments on changes in variables and parameters were made in the paper by Deng 

[2001]. For technical reasons, both y and z were rescaled by a factor of 0.25:  

y ö y / 0.25 ; z ö z / 0.25  

 

Equations (24) have been reformulated in the following dimensionless form: 
 

ξ d x

d t
= x ikjj1−x− y

β1+x
y{zz

dy

dt
= y ikjj x

β1 +x − δ1− z

β2+y
y{zz H26L

dz

dt
= ∂ z ikjj y

β2 +y − δ2y{zz  
 

3.1.3. Dynamic aspects 

 

Under these conditions (25), the system (26) becomes a singularly perturbed system of three 

time scales, as previously pointed out by several authors [Kuznetsov, 1995, Muratori & 

Rinaldi, 1992, Rinaldi & Muratori, 1992]. The rates of change for the prey, the predator and 

the top-predator range from fast to intermediate to slow, respectively [B. Deng, 2001]. Based 

on the works of Ramdani et al., [2000], we consider the system (26) to be a slow-fast 

autonomous dynamic system and provide the equation for the slow manifold on which the 

attractor lies. A state equation binding the three variables can also be established. 

 

Nature and stability of the fixed points 

 

For the set of values initially used in this simulation (ξ = 0.1, b1= 0.3,  b2 = 0.1, d1= 0.1, d2 = 

0.62, ¶ = 0.3), we obtain four equilibrium points (of biological significance) with the 

following eigenvalues: 

O (0, 0, 0) ö {10, -0.186, -0.1} 

I (0.033, 1.289, 0) ö {0.314194  + 0.878508 Â, 0.314194  - 0.878508 Â, 0.0429782} 

J (0.859, 0.652, 0.674) ö {-7.51526, 0.18173  + 0.111807 Â, 0.18173  - 0.111807 Â} 

K (1, 0, 0) ö {-10, 0.669231, -0.186} 

So according to the Lyapunov criterion, all these points are unstable. 
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The literal expression of the fixed points highlights their dependance on the parameters 

considered.  

We use this result below to calculate the Hopf bifurcation parameter.   

 

Phase portrait and vectorfield portrait  
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Fig. 5. Phase and vectorfield portrait of the Rosenzweig-MacArthur system (26) with the 

same parameter values. 

 

This figure shows slow-fast dynamic features, with long arrow for the fast features and short 

arrows for the slow features. This portrait consists of four branches: two fast (the shorter 

branches) and two slow (the longer branches). The pattern of change in this attractor 

resembles that of the original Volterra model. In initial, fast part of the attractor, the prey (x) 

rapidly increase in number, whereas the number of predators (y) and top-predators (z) remain 

very low. This situation realistic. Close to the equilibrium point I, the number of top-predators 

suddenly decreases, triggering an increase in the predator population. In the second part of the 

attractor, a slow stage, the number of predators increases, as does the number of top-

predators, whereas the number of prey decreases. This part of the attractor leads on to another 

slow stage, during which the number of predators is maximal. This results in a decrease in the 

number of  prey. In the fourth part of the attractor, a slow stage, the number of top-predators 

continues to increase while the number of predators decreases. As demonstrated by Deng 

[Deng, 2001], this attractor with a Moebius strip shape displays chaotic behaviour. 
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3.1.4. Slow manifold equation 

 

Slow manifold equation based on the orthogonality principle 

 

As described in Sec. 2.4., the slow manifold equation can be expressed as follows:   
 

λ1 Hx,y,zL zλ1 H1, β Hx,y,zL, γ Hx,y, zLL 
 

Let us call l1(x, y, z) the fast eigenvalue of  (x, y, z) and zl1(1, b(x, y, z), g(x, y, z)) the fast 

eigenvectors to the left of (x, y, z). 

 

Transposing the characteristic equation, 
 

t H  Hx,y,zLLzλ1 Hx, y,zL = λ1 Hx, y, zLzλ1 Hx,y,zL  
 

we can find b and g. 
 

β = Hx+ β1L2
β1 y Aλ1 − 1

ξ  ikjj1−2 x− 0.25 yβ1Hx+ β1L2 y{zzE
γ = β 

0.25 y
0.25 y+β2

∂ J 0.25 y
0.25 y+β2 − δ2N − λ1

 
 

x
‰ + β Hx, y, zL y‰ + γ Hx,y, zL z‰ = 0 H27L 

 

This leads to an implicit equation which can be simulated numerically. 
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Fig. 6. Slow manifold surface defined according to the orthogonality principle. Nullcline 

surface corresponding to the singular perturbation and phase portrait of the Rosenzweig-

MacArthur system (26), with the same parameter values. We seen here the slow manifold on 

which the solutions of the system (26) are based. 

 

Slow manifold equation based on the slow eigenvectors  

 

The slow manifold equation can be also obtained by means of the slow eigenvectors method.     

 

3.1.5. Hopf bifurcation 

 

We now investigate Andronov-Hopf bifurcation. The first stage of this process involves 

determining the parameter likely to produce such a bifurcation.  

The two slow-fast parameters x and ¶ cannot generate Hopf bifurcation because they leave 

invariant the fixed points, they cannot cancel the real part of the eigenvalues of the functional 

Jacobian matrix calculated for these points. It would also appear to be most useful to consider 

a parameter coupling the predator-prey and predator-top-predator equations.  

The parameters d1 and d2 may be involved in bifurcation. The parameter d1 has the advantage 

of leaving invariant the x-co-ordinate and the y-co-ordinate of the singular point. The value of 

the bifurcation parameter can be calculated numerically as described in Sec. 2.3.11. 

 

 

slow manifold surface 
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Thus, a Hopf bifurcation occurs:   

 

- If the real part of the conjugated complex eigenvalues of the functionnal Jacobian matrix is 

cancelled for a certain value d1 = d1C  

- If the derivative with respect to d1 of this eigenvalue calculated in d1C is non-zero  

- If the other real eigenvalue evaluated in d1 is strictly negative.  

 

The corresponding value of d1 is calculated as follows:    
 

Re@λ2D =0 
 

The numerical solution of this polynomial equation gives the following value: 
 

δ1 =0.683539 
 

As the other two conditions are fullfilled, Hopf  bifurcation occurs at 
 

δ1 =0.683539 
 

Note: 

 

The Routh & Hurwitz theorem can also be used to determine the value of the parameter d1 at 

which Hopf bifurcation occurs.  

Indeed, by clarifying the characteristic polynomial of the Jacobian matrix at point J, we obtain 

a polynomial of the form: a0+ a1 λ + a2 λ2 +a3 λ3 = 0. 

However, according to the Routh and Hurwitz theorem, all the roots of this polynomial have 

negative real parts when the determinants D1, D2 and D3 are all positive.  

The positivity of the first determinant D1 fullfills a condition for d1 making it possible to 

obtain the value cited above (>0.68).  
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3.2. The Hastings-Powell model 
 

By changing the variables followed in the Rosenzweig-MacArthur [1963] model, we can 

obtain the Hastings and Powell [1991] model 
 

dx

dt
= a J1− λ

a
xN x− bxy

H1+x = xg HxL− byp HxL
dy

dt
= y ikjj dx

H1 +x −cy{zz − eyz

H2+y = y@−c+dp HxLD −ezq HyL
dz

dt
= z ikjj fy

H2 +y −gy{zz = z@−g+fq HyLD
 

 

3.2.1. Dimensionless equations 

 

With the following changes of variables and parameters,  

 

t| 1

a
 t,x| a

λ x, y| ad

λ b y,z| f ba2

de λ z
 

  
dx

dt
= x H1−xL − a1 xy

1+ β1 x
dy

dt
= y ikjj a1 x

1+ β1 x − δ1y{zz − a2 yz
1+ β2 y H28L

dz

dt
= z ikjj a2 y

1+ β2 y − δ2y{zz  
 

with 
 

a1 = d

λ H1 , β1 = a

λ H1 , a2 = bf

d λ H2 , β2 = ad

b λ H2 , δ1 = c

a
, δ2 = g

a  
 

By choosing a set of "biologically reasonable" parameters, system (28) becomes a singularly 

perturbed system of two time scales. 

 

3.2.2. Dynamic aspects 

 

The natural time scale of the interaction between the predator y and the super-predator z, (i.e., 

of interaction at the higher trophic levels), is substantially longer than that between the prey x 

and the predator y. In other words, d1 is much larger than d2. 

Based the works of Ramdani et al. [2000], we consider the system (28) to be a slow-fast 

autonomous dynamic system for which we can determinate the equation of the slow manifold 

on which the attractor lies. A state equation binding the three variables can also be established 

established. 
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Nature and stability of the fixed points 

 

For the initial set of values used in this simulation (x = 1, b1 = 3, b2 = 2, d1 = 0.4, d2 = 0.01, ¶ = 1) we obtain four equilibrium points (of biological significance) with the following 

eigenvalues: 

O (0, 0, 0) ö {1, -0.4, -0.01} 

I (0.1052, 0.2354, 0) ö {0.00600753, 0.0547368  + 0.518656 Â, 0.0547368  - 0.518656 Â} 

J (0.8192, 0.125, 9.8082) ö {-0.61121, 0.038687  + 0.0748173 Â, 0.038687  - 0.0748173 Â}, 

K (1, 0, 0) ö {-1, 0.85, -0.01} 

So according to the Lyapunov criterion, all these points are unstable. 

The literal expression of the fixed points highlights their dependance on the parameters 

considered.  

This finding will be used below, in the calculation of Hopf bifurcation. 
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Fig. 7. Phase portrait of the Hastings and Powell system (28) with the same parameter values. 
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3.2.3. Slow manifold equation 

 

Slow manifold equation based on the orthogonality principle 

 

As describe in Sec. 2.4., the equation of the slow manifold can be expressed as follows:   
 

λ1 Hx,y,zL zλ1 H1, β Hx,y,zL, γ Hx,y, zLL 
 

Let us call l1(x, y, z) the fast eigenvalue of  (x, y, z) and zl1(1, b(x, y, z), g(x, y, z)) the fast 

eigenvectors to the left of (x, y, z). Transposing the characteristic equation, 

 
t H  Hx,y,zLLzλ1 Hx, y,zL = λ1 Hx, y, zLzλ1 Hx,y,zL  

 

we can find b and g. 
  

β = ikjj H1+xβ1L2
5 y

y{zz ikjjλ1 − H1−2 xL + 5yH1+xβ1L2 y{zz
γ = β 0.1 y

0.1 y− H1+yβ2L Hδ2+ λ1L  
 

The slow manifold equation is thus given by:   
 

x
‰ + β Hx, y, zL y‰ + γ Hx,y, zL z‰ = 0 H29L 
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Fig. 8. Slow manifold surface based on the orthogonality principle and phase portrait of the 

Hastings and Powell system (28) with the same parameter values. 



 30

3.2.4. Hopf bifurcation 

 

We will now focus on Andronov-Hopf bifurcation. The first stage in this process involves 

identifying the parameter likely to produce such a bifurcation.  

The slow-fast parameters x and ¶ cannot generate bifurcation as they leave the fixed points 

invariant and they cannot cancel the real part of the eigenvalues of the functionnal Jacobian 

matrix calculated for these points. It would also be useful to consider a parameter coupling the 

two predator-prey and predator- top-predator equations.  

The parameters d1 and d2 may also be considered. The parameter d1 has the advantage of 

leaving invariant the x-co-ordinate and the y-co-ordinate of the singular point. It also modifies 

the topology of the attractor, conferring on it the Moebius strip shape of the Rosenzweig-

MacArthur model at a certain value .   

We can therefore fix all the values of the parameters at the levels described above, except for d1. The technique described in Sec. 2.3.11. can then be used for numerical calculation of the 

bifurcation parameter value. 

 

Thus, Hopf bifurcation occurs:   

 

- If the real part of the complex conjugated eigenvalues of the functional Jacobian matrix is 

cancelled for a certain value d1 = d1C 

- If the derivative with respect to d1 of this eigenvalue calculated in d1C is non-zero  

- If the other real eigenvalue evaluated in d1 is strictly negative.  

 

The corresponding value of d1 is calculated as follows:    
 

Re@λ2D =0 
 

The numerical solution of this polynomial equation gives the following value: 
 

δ1 =0.7402 
 

As the other two conditions are fullfilled, the Hopf  bifurcation occurs at 
  

δ1 =0.7402 
 

In addition, by selecting  b1 as the bifurcation parameter and proceeding as describe above, it 

is possible to calculate the value of this parameter with a high degree of precision. Indeed, 

cancelling the part of the complex eigenvalues of the functional jacobian matrix evaluated at 

the fixed point I according to the parameter b1 generates the value: b1 = 2.11379.  
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3.3. Similarity between the various models 
 

3.3.1. Volterra-Gause and Rosenzweig-MacArthur 

 

The Volterra-Gause model, as described above, directly resembles the Rosenzweig-

MacArthur model for certain parameter values.  

Indeed, these two models present similar dynamic behaviour (Fig. 9). Below the bifurcation 

threshold, we find the overall shape of the chaotic attractor of the Rosenzweig-MacArthur 

model.  
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Fig. 9. Comparison of the Volterra-Gause model (for x = 0.964, ¶ = 1.1, d1 = 0.518, d2 = 0.415) and the Rosenzweig-MacArthur model (for x = 0.1, b1 = 0.3, b2 = 0.1, d1 = 0.1,  

d2 = 0.62, ¶ = 0.3) 

 

 

 

 

 

 

 

 

 



 32

3.3.2. The Volterra-Gause and Hastings-Powell models 

 

The similarity between the Volterra-Gause model and the Hastings and Powell model, with its 

famous "up-side-down teacup" is more striking. The followings figures show the basic teacup 

shape and the behaviour of each component  x, y, z  over time.   
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Fig. 10. Phase portrait of the Volterra-Gause model (for x = 0.07, ¶ = 0.85, d1 = 0.5,  d2 = 0.42) 
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Fig. 11. Comparison of the changes over time in the Volterra-Gause (for x = 0.07, ¶ = 0.85,  d1 = 0.5, d2 = 0.42 ) and Hastings-Powell models  (for ξ =1, b1 = 3, b2 = 2, d1 = 0.4, d2 = 0.01, ¶ = 1).  
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3.3.3. The Rosenzweig-MacArthur and Hastings-Powell models 

 

The bifurcation parameter d1 chosen in Sec. 2.1.5. modifies the topology of the attractor of the 

Rosenzweig-MacArthur model conferring on it, at a certain value, the shape of the so-called 

"up-side-down tea-cup" of the Hastings and Powell [1991] model.  

We can therefore fix all the parameters at values cited above, except for d1. Varying the 

parameter d1 up to a value of 0.3, preserves a limit cycle, which becomes deformed, resulting 

in a passage from the Rosenzweig-MacArthur model to the Hastings and Powell model. 
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Fig. 12. Transition from the Rosenzweig-MacArthur model to the Hastings and Powell [1991] 

model 

 

In this figure, we can identify the attractor in the shape of a teacup, for the Hastings and 

Powell [1991] model with d1 = 0.3. 
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3.3.4. The Hastings-Powell and Rosenzweig-MacArthur 

 

The Hastings-Powell model can also be converted to the Rosenzweig-MacArthur model.. 

Varying the bifurcation parameter d1 modifies the topology of the attractor, conferring on it 

the Moebius strip shape of the Rosenzweig-MacArthur model at a certain value.   

We can therefore fix all the parameters at the values cited above, except for d1.  

Variation of the parameter d1 up to a value of 0.1, results in a passage from the model of 

Hastings and Powell to the of Rosenzweig-MacArthur model. 

 

0

0.25

0.5

0.75

1

x

0

0.5

1

1.5

y

7

8

9

10

11

z

0

0.25

0.5

0.75x

 
Fig. 13. Transition from the Hastings and Powell model to Rosenzweig-MacArthur model.  

On this figure, we can see the attractor with the Moebius strip shape of Rosenzweig-

MacArthur model at d1 = 0.1.  
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4. Discussion 
 

In this work, we have shown certain similarities between the three models considered.  

The common features of these models, the possibility of transition from one model to another 

by parameter variation and the differences between these models provide biologists with 

alternatives in their choice of predator-prey model.  

Despite differences in their functional responses, these models present striking similarities in 

the nature and number of their fixed points, and in their dynamic behaviour: existence of a 

limit cycle, occurrence of  Hopf bifurcation, presence of a chaotic attractor or period doubling 

cascades. 
         

Dynamicalfeatures \Models Rosenzweig- MacArthur Hastings - Powell Volterra - Gause

Equilibriumpoints
O H0, 0, 0L I H x̀, ỳ, 0L

J Hx* , y*, z* L K H1, 0, 0L O H0, 0, 0L I H x̀, ỳ, 0L
J Hx*, y* , z*L K H1, 0, 0L O H0, 0, 0L I H x̀, ỳ, 0L

J Hx*, y* , z*L K H1, 0, 0L
Attractionalsink 2 2 2

Hopf bifurcation d1 = 0.6835 d1 = 0.7402 d1 = 0.7474

Chaoticattractor Moebius strip Teacup Snailshell

Period - doubling d2 = 0.67785 b1 = 2.437 d1 = 0.625

Slowmanifold 1 1 1
 

 

The fixed point O (0, 0, 0) presents the same stability in all three models, with attractive 

eigendirections according to z'z and repulsive eigendirections according to x'x. The 

eigendirections of point K (1, 0, 0) are attractive according to x'x and z'z in all three models. 

Points I )0,ˆ,ˆ( yx  and J (x*, y*, z*) behave as a stable and an unstable focus, respectively, with I 

in the xy plane and J apart from the xy plane. These models introduce rich and complex 

dynamics, for which further study is required. 

It also appears to be possible, in some domains of parameter variation, to reduce the the 

dimension of the models, making it possible to take into account the influence of the external 

medium by means of time-dependent coefficients. 
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