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Abstract 

The electric and magnetic properties as well as the thermal stability of CoxFe3-xO4 

nanopowders, (0.6<x<1.8) were investigated. These powders were synthezised using a one 

pot solvo-thermal route with acetylacetonates as precursors. The properties were linked to the 

size, morphology, composition of the particles and to the cation distribution. With the 

exception of x=0.6, the powders are stable up to 600 °C. Whatever the composition, Co2+ has 

a strong tendency to occupy tetrahedral sites, contrary to what occurs in bulk ferrites. The 

nanopowders display a semi conducting behaviour. Between ambient and 500 °C, conduction 

occurs between Co 2+
↔Fe 3+ pairs, and intergrain conduction predominates. The conductivity 

is in the 10-7 Ω-1.cm-1 range. The CoxFe3-xO4 nanopowders behave magnetically as a 

superparamagnetic assembly of single-domain particles. The magnetocrystalline anisotropy 

constant is significantly higher for these nanoparticles than for bulk ferrites. Co1.8Fe1.2O4 
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displays the lowest blocking temperature (200 K) and the highest anisotropy (K=21 106 

erg/cm3). 

KEYWORDS : A. oxides, B. solvothermal, magnetic properties, C. impedance spectroscopy, 

D. transmission electron microscopy (TEM) 

1. Introduction: 

Ferrites are materials which combine several remarkable physical properties along with 

chemical stability, low production cost, and have already many application fields [1]. In form 

of nanomaterials, ferrites may have superparamagnetic properties [2] and are currently used in 

magnetic data storage, magnetic imaging, drug delivery and microwave devices [3-4]. 

Recently, nano ferrites have shown gas sensing capability [5-6], as well as photocatalytic and 

catalytic activity toward the degradation of organic matters and oxidative reactions in 

presence of reducing gases [7-9]. This multifunctional character of ferrites has potential 

application in the field of sensors, transducers and actuators [10-14]. The control of the size, 

morphology and chemical composition of the spinel ferrite nanoparticles, should allow 

adjusting their various properties for specific needs.  

In a previous work, the synthesis route of the CoxFe3-xO4 nanoparticles and their catalytic 

response to methane were presented with an exhaustive structural characterization, including 

X-rays diffraction (XRD), transmission electron microscope (TEM) imaging and energy 

dispersive spectroscopy (EDS) analysis [7]. The elaboration route developed led to 

chemically homogeneous spinel cobalt ferrites, with mean size ranging from 4 to 7 nm, the 

smallest particles being obtained for x=1.8. The morphology study of the particles evidenced 

a spherical form for low cobalt content, and a very irregular shape for high cobalt content. 

The highest conversion rate, at a given temperature, was obtained for Co1.8Fe 1.2O4 . The role 
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of the cation distribution and vacancies in the catalytic reaction was evidenced. The sensing 

properties of cobalt ferrite nanoparticles were investigated, and different resistance variations 

were noticed, depending on the cobalt amount [15, 16]. Co1.8Fe 1.2O4 showed a p-type semi-

conducting response to reducing gases, as CoFe2O4 showed n-type behaviour. Like catalytic 

properties, magnetic and electric conduction properties of nanoparticles, are related to the 

mean size, the size distribution and the shape of the particles. In case of spinels, the cation 

distribution on octahedral and tetrahedral sites influences physical and chemical properties. 

The surface state of the nanoparticles plays also an important role in catalysis reactions as 

well as in magnetic phenomena. It is well known that the efficiency of a catalytic conversion 

increases with the amount of exposed surface, which is related to the size and the shape of the 

particles, with the nature of the exposed cation sites, and the number and type of defects at the 

surface [17, 18]. In nanostructured magnetic materials, surface effects usually lead to 

increased magnetization or superparamagnetism [2].Electric properties are also linked to the 

particle size, to the cation distribution and to the occurrence of vacancies [19, 20].  

Our work aims to investigate the influence of the composition, particle size and cation 

distribution of cobalt ferrites nanopowders on their thermal, electric and magnetic properties 

and to determine some characteristic values. The electric, magnetic and thermal properties of 

nanoparticles of cobalt ferrites for various cobalt contents were characterized and related to 

morphology, size, crystallographic structure and composition. The composition dependence 

of these properties in very small nanocrystalline cobalt ferrites (less than 10 nm) has not yet 

been studied. Electric and magnetic properties of ferrites were already investigated but for 

particles in the 100 nm range [21]. The magnetic study of very small particles was done but 

for a low cobalt concentration (x<0.6) [22]. The conductivity and Neel temperature 

dependence with grain size has been investigated in nanocrystalline cobalt ferrite powder for 

one composition only, namely CoFe2O4 [19-20, 23-24]. Most of the magnetic or electric 
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investigations of nanoparticles of cobalt ferrites in literature concern Cd , Al or Zn doped 

ferrites [25-27]. Magnetic properties and transport mechanisms of cobalt ferrites CoxFe3-xO4 

with various compositions were studied [28], but in that case the grain sizes were in the 

micronic range.  

2. Experimental procedures: 

2.1. Synthesis of CoxFe3-xO4 nanoparticles 

A series of cobalt ferrites nanoparticles samples with the general formula CoxFe3-xO4, x 

varying from 0.6 to 1.8 (x = 0.6, 1, 1.2 and 1.8) were synthesized by a new one-pot solvo 

thermal route, using acetylacatonates of iron and cobalt precursors, dissolved in benzyl 

alcohol. Synthesis details can be found in a previous work [7]. 

2.2. Structural characterization  

The detailed structural characterization, by XRD and TEM, of the as prepared cobalt ferrites 

nanopowders can be found in [7], for 3 compositions. The XRD diagram were collected in a 

classical θ-2θ angles coupled mode on a D5000 Siemens Bruker diffractometer operating with 

a copper X-rays source and equipped with a back monochromator, to avoid fluorescence. The 

diagrams were collected with a step of 0.04°, a time of 20s per step, over a 2θ range from 15 

to 115°. Rietveld refinement was done using the  Powdercell software. Morphologies and 

crystal sizes of nanoparticles were determined by TEM, using a Tecnai 200kV, with a point to 

point resolution of 0.25 nm. Images were recorded using a 1Kx1K Slow Scan CCD camera. 

The statistical studies on particle size were carried out over 500 particles for each 

composition. The powders were characterized after impedance spectroscopy measurements by 

XRD and TEM.   
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2.3. Thermal analysis  

 

Differential thermal analysis (DTA) and thermogravimetric measurements (TG) were 

performed using a SETARAM TG-DTA 92 thermal analyzer. The experiments were carried 

out under static air up to 1200 K at a heating rate of 10 °/min.  

2.3 Electric impedance spectroscopy 

The powders were compacted under a pressure of 140 MPa during 5 min, without any further 

sintering, and sandwiched between platinum electrodes. The porosity of the pellets was 

characterized by
theoρ

ρ
=P exp1− , with expρ  and theoρ  being the experimental and the theoretical 

densities of the pellets. Whatever the powders, the porosity was found to vary from 0.43 to 

0.47. These porosity values are quite common for ferrites pellets [19, 29]. The weak increase 

in porosity is linked to the small decreases in particles size [7]. Conductivity measurements 

were performed under air, using a Solarton SI 1260 AC impedance analyzer working in the 

frequency range from 10-1 to 107 Hz. Data were analyzed using a non linear least squares 

(NLLS) fitting routine. Several heating and cooling cycles were performed from room 

temperature to 600 °C in order to check the reproducibility of the measurements, followed by 

a final heating up to 900°C .  

2.4 Magnetic measurements 

The magnetic measurements, in the temperature range between 4 and 300 K, were performed 

using a Physical Property Measurement System (PPMS) from Quantum Design. The specified 

resolutions are 2 10-5 emu in DC fields and 10-8 emu for AC magnetization. The collected data 

were corrected from the diamagnetic contribution and presented in CGS units. The samples 
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were compacted in a plastic sampling tube in order to minimize dipolar inter-particles 

interaction and to keep the particles from rotating rigid-body like as the applied field changes 

direction. The zero-field cooling (ZFC) curves were obtained by cooling to 20 K the sample 

under zero applied field, then applying a field of 100 Oe and slowly warming the sample to 

around 300 K. The field cooling (FC) curves were obtained by cooling the sample from 300 K 

to 20 K under the same applied field. 

3. Results and discussion 

3.1 Structure and morphology of the cobalt ferrite CoxFe3-xO4 nanoparticles  

 

Figure 1: a) X rays diagram of the Co1.2Fe1.8O4 nanopowder, indexed in the spinel structure, b) TEM image of 

Co1.2Fe1.8O4 nanoparticles, along with the size distribution.c) and d) HRTEM images of single cobalt ferrites 

nanoparticles, c) CoFe2O4 oriented along [ ]101  (see FFT) and d)  Co1.8Fe1.2O4 oriented [ ]121  (see FFT ). 
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For the different compositions, the cobalt ferrites powders are single phased and have the 

expected spinel structure (space group Fd-3m). Fig1.a shows the XRD diagram corresponding 

to Co1.2Fe1.8O4. Fig.1b shows typical cobalt ferrite nanoparticles obtained for x=1.2, along 

with the size distribution. The log normal function fitted very well the distribution size of the 

particles and led to somewhat smaller values that those obtained using the gaussian function 

[7]. The mean sizes and the associated standard deviation deduced from the log normal fits 

are given in Table 1. For x= 0.6, 1 and 1.2, the particles have an almost spherical and regular 

shape (see Fig.1c for x=1). The mean size of the nanoparticles decreases slightly with 

increasing cobalt amount x in CoxFe3-xO4 and the smallest one is obtained for the highest 

quantity of cobalt (x = 1.8, D = 4.3nm). For this latter composition, the shape of the particles 

is no more spherical (see Fig.1d) and not well defined. HRTEM study performed on all the 

nanopowders shows that the produced particles exhibit high crystallinity with no significant 

number of defects such as dislocations or stacking faults (Fig.1c and 1d).  

The CoxFe3-xO4 pellets used for 

impedance spectroscopy were 

characterized by XRD and TEM coupled 

to EDS. During the electrical impedance 

spectroscopy measurements, these pellets 

were heated up to 900°C, thus were liable 

to possible phase transitions and grain 

growth. Fig.2 shows typical grains of the 

pellets heated up to 900 °C.  

Figure 2: TEM image showing submicronic grains, from a pellet of Co1.8Fe1.2O4 heated up to 900°C. 
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For all the compositions, the grain sizes 

are submicronic, ranging between 200 and 

600 nm, although it remains some smaller 

grains (Fig.2). This shows that significant 

grain growth occurred during impedance 

spectroscopy measurements. For CoFe2O4 

and Co1.2Fe1.8O4 the chemical composition 

remains the same upon heating and the 

XRD diagram matches well with one 

single cubic spinel phase (see Fig.3a). For 

x=0.6 and x=1.8, EDS analysis showed 

composition fluctuations. For x=0.6, the 

annealed pellet consists in a mixture of 

pure iron oxide grains and grains with 

atomic composition of 33% Co, 67 % Fe, 

which corresponds to the CoFe2O4 

stoichiometric composition. The 

corresponding XRD diagram (Fig.3b) 

could be refined with two phases, the 

CoFe2O4 spinel phase and α-Fe2O3.  

 

Figure 3:  X-rays diagrams corresponding to pellets of cobalt ferrite heated up to 900°C. 

* denotes a peak due to the sample holder. a) CoFe2O4 nanopowder, b) Co0.6Fe2.4O4 nanopowder, c) Co1.8Fe1.2O4 

nanopowder. The diffraction peaks were indexed in the spinel structure for samples x=1 and x=1.8. For sample 

x=0.6, only the diffractions peaks corresponding to α-Fe2O3 were indexed. 
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For x=1.8, the pellet consists mainly of grains with the atomic composition 60% Co and 40% 

Fe, namely the nominal composition, but  grains with less cobalt (x=1) and grains with more 

cobalt (x=2.3). Rietveld refinement of the corresponding X rays diagram matches well with 

the EDS composition results of one major spinel phase, and two minor spinel phases with 

different cell parameters (Fig.3c). The zoom of the (440) peak in Fig.3c evidences one small 

peak on the high angle side and a bump on the low-angle side, corresponding respectively to 

the spinel phase with x=2.3 and to the spinel phase with x=1. As for x=1.8 , only part of the 

cobalt ferrite undergoes a transition into two spinel phases, one rich in cobalt and the other 

one poor in cobalt. This is consistent with the occurrence of a spinodal decomposition with 

slow kinetic observed for Co2FeO4 [30-31].  

3.2 Cation distribution  

The physical properties of cobalt ferrite spinel are linked to the cation distribution over the 

tetrahedral sites A (8a) and octahedral sites B (16d) of the structure. In bulk spinel, cations 

have usually a preference for a particular site. In cobalt ferrite with only Co 2+, cobalt ions 

show a strong preference for octahedral sites [32]. In case of cobalt ferrite with two valence 

states for cobalt, Co3+ cations occupy exclusively octahedral sites and Co2+ cations are on 

tetrahedral sites. Recently, Kumar et al [33] showed that in case of nanocrystalline materials, 

this does not hold anymore. One way to obtain information about cation distribution is to 

consider the relative intensity of the (220), (222) and (422) diffraction peaks in X-rays 

diagrams. For Miller indices (hkl) all even with h+k+l=4n, like (220) and (422), only the 

tetrahedral sites (8a) contribute to the diffraction peaks, as for Miller indices all even with h, 

k, l = 4n or h, k, l=4n+2, like (222), only the octahedral sites (16d) contribute to the 

diffraction peaks. Thus the ratio I220/I222 , I422/I222 are an indication of the A and B sites 

occupation. Using Origin software, a whole peak fitting with pseudo Voigt functions was 

performed, and the intensity for each peak was extracted. The experimental relative intensities 
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I220/I222 and I422/I222 are reported in Table 2 as a function of x, the cobalt content. Clearly, the 

ration I220/I222 is more sensitive to the cobalt content than the I422/I222 ratio. Theoretical powder 

X rays diagrams were calculated, with the CaRIne software [34] for various cation 

distributions on A and B sites and I220/I222 , I422/I222 ratios were calculated (see Table 2).  

x Cation distribution I220/I222 
cal 

I220/I222 
exp 

I422/I222 
cal 

I422/I2222 
exp 

0 (γ-Fe2O3) [ ] [ ] 4169.0
3

831.0
3 OFeFe BA ⊗++

 9.3  3.1  

0 (Fe3O4) [ ] [ ] 4
2

5.0
3

5.0
3 OFeFeFe BA

+++  3.4  1.1  

0.6 [ ] [ ] 4065.0
3

935.0
3

4.0
2

6.0 OFeFeCo BA ⊗+++  4 5.8 1.3 1.8 

 0.6[ ] [ ] 4
32 OFeCo

BA
++ +0.4

[ ] [ ] 4169.0
3

831.0
3 OFeFe BA ⊗++

 

6  2  

1  [ ] [ ] 4
3

5.0
2

5.0
3 OFeCoFe BA

+++  3 4.4 1 1.7 

 [ ] [ ] 4
32 OFeCo

BA
++  4.1  1.3  

1.2 [ ] [ ] 1.04
2

1.0
3

9.0
2

−
+++ OCoFeCo BA

 3.9 6.4 1.3 1.2 

 [ ] [ ] 4
3

1.0
3

9.0
2 OCoFeCo BA

+++  4  1.3  

 [ ] [ ] 1.0413.0
2

05.0
3

82.0
2

−
+++ ⊗ OCoFeCo BA

 

5.8  1.9  

1.8 [ ] [ ] 4.04
2

4.0
3

6.0
2

−
+++ OCoFeCo BA  

3 2.9 1 0.9 

 [ ] [ ] 4
3

4.0
3

6.0
2 OCoFeCo BA

+++

 
4.2  1.4  

 

Table 2: X rays diffraction intensity ratio for different CoxFe3-xO4 powders. Experimental (exp) intensity ration 

and for different cation distributions calculated ones (cal). 

Different Fe 3+, Co 2+, Co 3+ distributions on A and B sites were tested, with the constraint of 

global charge neutrality, which led in some cases to the occurrence of oxygen vacancies. For 

x=1 and x=1.8 comparison between experimental and calculated intensity ratios indicates 

clearly that in the nanopowders, Co2+ has a strong preference for tetrahedral sites, contrary to 

what occurs in bulk ferrites. This modification of cation distribution from bulk to 

nanoparticles was previously observed for CoFe2O4 [20]. For x>1, the nanopowders contains 
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only low amount of Co 3+.The cobalt ferrites x=1.2 and x=0.6 exhibit high I220/I222 intensity 

ratios compared to those of x=1 and x=1.8, that could be reproduced by introducing vacancies 

on the octahedral sites of the spinel for x=1.2, building a so called lacunar spinel . For x=0.6, 

only a mixture of 60% CoFe2O4 and 40% maghemite (γ-Fe2O3 ) explained the high intensity 

ratio, which indicate that it was not possible to synthesise a single spinel phase with x=0.6 

using the solvo-thermal method developed. The lower limit of stability for CoxFe3-xO4 spinel 

was found to be x=0.45 in  [22].The cation distribution for the powders with x=1 and x=0.6 

did not change significantly upon heating up to 900°C. The X-rays intensity ratio I220/I222  was 

found to be 3.9 for the sample corresponding to  x=1.8 after heating. This is consistent with an 

oxidation process with the disappearance of the oxygen vacancies, and the occurrence of 

Co3+.  

3.3. Thermal stability 

The thermal stability of the cobalt ferrite phases was investigated by TG-DTA, from room 

temperature to 900 °C. Fig 4 shows the relative weight variations associated to the enthalpy 

variations during the heating of the nanopowders under air. For all the samples, there is no 

weight gain observed, thus no oxidation process occurs under air for the various 

nanopowders. For the different compositions, one observe a first weight loss of 2-5 %, 

associated to an endothermic peak, related to water loss, which occurs in two steps, 

dehydratation and then loss of adsorbed water [35]. This water loss lasts until 270-300°C. A 

second weight loss, which varies, depending on the samples, between 5% and 10%, is 

associated to a high exothermic peak, and corresponds to the decarbonation of the 

nanopowders [35-36]. The decarbonation occurs between 300°C and 420°C, but for x=0.6, it 

lasts even until 500°C (Fig.4a). This indicates that it remains organic residuals in the 
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nanopowders, coming from the precursor or the solvent, even after thoroughly washing [7]. 

 

Figure 4: DTA-TG curves for different cobalt ferrite nanopowders: a) Co0.6Fe2.4O4 b) CoFe2O4   c) Co1.2Fe1.8O4 

d) Co1.8Fe1.2O4 . 

At higher temperatures, there is nearly no weight loss (less than 1%), but changes in the DTA 

curve occured indicating phase and magnetic transitions. For the powders with x=1 and x=1.2 

(Fig.4b, Fig.4c) only one endothermic event occurs, at 480-490°, characteristic of a second 

order transition [37], which corresponds to a magnetic transition at Curie temperature. The 

Curie temperature for bulk CoFe2O4 (x=1), is 520°C [1], and the Curie temperature in 

nanoparticles can be reasonably assumed to be lower than the bulk value. For x=0.6 and x=1.8 

(Fig.4a, Fig.4d) the DTA curves are much more complex but can be interpreted knowing that 

phase transitions occur at high temperatures (see 3.1). The cobalt ferrite with x= 0.6 is not 

stable and undergoes a phase transition, revealed by the exothermic peak from 550 to 625 °C. 

The kink in the DTA curve at 660°C is characteristic for a second order phase transition and 
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corresponds to the ferro-para transition of α-Fe2O3 [38]. Thus, cobalt ferrite with x=0.6 is 

transformed into hematite and CoFe2O4. This interpretation is supported by the X ray intensity 

ratio in Table 2, which shows that the compound x=0.6, at ambient, corresponds to a mixture 

of CoFe2O4 and maghemite γ-Fe2O3 . For x=1.8 (Fig.4d), one observes a large exothermic 

plateau which can be related to the partial decomposition of the cobalt ferrite nanograins with 

x=1.8 into two spinel phases. No magnetic transitions are observed in the DTA curve of x=1.8 

because the spinel phases have Curie temperatures lower than 500°C [39].  

3.4 Conductivity 

Depending on temperature, two types of Nyquist diagrams were obtained, a single depressed 

semicircle, or a straight line parallel to the imaginary axis. The single depressed semicircle 

was modelled by a resistance in parallel with a constant phase element (CPE) [40], and the 

straight line by a resistance in series with the inductance of the wires. For the nano ferrites 

powders, due to their small size, the intergrain conduction is the predominant phenomenon 

and only one low frequency semi circle was observed. At high temperature, due to apparatus 

limitation at high frequencies, the contribution of the wires to the imaginary part of the 

impedance became preponderant. 

Cobalt ferrites are known to be semi conducting material, and this is confirmed by the 

increasing of conductivity with temperature for the four tested compositions (Fig.5). From 

room temperature up to a limit temperature T1, depending on composition, one observes an 

Arrhenius law dependence of the conductivity, and the corresponding activation energies (Ea) 

are reported in Table 3, along with the T1 values. At higher temperatures than T2, one 

observes also Arrhenius dependence of the conductivity, but with a much weaker slope, 

depending on the composition of the powders, and the corresponding activation energies are 

reported in Table 3, along with the T2 values. The conductivity values at two different 
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temperatures (T<T1 and T>T2) are 

reported in Table 3. For T<T1, Ea 

values are about 0.7 eV for x=1 and 

x=1.2, and about 0.8 eV, for x=0.6 and 

1.8, thus higher activation energy 

values for off-stoichiometry 

compounds. At low temperatures, 

typically 200°C, the  

Figure 5: Conductivity versus temperatures for CoxFe3-xO4 

powders , x=0.6 (�), x=1 (�) x=1.2 (∇ ) and x=1.8 (∆). 

compounds with x= 1, x = 1.2 and 1.8 have similar conductivity values, in the 10-7 Ω-1.cm-1 

range, and x=0.6 has a lower conductivity value in the 10-8 Ω-1.cm-1 range.  

x 0.6 1 1.2 1.8 

Ea (eV) T<T1 

T1 (°C) 

Ea (eV) T>T2 

T2 (°C) 

0.77 

500 

0.23 

725 

0.67 

625 

0.24 

825 

0.70 

525 

0.02 

625 

0.84 

525 

0.03 

625 

σ (ΩΩΩΩ-1.cm-1) at 200°C 

σ (ΩΩΩΩ-1.cm-1) at 900°C 

6.4 10-8 

3.7 10-2 

4.2 10-7 

2.4 10-2 

6.1 10-7 

1.0 10-2 

2.8 10-7 

1.6 10-2 

Table 3 : Activation energies for two different temperature ranges and AC conductivity at low (200°C) and high  

(900°C) temperatures, for different CoxFe3-xO4 nanopowders, 

At high temperature (T> T2), the conductivity values of the different compounds are similar, 

in the 10-2 Ω-1.cm-1 range (see Table 3), and for compounds with high cobalt amount (x=1.2 

and x=1.8), the conductivity does not vary with temperature, as evidenced in Fig.5. The 

activation energies are correspondingly very weak (see Table 3).  
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Conduction in ferrites occurs by polaron hopping between pairs of cations situated on 

octahedral sites of the spinel structure [41-42]. In fact, distances between two nearest 

octahedral sites are smaller than distances between tetrahedral sites or distances between 

octahedral and tetrahedral sites. Charge carrier in cobalt ferrites can be Co2+, Co3+, Fe2+, Fe3+ 

and may all occupied octahedral sites. Historically, the Verwey rules stated that pairs of 

charge carrier can only be built by cations of the same element, with oxidation numbers 

differing by unity, situated on similar sites [43]. The higher mobility of electrons compared to 

holes leads to higher conductivity and lower activation energies for Fe 2+
↔Fe 3+ pairs than for 

Co 3+
↔Co 2+. Nowadays, it is established that pairs of charge carriers can be composed of 

cations of different elements, but the activation energies are higher in that case [20,44]. 

Intergrain conduction activation energies are dependant of the grain size of the powders, with 

very small size corresponding to high activation energies [20]. The high activation energies at 

low temperatures are consistent with the 4-7 nm grain sizes of the powder and with pairs of 

Co2+ and Fe3+ involved in the conduction process. The slightly higher activation energies for 

x=0.6 and x=1.8 can be related to defects that occur in non stoichiometric compounds. 

Significant grain growth occurred during the final heating, according to the structural XRD 

and TEM studies. Thus, the high temperature conductivity values correspond mainly to 

intragrain conduction. Consequently, for the different powders, the conductivity increased 

from a 10-7 Ω-1.cm-1 range to a 10-2 Ω-1.cm-1 range and the activation energy was lowered. The 

activation energies at high temperatures are consistent with intragrain conduction due to Fe 

2+
↔Fe 3+ pairs on octahedral sites [44], which could indicate a modification at high 

temperature of the cation distribution along with the grain growth. However, a comparison of 

the energy values is difficult because of the phase transitions that occurred for some 

compounds.  

3.5. Magnetic properties  
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The M (H) magnetization curves (Fig6) were 

measured at 10K with applied fields H up to 90 

kOe. The saturation magnetization was deduced 

by fitting the high-field part of M(H) from 20 

kOe using the saturation approach law M (H) 

=MS + a/H2, where a is a constant. The 

saturation magnetization values for the different 

nanopowders are reported in Table 4. The 

saturation magnetization Ms decreases with 

increasing cobalt content and with decreasing 

particles sizes. For x=1 and x=0.6, Ms values 

are close to those obtained for bulk cobalt 

ferrites (90emu/g at 10K) [45] as for powders 

with high cobalt content (x=1.8), the Ms values 

are significantly lower than the bulk value. The 

latter composition corresponds to the smallest 

particle size (4 nm). It was already shown that 

Ms depends on particle size and on cobalt 

 

 Figure 6: a) Magnetization versus applied field at 10K 

for CoxFe3-xO4 powders x=0.6 (�), x=1 (�) x=1.2 (∇ ) 

and x=1.8 (∆), b) and c) Magnetization curves for 

Co1,8Fe1.2O4 under medium H field at two temperatures: 

b) 10 K, c) 300 K. 

content in the x<1 range [46, 22]. In the composition range 1<x<2, for particles with sizes 

around 30 nm, Ms values lower than the bulk one were attributed to the existence of a 
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structural “dead” surface layer, due to the formation of small nanoscale crystallite and 

residual strains during the sample synthesis [47]. 

x Ms (emu/g) TB (K) K (106erg/cm3) 

0.6 86 340 6.5  

1 84 300 7.2  

1.2 78 330 13  

1.8 63 200 21  
Table 4: Saturation magnetization values at 10 K, anisotropy constant and blocking temperatures for different 

CoxFe3-xO4 nanopowders . 

The high saturation magnetization values in this study (Table 4) suggest that the cobalt ferrite 

particles are almost perfectly magnetically ordered single-domains without a significant dead 

magnetic layer. The saturation magnetization values depend also on the synthesis method. For 

CoFe2O4 nanoparticles, 5 nm in size, at 5K, Ms values of 85 emu/g [48], 105 emu/g [45] , or 

94 emu/g [49] were found. The low value of Ms for x=1.8 (66 emu/g) are close to values 

found for very small cobalt ferrites nanoparticles [50]. Finally, the magnetic behaviour of the 

cobalt ferrite nanoparticles may vary with different Fe2+ and Co2+ site occupations, since the 

Co2+ ion is highly anisotropic [51]. According to the literature, the decrease in Ms in our 

study is mainly due to a size effect, the structural disorder at the surface of the particles being 

relatively more important for small particles. This structural disorder is accompanied by a 

magnetic disorder due to an alignment of spins relative to the direction of the overall 

magnetization of the particle, called "spin canting"[45]. Consequently, the magnetic 

environment will be frustrated compared to the bulk material, the more the spin disorder 

increases, the more the value of the magnetic moment decreases.  

The isothermal hysteresis loop of the as-prepared Co1.8Fe1.2O4 nanoparticles carried out at 

temperature of 10 K, with applied fields of up to 20 kOe, is presented in Fig.6b. An open 

hysteresis loop with a coercivity field (Hc) of about 8 kOe can be clearly observed. Thus, the 
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nanoparticles exhibit ferromagnetic behaviour with non-zero coercivity. This behaviour is 

characteristic of single domain cobalt ferrite nanoparticles. No hysteresis is observed at room 

temperature (Fig.6c) indicating that the Co1.8Fe1.2O4 particles exhibit superparamagnetic 

behaviour. The curve is completely reversible and can be described by the Langevin function. 

It is typical for superparamagnets which behave below their blocking temperature (TB) as 

ferromagnetics, but above TB show properties of classical paramagnets, with total spin equal 

to the spin of a whole particle. Similar results were observed for cobalt ferrite nanoparticles 

with sizes from 3 to 5 nm [49- 50, 52]. The squareness ratio Mr / Ms at 10K for x = 1.8 is 

0.48, thus near the expected value for uniaxial single-domain particles without interaction 

with a randomly oriented of the easy magnetic axis. 

Fig. 7 shows the representative plots of zero-field cooled (ZFC) and field-cooled (FC) curves 

in a measuring field of 100 Oe for the different cobalt ferrites powders. Below the blocking 

temperature TB, the ZFC and FC curves significantly diverge and the cobalt ferrite 

nanoparticles are in the ferromagnetic state. Above TB, the ZFC and FC curves coincide, due 

to the fact that all nanoparticles are in the same superparamagnetic state. The sharp peak in 

the ZFC curve at TB is an evidence of a narrow energy barrier distribution. 
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Figure 7: ZFC-FC  magnetization curves versus temperature for CoxFe3-xO4 powders under an applied field of 

100 Oe. : a) x=1.8, b) x=1.2, c) x=1 and d) x=0.6. 

It can be seen that the blocking temperature increases with decreasing cobalt amount (or 

increasing particle size). Moreover, with increasing particle size, the peak in the ZFC curve 

becomes broader which indicates the presence of a broad distribution of relaxation times for 

the metastable magnetic states. Except for the Co1.8Fe1.2O4 sample (Fig.7a), all samples 

present blocking temperatures higher than room temperature (Fig.7b,c,d). The smallest 

blocking temperature TB = 200 K is observed for x=1.8 which corresponds to an average size 

of 4 nm. The same value of TB was observed for a nanopowder of 5 nm in size but for a 

composition of x=1 [45]. For bigger particle volumes, the anisotropy energy is increased, 

which causes a decrease of the jump probability across the anisotropy barrier. Hence the 
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blocking phenomenon is shifted to a higher temperature [47, 53]. A blocking temperature 

value closed to 350 K was already obtained for ferrite powders with a cobalt content x = 0.6 

[56].  

Fig.7a (composition x=1.8) shows that the ZFC magnetization exhibits a rather large 

maximum centred at a temperature Tmax =197 K. The FC magnetization increases and remains 

constant below  ≅ 50 K. The two curves split at a temperature (Tirr ) above Tmax; the largest size 

of the unblocked particles can be related to the irreversibility temperature Tirr  using the Bean-

Livingston equation [52] : Bmaxirr k25/KVT = , where Vmax is the volume of the largest 

particle. The variation of TB is then related to the size of individual particles, the size 

distribution for each sample as well as their shape.  

The blocking temperature of nanospinels is known to be influence by the spin-orbit 

interaction in constituent metal ions (Co2+, Fe3+). For nanocrystallites with the same size, 

there can be a different occupation of  the A (tetrahedral) and B (octahedral) sites by Co2+ and 

Fe3+, and cations in these two different site symmetries exhibit different spin-orbit couplings 

[55]. Several studies, mainly on CoFe2O4, have shown that TB also depends on the synthesis 

method [33, 45, 48, 55]. For an assembly of CoFe2O4 nanoparticles with the same average 

size of 5 nm, obtained by different synthesis method, blocking temperatures of 195 K [45] and 

267 K [57] were found. The increase in TB was then linked to the increase of Co2 + ions in the 

octahedral sites. However, the cation distribution obtained from XDR diagram (see 3.1) 

indicates more Co2+ on octahedral sites for high cobalt content than for low cobalt content. 

Therefore, this effect is negligible with regards to the influence of the grain size in our 

compounds. Besides particle size, the blocking temperature can also be influenced by several 

intrinsic factors, which mainly include magnetocrystalline, surface and shape anisotropy and 

extrinsic factors, generally related to interactions between particles [48]. 
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3.6 Anisotropy 

The magnetocrystalline anisotropy constant (K) of the nanoferrites was estimated from the 

measured TB for the isolated particles using the Neel-Brown relaxation law with an 

experimental time scale of 100 s : ><= V/Tk25K BB  where kB is the Boltzman constant 

and <V> is the mean volume of a monodomain [58-59]. The obtained results are reported in 

Table 4. For all samples, the value of the anisotropy constant is higher than the bulk value 

(between 2.1 and 3.9 106 erg/cm3), reaching K=21 106 erg/cm3 for x=1.8. The estimated 

anisotropy constant values decrease as the particle size increases. �

Larger particles have not only less surface area to interact, but the fraction of surface area in 

contact with others particles becomes smaller due to the less efficient packing [47]. This is 

due to the surface anisotropy, the size and 

shape related effects [2, 60] and to the 

presence of Co2+ ions in the octahedral sites 

of the spinel structure [47]. In fact, in bulk 

materials, magnetocrystalline and 

magnetostatic energies are the main sources 

of anisotropy, whereas in fine particles and 

nanostructures other kinds of anisotropies 

such as shape, strain and surface anisotropy 

are relevant in addition.  

 

Figure 8: Temperature dependence of the real part of 

the AC magnetic susceptibility for Co1.8Fe1.2O4 ferrite 

at different frequencies. 
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For small particles, the surface anisotropy will be the dominant mechanism.  

In the case of small spherical particles the magnetic anisotropy can be expressed as  K = Kv + 

S/V Ks , where Ks is the surface contribution and Kv the volume anisotropy consisting of 

magnetocrystalline, magnetostriction and shape anisotropy, S and V are the surface and 

volume of the particle. K value  as high as 30 × 106 erg cm−3 was obtained for very small 

particles of Co, whose K bulk value is 2.7 × 106 erg cm−3 [61].  

 

The in-phase components of the AC susceptibility versus temperature data provided a series 

of peaks that shift up with increasing frequency (Fig.8). These shifts fit the Neel−Brown 

model with small magnetite nanocrystals [62], in agreement with the CoxFe3-xO4 particle 

sizes.  

4. Conclusion 

CoxFe3-xO4 nanopowders, 4 nm to 8 nm in size, were synthesized using a one pot solvo-

thermal route. Their electric and magnetic properties as well as their thermal stability were 

investigated. These properties were linked to the morphology, composition of the particles 

and to the cation distribution on octahedral and tetrahedral sites. Nanopowders with x=1 and 

1.2 are stable up to 900°C. The Co1.8Fe1.2O4 nanopowder undergoes a partial phase transition 

around 600 °C, leading to CoFe2O4 and Co2.3Fe0.7O4 spinel phases. The nanopowder with 

x=0.6 contains γ-Fe2O3. Whatever the composition, Co2+ has a strong tendency to occupy 

tetrahedral sites, contrary to what occurs in bulk ferrites. The nanopowders display a semi 

conducting behaviour, which varies with temperature. Between ambient and 500 °C, 

conduction occurs between Co 2+
↔ Fe 3+ pairs, and intergrain conduction predominates. At 
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200 °C the conductivity is in the 10-7 Ω-1.cm-1 range for the different single phased powders. 

At high temperature (900° C), the cation distribution is modified and the activation energies 

are consistent with a polaron mechanism related to Fe 2+
↔Fe 3+pairs.  

The CoxFe3-xO4 nanopowders behave magnetically as a superparamagnetic assembly of 

single-domain particles. The blocking temperature are mainly related to the particle size, with 

TB=200 K for the 4 nm nanoparticles (x=1.8). The magnetocrystalline anisotropy constant is 

significantly higher for these nanoparticles than for bulk ferrites, with K=21 106 erg/cm3 for 

x=1.8.  
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