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The aim of this article is to highlight the interest to apply Differential Geometry and Mechanics concepts to chaotic dynamical systems study. Thus, the local metric properties of curvature and torsion will directly provide the analytical expression of the slow manifold equation of slow-fast autonomous dynamical systems starting from kinematics variables (velocity, acceleration and over-acceleration or jerk). The attractivity of the slow manifold will be characterized thanks to a criterion proposed by Henri Poincaré. Moreover, the specific use of acceleration will make it possible on the one hand to define slow and fast domains of the phase space and on the other hand, to provide an analytical equation of the slow manifold towards which all the trajectories converge. The attractive slow manifold constitutes a part of these dynamical systems attractor. So, in order to propose a description of the geometrical structure of attractor, a new manifold called singular manifold will be introduced. Various applications of this new approach to the models of Van der Pol, cubic-Chua, Lorenz, and Volterra-Gause are proposed.

Introduction

There are various methods to determine the slow manifold analytical equation of slow-fast autonomous dynamical systems (S-FADS), or of autonomous dynamical systems considered as slow-fast (CAS-FADS). A classical approach based on the works of [START_REF] Andronov | Theory of oscillators[END_REF] led to the famous singular approximation. For ε = 0, another method called: tangent linear system approximation, developed by [START_REF] Rossetto | Slow-fast autonomous dynamical systems[END_REF], consists in using the presence of a "fast" eigenvalue in the functional jacobian matrix of a (S-FADS) or of a (CAS-FADS). Within the framework of application of the Tihonov's theorem [1952], this method uses the fact that in the vicinity of the slow manifold the eigenmode associated in the "fast" eigenvalue is evanescent. Thus, the tangent linear system approximation method, presented in the appendix, provides the slow manifold analytical equation of a dynamical system according to the "slow" eigenvectors of the tangent linear system, i.e., according to the "slow" eigenvalues. Nevertheless, according to the nature of the "slow" eigenvalues (real or complex conjugated) the plot of the slow manifold analytical equation may be difficult even impossible. Also to solve this problem it was necessary to make the slow manifold analytical equation independent of the "slow" eigenvalues. This could be carried out by multiplying the slow manifold analytical equation of a two dimensional dynamical system by a "conjugated" equation, that of a three dimensional dynamical system by two "conjugated" equations. In each case, the slow manifold analytical equation independent of the "slow" eigenvalues of the tangent linear system is presented in the appendix.

The new approach proposed in this article is based on the use of certain properties of Differential Geometry and Mechanics. Thus, the metric properties of curvature and torsion have provided a direct determination of the slow manifold analytical equation independently of the "slow" eigenvalues. It has been demonstrated that the equation thus obtained is completely identical to that which the tangent linear system approximation method provides.

The attractivity or repulsivity of the slow manifold could be characterized while using a criterion proposed by Henri [START_REF] Poincaré | Sur les courbes définies par une équation différentielle[END_REF] in a report entitled "Sur les courbes définies par une equation différentielle".

Moreover, the specific use of the instantaneous acceleration vector allowed a kinematic interpretation of the evolution of the trajectory curves in the vicinity of the slow manifold by defining the slow and fast domains of the phase space.

At last, two new manifolds called singular were introduced. It was shown that the first, the singular approximation of acceleration, constitutes a first approximation of the slow manifold analytical equation of a (S-FADS) and is completely equivalent to the equation provided by the method of the successive approximations developed by [START_REF] Rossetto | Singular approximation of chaotic slow-fast dynamical systems[END_REF] while the second, the singular manifold, pro-poses an interpretation of the geometrical structure of these dynamical systems attractor.

2 Dynamical System, Slow-Fast Autonomous Dynamical System (S-FADS), Considered as Slow-Fast Autonomous Dynamical System (CAS-FADS)

The aim of this section is to recall definitions and properties of (S-FADS) and of (CAS-FADS)

Dynamical system

In the following we consider a system of differential equations defined in a compact E included in R:

d X dt = -→ ℑ X (1) 
with

X = [x 1 , x 2 , ..., x n ] t ∈ E ⊂ R n and -→ ℑ X = f 1 X , f 2 X , ..., f n X t ∈ E ⊂ R n
The vector -→ ℑ X defines a velocity vector field in E whose components f i which are supposed to be continuous and infinitely differentiable with respect to all x i and t, i.e., are C ∞ functions in E and with values included in R, satisfy the assumptions of the Cauchy-Lipschitz theorem. For more details, see for example [START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF]. A solution of this system is an integral curve X (t) tangent to -→ ℑ whose values define the states of the dynamical system described by the Eq. ( 1). Since none of the components f i of the velocity vector field depends here explicitly on time, the system is said to be autonomous.

Note:

In certain applications, it would be supposed that the components f i are C r functions in E and with values in R, with r n.

Slow-fast autonomous dynamical system (S-FADS)

A (S-FADS) is a dynamical system defined under the same conditions as above but comprising a small multiplicative parameter ε in one or several components of its velocity vector field:

d X dt = -→ ℑ X (2) with d X dt = ε dx 1 dt , dx 2 dt , ..., dx n dt t ∈ E ⊂ R n 0 < ε ≪ 1
The functional jacobian of a (S-FADS) defined by (2) has an eigenvalue called "fast", i.e., with a large real part on a large domain of the phase space. Thus, a "fast" eigenvalue is expressed like a polynomial of valuation -1 in ε and the eigenmode which is associated in this "fast" eigenvalue is said:

-"evanescent" if it is negative, -"dominant" if it is positive.

The other eigenvalues called "slow" are expressed like a polynomial of valuation 0 in ε.

Dynamical system considered as slow-fast (CAS-FADS)

It has been shown [START_REF] Rossetto | Slow-fast autonomous dynamical systems[END_REF]] that a dynamical system defined under the same conditions as (1) but without small multiplicative parameter in one of the components of its velocity vector field, and consequently without singular approximation, can be considered as slow-fast if its functional jacobian matrix has at least a "fast" eigenvalue, i.e., with a large real part on a large domain of the phase space.

3 New approach of the slow manifold of dynamical systems

This approach consists in applying certain concepts of Mechanics and Differential Geometry to the study of dynamical systems (S-FADS or CAS-FADS). Mechanics will provide an interpretation of the behavior of the trajectory curves, integral of a (S-FADS) or of a (CAS-FADS), during the various phases of their motion in terms of kinematics variables: velocity and acceleration. The use of Differential Geometry, more particularly the local metric properties of curvature and torsion, will make it possible to directly determine the analytical equation of the slow manifold of (S-FADS) or of (CAS-FADS).

Kinematics vector functions

Since our proposed approach consists in using the Mechanics formalism, it is first necessary to define the kinematics variables needed for its development. Thus, we can associate the integral of the system (1) or ( 2) with the co-ordinates, i.e., with the position, of a moving point M at the instantt. This integral curve defined by the vector function X (t) of the scalar variable t represents the trajectory curve of the moving point M.

Instantaneous velocity vector

As the vector function X (t) of the scalar variable t represents the trajectory of M, the total derivative of X (t) is the vector function -→ V (t) of the scalar variable t which represents the instantaneous velocity vector of the mobile M at the instant t; namely:

-→ V (t) = d X dt = -→ ℑ X (3) 
The instantaneous velocity vector -→ V (t) is supported by the tangent to the trajectory curve.

Instantaneous acceleration vector

As the instantaneous vector function -→ V (t) of the scalar variable t represents the velocity vector of M, the total derivative of -→ V (t) is the vector function -→ γ (t) of the scalar variable t which represents the instantaneous acceleration vector of the mobile M at the instant t; namely:

-→ γ (t) = d -→ V dt (4) 
Since the functions f i are supposed to be C ∞ functions in a compact E included in R n , it is possible to calculate the total derivative of the vector field -→ V (t) defined by ( 1) or (2). By using the derivatives of composite functions, we can write the derivative in the sense of Fréchet:

d -→ V dt = d -→ ℑ d X d X dt (5) 
By noticing that d -→ ℑ d X is the functional jacobian matrix J of the system (1) or (2), it follows from Eqs. ( 4) and ( 5) that we have the following equation which plays a very important role:

-→ γ = J -→ V (6)

Tangential and normal components of the instantaneous acceleration vector

By making the use of the Frénet [1847] frame, i.e., a frame built starting from the trajectory curve X (t) directed towards the motion of the mobile M. Let's define -→ τ the unit tangent vector to the trajectory curve in M, -→ ν the unit normal vector, i.e., the principal normal in M directed towards the interior of the concavity of the curve and β the unit binormal vector to the trajectory curve in M so that the trihedron -→ τ , -→ ν , β is direct. Since the instantaneous velocity vector -→ V is tangent to any point M to the trajectory curve X (t), we can construct a unit tangent vector as following:

-→ τ = -→ V -→ V (7)
In the same manner, we can construct a unit binormal, as:

β = -→ V ∧ -→ γ -→ V ∧ -→ γ (8)
and a unit normal vector, as:

ν = β ∧ τ = ˙ τ ˙ τ = -→ V ⊥ -→ V ⊥ (9) 
with

-→ V = -→ V ⊥ (10)
where the vector -→ V ⊥ represents the normal vector to the instantaneous velocity vector -→ V directed towards the interior of the concavity of the trajectory curve and where the dot (•) represents the derivative with respect to time. Thus, we can express the tangential and normal components of the instantaneous acceleration vector -→ γ as:

γ τ = -→ γ • -→ V -→ V (11) γ ν = -→ γ ∧ -→ V -→ V (12)
By noticing that the variation of the Euclidian norm of the instantaneous velocity vector -→ V can be written:

d -→ V dt = -→ γ • -→ V -→ V (13)
And while comparing Eqs. ( 11) and ( 12) we deduce that

d -→ V dt = γ τ (14)
Taking account of the Eq. ( 10) and using the definitions of the scalar and vector products, the expressions of the tangential (11) and normal (12) components of the instantaneous acceleration vector -→ γ can be finally written:

γ τ = -→ γ • -→ V -→ V = d -→ V dt = -→ γ Cos -→ γ , - → V (15) γ ν = -→ γ ∧ -→ V -→ V = -→ γ Sin -→ γ , - → V (16) 
Note:

While using the Lagrange identity:

-→ γ ∧ -→ V 2 + -→ γ • -→ V 2 = - → γ 2 • - → V 2 ,
one finds easily the norm of the instantaneous acceleration vector -→ γ (t).

-→ γ 2 = γ 2 τ +γ 2 ν = -→ γ ∧ -→ V 2 -→ V 2 + -→ γ • -→ V 2 -→ V 2 = -→ γ ∧ -→ V 2 + - → γ • - → V 2 -→ V 2 = - → γ 2

Trajectory curve properties

In this approach the use of Differential Geometry will allow a study of the metric properties of the trajectory curve, i.e., curvature and torsion whose definitions are recalled in this section. One will find, for example, in [START_REF] Delachet | La Géométrie Différentielle[END_REF], Struik [1934], Kreyzig [1959] or [START_REF] Gray | Modern Differential Geometry of Curves And Surfaces With Mathematica[END_REF] a presentation of these concepts.

Parametrization of the trajectory curve

The trajectory curve X (t) integral of the dynamical system defined by (1) or by (2), is described by the motion of a current point M position of which depends on a variable parameter: the time. This curve can also be defined by its parametric representation relative in a frame:

x 1 = F 1 (t) , x 2 = F 2 (t) , ..., x n = F n (t)
where the F i functions are continuous, C ∞ functions (or C r+1 according to the above assumptions) in E and with values in R. Thus, the trajectory curve X (t) integral of the dynamical system defined by (1) or by (2), can be considered as a plane curve or as a space curve having certain metric properties like curvature and torsion which will be defined below.

Curvature of the trajectory curve

Let's consider the trajectory curve X (t) having in M an instantaneous velocity vector -→ V (t) and an instantaneous acceleration vector -→ γ (t), the curvature, which expresses the rate of changes of the tangent to the trajectory curve, is defined by:

1 ℜ = -→ γ ∧ -→ V -→ V 3 = γ ν -→ V 2 (17)
where ℜ represents the radius of curvature.

Note:

The location of the points where the local curvature of the trajectory curve is null represents the location of the points of analytical inflexion, i.e., the location of the points where the normal component of the instantaneous acceleration vector -→ γ (t) vanishes.

Torsion of the trajectory curve

Let's consider the trajectory curve X (t) having in M an instantaneous velocity vector -→ V (t), an instantaneous acceleration vector -→ γ (t), and an instantaneous over-acceleration vector ˙ γ, the torsion, which expresses the difference between the trajectory curve and a plane curve, is defined by:

1 ℑ = - ˙ γ • -→ γ ∧ -→ V -→ γ ∧ -→ V 2 (18)
where ℑ represents the radius of torsion.

Note:

A trajectory curve whose local torsion is null is a curve whose osculating plane is stationary. In this case, the trajectory curve is a plane curve.

Application of these properties to the determination of the slow manifold analytical equation

In this section it will be demonstrated that the use of the local metric properties of curvature and torsion, resulting from Differential Geometry, provide the analytical equation of the slow manifold of a (S-FADS) or of a (CAS-FADS) of dimension two or three. Moreover, it will be established that the slow manifold analytical equation thus obtained is completely identical to that provided by the tangent linear system approximation method presented in the appendix.

Slow manifold equation of a two dimensional dynamical system

Proposition 3.1. The location of the points where the local curvature of the trajectory curves integral of a two dimensional dynamical system defined by (1) or ( 2) is null, provides the slow manifold analytical equation associated in this system.

Analytical proof of the Proposition 3.1:

The vanishing condition of the curvature provides:

1 ℜ = -→ γ ∧ -→ V -→ V 3 = 0 ⇔ -→ γ ∧ -→ V = 0 ⇔ ẍ ẏ -ẋÿ = 0 (19)
By using the expression (6), the co-ordinates of the acceleration vector are written:

-→ γ ẍ ÿ = a ẋ + b ẏ c ẋ + d ẏ
The equation above is written:

c ẋ2 -(a -d) ẋ ẏ -b ẏ2 = 0
This equation is absolutely identical to the equation (A-27) obtained by the tangent linear system approximation method.

Geometrical proof of the Proposition 3.1:

The vanishing condition of the curvature provides:

1 ℜ = -→ γ ∧ -→ V -→ V 3 = 0 ⇔ -→ γ ∧ -→ V = 0
The tangent linear system approximation makes it possible to write that:

-→ V = α -→ Y λ 1 + β -→ Y λ 2 ≈ β -→ Y λ 2
While replacing in the expression ( 6) we obtain:

-→ γ = J -→ V = J β -→ Y λ 2 = βλ 2 -→ Y λ 2 = λ 2 -→ V
This shows that the instantaneous velocity and acceleration vectors are collinear, which results in:

-→ γ ∧ -→ V = 0 3.3.
2 Slow manifold equation of a three dimensional dynamical system Proposition 3.2. The location of the points where the local torsion of the trajectory curves integral of a three dimensional dynamical system defined by (1) or ( 2) is null, provides the slow manifold analytical equation associated in this system.

Analytical proof of the Proposition 3.2:

The vanishing condition of the torsion provides:

1 ℑ = - ˙ γ • -→ γ ∧ -→ V -→ γ ∧ -→ V 2 = 0 ⇔ ˙ γ • -→ γ ∧ -→ V = 0 (20) 
The first corollary inherent in the tangent linear system approximation method implies to suppose that the functional jacobian matrix is stationary. That is to say

dJ dt = 0
Derivative of the expression (6) provides:

˙ γ = J d -→ V dt + dJ dt -→ V = J -→ γ + dJ dt -→ V = J 2 -→ V + dJ dt -→ V ≈ J 2 - → V
The equation above is written:

J 2 -→ V • -→ γ ∧ -→ V = 0
By developing this equation one finds term in the long term the equation (A-34) obtained by the tangent linear system approximation method. The two equations are thus absolutely identical.

Geometrical proof of the Proposition 3.2:

The tangent linear system approximation makes it possible to write that:

-→ V = α -→ Y λ 1 + β -→ Y λ 2 + δ -→ Y λ 3 ≈ β -→ Y λ 2 + δ -→ Y λ 3
While replacing in the expression ( 6) we obtain:

-→ γ = J -→ V = J β -→ Y λ 2 + δ -→ Y λ 3 = βλ 2 -→ Y λ 2 + δλ 3 -→ Y λ 3
According to what precedes the over-acceleration vector is written:

˙ γ ≈ J 2 -→ V
While replacing the velocity by its expression we have:

˙ γ ≈ J 2 β -→ Y λ 2 + δ -→ Y λ 3 = βλ 2 2 -→ Y λ 2 + δλ 2 3 -→ Y λ 3
Thus it is noticed that:

-→ V = β -→ Y λ 2 + δ -→ Y λ 3 -→ γ = βλ 2 -→ Y λ 2 + δλ 3 -→ Y λ 3 ˙ γ = βλ 2 2 -→ Y λ 2 + δλ 2 3 -→ Y λ 3
This demonstrates that the instantaneous velocity, acceleration and over-acceleration vectors are coplanar, which results in:

˙ γ • -→ γ ∧ -→ V = 0
This equation represents the location of the points where torsion is null. The identity of the two methods is thus established.

Note:

Main results of this study are summarized in the table (1 Dimension 2

-→ V ∧ -→ Y λ 2 = 0 1 ℜ = -→ γ ∧ -→ V -→ V 3 = 0 ⇔ - → γ ∧ - → V = 0 Dimension 3 -→ V . -→ Y λ 2 ∧ -→ Y λ 3 = 0 1 ℑ = - ˙ γ•( -→ γ ∧ -→ V ) -→ γ ∧ -→ V 2 = 0 ⇔ ˙ γ • - → γ ∧ - → V = 0
Table 1: Determination of the slow manifold analytical equation

In the first report entitled on the "Courbes définies par une équation différentielle" Henri [START_REF] Poincaré | Sur les courbes définies par une équation différentielle[END_REF] proposed a criterion making it possible to characterize the attractivity or the repulsivity of a manifold. This criterion is recalled in the next section.

Attractive, repulsive manifolds

Proposition 3.3. Let X (t) be a trajectory curve having in M an instantaneous velocity vector -→ V (t) and let (V) be a manifold (a curve in dimension two, a surface in dimension three) defined by the implicit equation φ = 0 whose normal vector -→ η = -→ ∇φ is directed towards the outside of the concavity of this manifold.

-If the scalar product between the instantaneous velocity vector -→ V (t) and the normal vector -→ η = -→ ∇φ is positive, the manifold is said attractive with respect to this trajectory curve -If it is null, the trajectory curve is tangent to this manifold.

-If it is negative, the manifold is said repulsive. This scalar product which represents the total derivative of φ constitutes a new manifold ( V) which is the envelope of the manifold (V).

Proof.

Let's consider a manifold (V) defined by the implicit equation φ (x, y, z) = 0.

The normal vector directed towards the outside of the concavity of the curvature of this manifold is written:

-→ η = -→ ∇φ =   ∂φ ∂x ∂φ ∂y ∂φ ∂z   (21) 
The instantaneous velocity vector of the trajectory curve is defined by (1):

-→ V =   dx dt dy dt dz dt  
The scalar product between these two vectors is written:

-→ V • -→ ∇φ = ∂φ ∂x dx dt + ∂φ ∂y dy dt + ∂φ ∂z dz dt (22) 
By noticing that Eq. ( 22) represents the total derivative of φ, envelopes theory makes it possible to state that the new manifold ( V) defined by this total derivative constitutes the envelope of the manifold (V) defined by the equation φ = 0. The demonstration in dimension two of this Proposition results from what precedes.

Slow, fast domains

In the Mechanics formalism, the study of the nature of the motion of a mobile M consists in being interested in the variation of the Euclidian norm of its instantaneous velocity vector -→ V , i.e., in the tangential component γ τ of its instantaneous acceleration vector -→ γ . The variation of the Euclidian norm of the instantaneous velocity vector -→ V depends on the sign of the scalar product between the instantaneous velocity vector -→ V and the instantaneous acceleration vector -→ γ , i.e., the angle formed by these two vectors. Thus if, -→ γ • -→ V > 0, the variation of the Euclidian norm of the instantaneous velocity vector -→ V is positive and the Euclidian norm of the instantaneous velocity vector -→ V increases. The motion is accelerated, it is in its fast phase. If, -→ γ • -→ V = 0, the variation of the Euclidian norm of the instantaneous velocity vector -→ V is null and the Euclidian norm of the instantaneous velocity vector -→ V is constant. The motion is uniform, it is in a phase of transition between its fast phase and its slow phase. Moreover, the instantaneous velocity vector -→ V is perpendicular to the instantaneous acceleration vector -→ γ . If, -→ γ • -→ V < 0, the variation of the Euclidian norm of the instantaneous velocity vector -→ V is negative and the Euclidian norm of the instantaneous velocity vector -→ V decreases. The motion is decelerated. It is in its slow phase.

Definition 3.1. The domain of the phase space in which the tangential component γ τ of the instantaneous acceleration vector -→ γ is negative, i.e., the domain in which the system is decelerating is called slow domain.

The domain of the phase space in which the tangential component γ τ of the instantaneous acceleration vector -→ γ is positive, i.e., the domain in which the system is accelerating is called fast domain.

Note:

On the one hand, if the (S-FADS) studied comprises only one small multiplicative parameter ε in one of the components of its velocity vectors field, these two domains are complementary. The location of the points belonging to the domain of the phase space where the tangential component γ τ of the instantaneous acceleration vector -→ γ is cancelled, delimits the boundary between the slow and fast domains. On the other hand, the slow manifold of a (S-FADS) or of a (CAS-FADS) necessary belongs to the slow domain.

Singular manifolds

The use of Mechanics made it possible to introduce a new manifold called singular approximation of the acceleration which provides an approximate equation of the slow manifold of a (S-FADS).

Singular approximation of the acceleration

The singular perturbations theory [START_REF] Andronov | Theory of oscillators[END_REF] have provided the zero order approximation in ε, i.e., the singular approximation, of the slow manifold equation associated in a (S-FADS) comprising a small multiplicative parameter ε in one of the components of its velocity vector field -→ V . In this section, it will be demonstrated that the singular approximation associated in the acceleration vector field -→ γ constitutes the first order approximation in ε of the slow manifold equation associated with a (S-FADS) comprising a small multiplicative parameter ε in one of the components of its velocity vector field -→ V and consequently a small multiplicative parameter ε 2 in one of the components of its acceleration vector field -→ γ .

Proposition 4.1. The manifold equation associated in the singular approximation of the instantaneous acceleration vector -→ γ of a (S-FADS) constitutes the first order approximation in ε of the slow manifold equation.

Proof of the Proposition 4.1 for two-dimensional (S-FADS):

In dimension two, Proposition 3.1 results into a collinearity condition (19) between the instantaneous velocity vector -→ V and the instantaneous acceleration vector -→ γ . While posing:

dx dt = ẋ and dy dt = ẏ = g
The slow manifold equation of a (S-FADS) is written:

∂g ∂x ẋ2 -g 1 ε ∂f ∂x - ∂g ∂y ẋ - 1 ε ∂f ∂y g 2 = 0 (23)
This quadratic equation in ẋ has the following discriminant:

∆ = g 2 1 ε ∂f ∂x - ∂g ∂y 2 + 4 ∂g ∂x 1 ε ∂f ∂y g 2 = 0
The Taylor series of its square root up to terms of order 1 in ε is written:

√ ∆ ≈ 1 ε g ∂f ∂x 1 + ε ∂f ∂x 2 2 ∂g ∂x ∂f ∂y - ∂g ∂y ∂f ∂x + O ε 2
Taking into account what precedes, the solution of the equation ( 23) is written:

ẋ ≈ -g ∂f ∂y ∂f ∂x + O (ε) (24) 
This equation represents the second-order approximation in ε of the slow manifold equation associated with the singular approximation. According to equation ( 6), the instantaneous acceleration vector -→ γ is written: We obtain:

-→ γ = ε d 2 x dt 2 d 2 y dt 2 = ∂f ∂x dx dt + ∂f
ẋ = -g ∂f ∂y ∂f ∂x (25) 
By comparing this expression with the equation ( 24) which constitutes the second-order approximation in ε of the slow manifold equation, we deduces from Eq. ( 25) that it represents the first-order approximation in ε of the slow manifold equation. It has been also demonstrated that the singular approximation of the acceleration constitutes the first of the successive approximations developed in [START_REF] Rossetto | Singular approximation of chaotic slow-fast dynamical systems[END_REF].

Proof of the Proposition 4.1 for three-dimensional (S-FADS):

In dimension three, Proposition 3.2 results into a coplanarity condition (20) between the instantaneous velocity vector -→ V , the instantaneous acceleration vector -→ γ and the instantaneous over-acceleration vector ˙ γ. The slow manifold equation of a (S-FADS) is written:

d 3 x dt 3 dy dt d 2 y dt 2 dz dt d 2 z dt 2 + d 3 y dt 3 d 2 x dt 2 dx dt d 2 z dt 2 dz dt + d 3 z dt 3 dx dt d 2 x dt 2 dy dt d 2 y dt 2 = 0 (26) 
In order to simplify, let's replace the three determinants by:

∆ 1 = dy dt d 2 y dt 2 dz dt d 2 z dt 2 ; ∆ 2 = d 2 x dt 2 dx dt d 2 z dt 2 dz dt ; ∆ 3 = dx dt d 2 x dt 2 dy dt d 2 y dt 2
Equation (26) then will be written:

( ... x) ∆ 1 + ( ... y ) ∆ 2 + ( ... z ) ∆ 3 = 0 (27) 
While posing:

dx dt = ẋ , dy dt = ẏ = g , dz dt = ż = h
By dividing Eq. ( 27) by ( ... z ), we have

( ẋÿ -ẍ ẏ) + 1 ( ... z ) [( ... x) ∆ 1 + ( ... y ) ∆ 2 ] = 0 (28)
First term of Eq. ( 28) is written:

( ẋÿ -ẍ ẏ) = ∂g ∂x ẋ2 -g 1 ε ∂f ∂x - ∂g ∂y - ∂g ∂z h g ẋ - g 2 ε ∂f ∂y + ∂f ∂z h g (29) 
For homogeneity reasons let's pose:

g 2 G = 1 ( ... z ) [( ... x) ∆ 1 + ( ... y ) ∆ 2 ]
Equation ( 28) is written:

∂g ∂x ẋ2 -g 1 ε ∂f ∂x - ∂g ∂y - ∂g ∂z h g ẋ - g 2 ε ∂f ∂y + ∂f ∂z h g + g 2 G = 0 (30)
This quadratic equation in ẋ has the following discriminant:

∆ = g 2 1 ε ∂f ∂x - ∂g ∂y + ∂g ∂z h g 2 + 4g 2 ∂g ∂x 1 ε ∂f ∂y + ∂f ∂z h g -G
The Taylor series of its square root up to terms of order 1 in ε is written:

√ ∆ ≈ 1 ε g ∂f ∂x 1 + ε ∂f ∂x 2 2 ∂g ∂x ∂f ∂y + ∂f ∂z h g - ∂g ∂y + ∂g ∂z h g ∂f ∂x + O ε 2
Taking into account what precedes, the solution of the equation ( 30) is written:

ẋ ≈ -g ∂f ∂y + ∂f ∂z h g ∂f ∂x + O (ε) (31) 
This equation represents the second-order approximation in ε of the slow manifold equation associated with the singular approximation. According to equation ( 6), the instantaneous acceleration vector -→ γ is written: 

-→ γ =   ε d 2 x dt 2 d 2 y dt 2 d 2 z dt 2   =    ∂f ∂x dx dt + ∂f
By comparing this expression with the equation (31) which constitutes the second-order approximation in ε of the slow manifold equation, we deduce from Eq. ( 32) that it represents the first-order approximation in ε of the slow manifold equation.

It has been also demonstrated that the singular approximation of the acceleration constitutes the first of the successive approximations developed in [START_REF] Rossetto | Singular approximation of chaotic slow-fast dynamical systems[END_REF].

The use of the criterion proposed by H. Poincaré (Prop. 3) made it possible to characterize the attractivity of the slow manifold of a (S-FADS) or of a (CAS-FADS). Moreover, the presence in the phase space of an attractive slow manifold, in the vicinity of which the trajectory curves converge, constitutes a part of the attractor.

The singular manifold presented in the next section proposes a description of the geometrical structure of the attractor.

Singular manifold

The denomination of singular manifold comes from the fact that this manifold plays the same role with respect to the attractor as a singular point with respect to the trajectory curve.

Proposition 4.2. The singular manifold is defined by the intersection of slow manifold of equation φ = 0 and of an unspecified Poincaré section (Σ) made in its vicinity. Thus, it represents the location of the points satisfying:

φ ∩ Σ = 0 (33)
This manifold of co-dimension one is a submanifold of the slow manifold. In dimension two, the singular manifold is reduced to a point. In dimension three, it is a "line" or more exactly a "curve".

The location of the points obtained by integration in a given time of initial conditions taken on this manifold constitutes a submanifold also belonging to attractor generated by the dynamical system. The whole of these manifolds corresponding to various points of integration makes it possible to reconstitute the attractor by deployment of these singular manifolds.

The concept of deployment will be illustrated in the section 5.4.

Applications

Van der Pol model

The oscillator of B. [START_REF] Van Der Pol | On 'Relaxation-Oscillations[END_REF] is a second-order system with non-linear frictions which can be written:

ẍ + α(x 2 -1) ẋ + x = 0
The particular form of the friction which can be carried out by an electric circuit causes a decrease of the amplitude of the great oscillations and an increase of the small. There are various manners of writing the previous equation like a first order system. One of them is:

ẋ = α x + y -x 3 3 ẏ = -x α
When α becomes very large, x becomes a "fast" variable and y a "slow" variable. In order to analyze the limit α → ∞, we introduce a small parameter ε = 1/α 2 and a "slow time" t ′ = t/α = √ εt. Thus, the system can be written:

-→ V ε dx dt dy dt = -→ ℑ f (x, y) g (x, y) = x + y -x 3 3 -x (34) 
with ε a positive real parameter

ε = 0.05
where the functions f and g are infinitely differentiable with respect to all x i and t, i.e., are C ∞ functions in a compact E included in R 2 and with values in R. Moreover, the presence of a small multiplicative parameter ε in one of the components of its velocity vector field -→ V ensures that the system (34) is a (S-FADS). We can thus apply the method described in Sec. 3, i.e., Differential Geometry. The instantaneous acceleration vector -→ γ is written:

-→ γ d 2 x dt 2 d 2 y dt 2 = d -→ ℑ dt 1 ε dx dt + dy dt -x 2 dx dt -dx dt ( 35 
)
Proposition 3.1 leads to:

1 ℜ = -→ γ ∧ -→ V -→ V 3 = 0 ⇔ -→ γ ∧ -→ V = 0 ⇔ ẍ ẏ -ẋÿ = 0 ⇔ d 2 x dt 2 dx dt d 2 y dt 2 dy dt = 0 21
We obtain the following implicit equation:

1 9ε 2 9y 2 + 9x + 3x 3 y + 6x 4 -2x 6 + 9x 2 ε = 0 (36)
Since this equation is quadratic in y, we can solve it in order to plot y according to x.

y 1,2 = - x 3 6 - x 2 ± x 2 √ x 4 -2x 2 + 1 -4ε (37) 
In Fig. 1 is plotted the slow manifold equation ( 37) of the Van der Pol system with ε = 0.05 by using Proposition 3.1, i.e., the collinearity condition between the instantaneous velocity vector -→ V and the instantaneous acceleration vector -→ γ , i.e., the location of the points where the curvature of the trajectory curves is cancelled. Moreover, Definition 1 makes it possible to delimit the area of the phase plane in which, the scalar product between the instantaneous velocity vector -→ V and the instantaneous acceleration vector -→ γ is negative, i.e., where the tangential component γ τ of its instantaneous acceleration vector -→ γ is negative. We can thus graphically distinguish the slow domain of the fast domain (in blue), i.e., the domain of stability of the trajectories. Let's notice that, as soon as the trajectory curve, initially outside this domain, enters inside, it leaves the slow manifold to reach the fast foliation. The slow manifold equation provided by Proposition 4.1 leads to the following implicit equation:

1 3ε 2 3x -4x 3 + x 5 + 3 -3x 2 y -3xε = 0 (38)
Starting from this equation we can plot y according to x:

y = x 5 -4x 3 + 3x (1 -ε) 3 (-1 + x 2 ) (39)
In Fig. 3 is plotted the slow manifold equation ( 39) of the Van der Pol system with ε = 0.05 by using Proposition 4.1, i.e., the singular approximation of the instantaneous acceleration vector -→ γ in magenta. Blue curve represents the slow manifold equation (37) provided by Proposition 3.1. In order to illustrate the principle of the method presented above, we have plotted in the Fig. 4 the isoclines of acceleration for various values: 0.5, 0.2, 0.1, 0.05. The very large variation rate of the acceleration in the vicinity of the slow manifold can be noticed in Fig. 4 Some isoclines of the acceleration vector which tend to the slow manifold defined by Proposition 3.1 are plotted.

Chua model

The L.O. Chua's circuit [1986] is a relaxation oscillator with a cubic non-linear characteristic elaborated from a circuit comprising a harmonic oscillator of which operation is based on a field-effect transistor, coupled to a relaxation-oscillator composed of a tunnel diode. The modeling of the circuit uses a capacity which will prevent from abrupt voltage drops and will make it possible to describe the fast motion of this oscillator by the following equations which constitute a slowfast system.

-→ V =   dx dt dy dt dz dt   = -→ ℑ   f (x, y, z) g (x, y, z) h (x, y, z)   =   1 ε z -44 3 x 3 -41 2 x 2 -µx -z -0.7x + y + 0.24z   (40)
with ε and µ are real parameters

ε = 0.05 µ = 2
where the functions f , g and h are infinitely differentiable with respect to all x i , and t, i.e., are C ∞ functions in a compact E included in R 3 and with values in R. Moreover, the presence of a small multiplicative parameter ε in one of the components of its instantaneous velocity vector -→ V ensures that the system (40) is a (S-FADS). We can thus apply the method described in Sec. 3, i.e., Differential Geometry. In dimension three, the slow manifold equation is provided by Proposition 3.2, i.e., the vanishing condition of the torsion:

1 ℑ = - ˙ γ • -→ γ ∧ -→ V -→ γ ∧ -→ V 2 = 0 ⇔ ˙ γ • -→ γ ∧ -→ V = 0
Within the framework of the tangent linear system approximation, Corollary 1 leads to Eq. (34). While using Mathematica is plotted in Fig. 5 the phase portrait of the L.O. Chua model and its slow manifold.

Without the framework of the tangent linear system approximation, i.e., while considering that the functional jacobian varies with time, Proposition 3.2 provides a surface equation which represents the location of the points where torsion is cancelled, i.e., the location of the points where the osculating plane is stationary and where the slow manifold is attractive. We deduce, according to Proposition 3.3, that the location of the points where the torsion is negative corresponds to the attractive parts of the slow manifold. Thus, the attractive part of the slow manifold of the LO. Chua model is plotted in Fig. 6.

Slow manifold equation provided by Proposition 4.1 leads to the following implicit equation:

1 6ε 2 (5043x 3 + 9020x 4 + 3872x 5 -246xz -264x 2 z -4.2xε +6yε + 1.44zε + 369x 2 µ + 352x 3 µ -6zµ + 6xµ 2 ) = 0
The surface plotted in Fig. 7 constitutes a quite good approximation of the slow manifold of this model. 

Lorenz model

The purpose of the model established by Edward [START_REF] Lorenz | Deterministic non-periodic flows[END_REF] was in the beginning to analyze the impredictible behavior of weather. After having developed non-linear partial derivative equations starting from the thermal equation and Navier-Stokes equations, Lorenz truncated them to retain only three modes. The most widespread form of the Lorenz model is as follows:

-→ V =   dx dt dy dt dz dt   = -→ ℑ   f (x, y, z) g (x, y, z) h (x, y, z)   =   σ (y -x) -xz + rx -y xy -βz   (41)
with σ, r, and β are real parameters: σ = 10, β = 8 3 , r = 28 where the functions f , g andh are infinitely differentiable with respect to all x i , and t, i.e., are C ∞ functions in a compact E included in R 3 and with values in R. Although this model has no singular approximation, it can be considered as a (S-FADS), according to Sec. 1.3, because it has been numerically checked [START_REF] Rossetto | Slow-fast autonomous dynamical systems[END_REF]] that its functional jacobian matrix possesses at least a large and negative real eigenvalue in a large domain of the phase space. Thus, we can apply the method described in Sec. 3, i.e., Differential Geometry. In dimension three, the slow manifold equation is provided by Proposition 3.2, i.e., the vanishing condition of the torsion:

1 ℑ = - ˙ γ • -→ γ ∧ -→ V -→ γ ∧ -→ V 2 = 0 ⇔ ˙ γ • -→ γ ∧ -→ V = 0
Within the framework of the tangent linear system approximation, Corollary 1 leads to Eq. (34). While using Mathematica is plotted in Fig. 8 the phase portrait of the E.N. Lorenz model and its slow manifold. Without the framework of the tangent linear system approximation, i.e., while considering that the functional jacobian varies with time, Proposition 3.2 provides a surface equation which represents the location of the points where torsion is cancelled, i.e., the location of the points where the osculating plane is stationary and where the slow manifold is attractive. We deduce, according to Proposition 3.2, that the location of the points where the torsion is negative corresponds to the attractive parts of the slow manifold. Thus, the attractive part of the slow manifold of the E.N. Lorenz model is plotted Fig. 9.

Volterra-Gause model

Let's consider the model elaborated by [START_REF] Ginoux | Chaos in a three-dimensional Volterra-Gause model of predator-prey type[END_REF] for three species interacting in a predator-prey mode.

-→ V =   dx dt dy dt dz dt   = -→ ℑ   f (x, y, z) g (x, y, z) h (x, y, z)   =     1 ξ x (1 -x) -x 1 2 y -δ 1 y + x 1 2 y -y 1 2 z εz y 1 2 -δ 2     (42)
with ξ, ε, δ 1 and δ 2 are real parameters: ξ = 0.866, ε = 1.428, δ 1 = 0.577, δ 2 = 0.376.

And where the functions f, g and h are infinitely differentiable with respect to all x i , and t, i.e., are C ∞ functions in a compact E included in R 3 and with values in R.

This model consisted of a prey, a predator and top-predator has been named Volterra-Gause because it combines the original model of V. [START_REF] Volterra | Variazioni e fluttuazioni del numero d'individui in specie animali conviventi[END_REF] incorporating a logisitic limitation of P.F. [START_REF] Verhulst | Notice sur la loi que suit la population dans son accroissement[END_REF] type on the growth of the prey and a limitation of G.F. [START_REF] Gause | The struggle for existence[END_REF] type on the intensity of the predation of the predator on the prey and of top-predator on the predator. The equations (42) are dimensionless, remarks and details about the changes of variables and the parameters have been extensively made in [START_REF] Ginoux | Chaos in a three-dimensional Volterra-Gause model of predator-prey type[END_REF]. Moreover, the presence of a small multiplicative parameter ξ in one of the components of its instantaneous velocity vector -→ V ensures that the system (42) is a (S-FADS). So, the method described in Sec. 3, i.e., Differential Geometry would have provided the slow manifold equation thanks to Proposition 3.2. But, this model exhibits a chaotic attractor in the snail shell shape and the use of the algorithm developed by [START_REF] Wolf | Determining Lyapunov Exponents from a Time Series[END_REF] made it possible to compute what can be regarded as its Lyapunov exponents: (+0.035, 0.000, -0.628). Then, the Kaplan-Yorke [1983] conjecture provided the following Lyapunov dimension: 2.06. So, the fractal dimension of this chaotic attractor is close to that of a surface. The singular manifold makes it possible to account for the evolution of the trajectory curves on the surface generated by this attractor. Indeed, the location of the points of intersection of the slow manifold with a Poincaré section carried out in its vicinity constitutes a "line" or more exactly a "curve". Then by using numerical integration this "curve" (resp. "line") is deployed through the phase space and its deployment reconstitutes the attractor shape. The result is plotted in Fig. 10. 

Discussion

Considering the trajectory curves integral of dynamical systems as plane or space curves evolving in the phase space, it has been demonstrated in this work that the local metric properties of curvature and torsion of these trajectory curves make it possible to directly provide the analytical equation of the slow manifold of dynamical systems (S-FADS or CAS-FADS) according to kinematics variables. The slow manifold analytical equation is thus given by the -vanishing condition of the curvature in dimension two, -vanishing condition of the torsion in dimension three.

Thus, the use of Differential Geometry concepts made it possible to make the analytical equation of the slow manifold completely independent of the "slow" eigenvectors of the functional jacobian of the tangent linear system and it was demonstrated that the equation thus obtained is completely identical to that which provides the tangent linear system approximation method [START_REF] Rossetto | Slow-fast autonomous dynamical systems[END_REF] presented below in the appendix. This made it possible to characterize its attractivity while using a criterion proposed by Henri [START_REF] Poincaré | Sur les courbes définies par une équation différentielle[END_REF] in his report entitled "Sur les courbes définies par une equation différentielle".

Moreover, the specific use of the instantaneous acceleration vector, inherent in Mechanics, allowed on the one hand a kinematics interpretation of the evolution of the trajectory curves in the vicinity of the slow manifold by defining the slow and fast domains of the phase space and on the other hand, to approach the analytical equation of the slow manifold thanks to the singular approximation of acceleration. The equation thus obtained is completely identical to that which provides the successive approximations method [START_REF] Rossetto | Singular approximation of chaotic slow-fast dynamical systems[END_REF]. Thus, it has been established that the presence in the phase space of an attractive slow manifold, in the vicinity of which the trajectory curves converge, defines part of the attractor. So, in order to propose a qualitative description of the geometrical structure of attractor a new manifold called singular has been introduced.

Various applications to the models of Van der Pol, cubic-Chua, Lorenz and Volterra-Gause made it possible to illustrate the practical interest of this new approach for the dynamical systems (S-FADS or CAS-FADS) study.

Appendix: formalization of the tangent linear system approximation method

The aim of this appendix is to demonstrate that the approach developed in this work generalizes the tangent linear system approximation method [START_REF] Rossetto | Slow-fast autonomous dynamical systems[END_REF]]. After having pointed out the necessary assumptions to the application of this method and the corollaries which result from this, two conditions (of collinearity / coplanarity and orthogonality) providing the analytical equation of the slow manifold of a dynamical system defined by ( 1) or (2) will be presented in a formal way. Equivalence between these two conditions will be then established. Lastly, while using the sum and the product (also the square of the sum and the product) of the eigenvalues of the functional jacobian of the tangent linear system, the equation of the slow manifold generated by these two conditions will be made independent of these eigenvalues and will be expressed according to the elements of the functional jacobian matrix of the tangent linear system. It will be thus demonstrated that this analytical equation of the slow manifold is completely identical to that provided by the Proposition 3.1 and 3.2 developed in this article.

Assumptions

The application of the tangent linear system approximation method requires that the dynamical system defined by (1) or (2) satisfies the following assumptions:

(H 1 ) The components f i , of the velocity vector field -→ ℑ X defined in E are continuous, C ∞ functions in E and with values included in R.

(H 2 ) The dynamical system defined by (1) or (2) satisfies the nonlinear part condition [START_REF] Rossetto | Slow-fast autonomous dynamical systems[END_REF], i.e., that the influence of the nonlinear part of the Taylor series of the velocity vector field -→ ℑ X of this system is overshadowed by the fast dynamics of the linear part.

-→ ℑ X = -→ ℑ X 0 + X -X 0 d -→ ℑ X d X X 0 +O X -X 0 2 (A-1)
The tangent linear system approximation method consists in spreading the velocity vector field -→ V on the eigenbasis associated in the eigenvalues of the functional jacobian of the tangent linear system.

Indeed, by taking account of (A-2) and (A-5) we have according to (A-6):

dδ X dt = J X 0 δ X = J X 0 n i=1 a i -→ Y λ i = n i=1 a i J X 0 -→ Y λ i = n i=1 a i λ i -→ Y λ i (A-7)
Thus, Corollary 2 provides:

dδ X dt = -→ V T ≈ -→ V = n i=1 a i λ i -→ Y λ i (A -8)
The equation (A-8) constitutes in dimension two (resp. dimension three) a condition called collinearity (resp. coplanarity) condition which provides the analytical equation of the slow manifold of a dynamical system defined by ( 1) or ( 2).

An alternative proposed by [START_REF] Rossetto | Slow-fast autonomous dynamical systems[END_REF] uses the "fast" eigenvector on the left associated in the "fast" eigenvalue of the transposed functional jacobian of the tangent linear system.

In this case the velocity vector field -→ V is then orthogonal with the "fast" eigenvector on the left. This constitutes a condition called orthogonality condition which provides the analytical equation of the slow manifold of a dynamical system defined by (1) or (2).

These two conditions will be the subject of a detailed presentation in the following sections. Thereafter it will be supposed that the assumptions (H1) -(H2) are always checked.

Collinearity / coplanarity condition

Slow manifold equation of a two dimensional dynamical system Let's consider a dynamical system defined under the same conditions as (1) or (2). The eigenvectors associated in the eigenvalues of the functional jacobian of the tangent linear system are written:

-→ Y λ i λ i -∂g ∂y ∂g ∂x (A -9) with i =1, 2
The projection of the velocity vector field -→ V on the eigenbasis is written according to Corollary 2:

dδ X dt = -→ V T ≈ -→ V = n i=1 a i λ i -→ Y λ i = α -→ Y λ 1 + β -→ Y λ 2
where α and β represent coefficients depending explicitly on the co-ordinates of space and implicitly on time and where -→ Y λ 1 represents the "fast" eigenvector and -→ Y λ 2 the "slow" eigenvector. The existence of an evanescent mode in the vicinity of the slow manifold implies according to Tihonv's theorem [1952]: α ≪ 1 We deduce:

Proposition A-1: A necessary and sufficient condition of obtaining the slow manifold equation of a two dimensional dynamical system is that its velocity vector field -→ V is collinear to the slow eigenvector -→ Y λ 2 associated in the slow eigenvalue λ 2 of the functional jacobian of the tangent linear system. That is to say:

-→ V ≈ β -→ Y λ 2 (A -10)
While using this collinearity condition, the equation constituting the first order approximation in ε of the slow manifold of a two dimensional dynamical system is written:

-→ V ∧ -→ Y λ 2 = 0 ⇔ ∂g ∂x dx dt -λ 2 - ∂g ∂y dy dt = 0 (A -11)
Slow manifold equation of a three dimensional dynamical system

Let's consider a dynamical system defined under the same conditions as (1) or (2). The eigenvectors associated in the eigenvalues of the functional jacobian of the tangent linear system are written:

-→ Y λ i     1 ε ∂f ∂y ∂g ∂z + 1 ε ∂f ∂z λ i -∂g ∂y 1 ε ∂f ∂z ∂g ∂x + ∂g ∂z λ i -1 ε ∂f ∂x -1 ε ∂f ∂y ∂g ∂x + λ i -1 ε ∂f ∂x λ i -∂g ∂y     (A -12) with i =1, 2, 3
The projection of the velocity vector field -→ V on the eigenbasis is written according to Corollary 2:

dδ X dt = -→ V T ≈ -→ V = n i=1 a i λ i -→ Y λ i = α -→ Y λ 1 + β -→ Y λ 2 + δ -→ Y λ 3
where α, β and δ represent coefficients depending explicitly on the co-ordinates of space and implicitly on time and where -→ Y λ 1 represents the "fast" eigenvector and -→ Y λ 2 , -→ Y λ 3 the "slow" eigenvectors. The existence of an evanescent mode in the vicinity of the slow manifold implies according to Tihonv's theorem [1952]: α ≪ 1 We deduce:

Proposition A-2: A necessary and sufficient condition of obtaining the slow manifold equation of a three dimensional dynamical system is that its velocity vector field -→ V is coplanar to the slow eigenvectors -→ Y λ 2 and -→ Y λ 3 associated in the slow eigenvalue λ 2 and λ 3 of the functional jacobian of the tangent linear system. That is to say:

-→ V ≈ β -→ Y λ 2 + δ -→ Y λ 3 (A -13)
While using this coplanarity condition, the equation constituting the first order approximation in ε of the slow manifold of a three dimensional dynamical system is written:

det -→ V , -→ Y λ 2 , -→ Y λ 3 = 0 ⇔ -→ V . -→ Y λ 2 ∧ -→ Y λ 3 = 0 (A -14)

Orthogonality condition

Slow manifold equation of a two dimensional dynamical system

Let's consider a dynamical system defined under the same conditions as (1) or (2). The eigenvectors associated in the eigenvalues of the transposed functional jacobian of the tangent linear system are written:

t -→ Y λ i λ i -∂g ∂y 1 ε ∂f ∂y (A -15) with i =1, 2
t -→ Y λ 1 represents the "fast" eigenvector on the left associated in the dominant eigenvalue, i.e., the largest eigenvalue in absolute value and t -→ Y λ 2 is the "slow" eigenvector on the left.

But since according to [START_REF] Rossetto | Slow-fast autonomous dynamical systems[END_REF], the velocity vector field -→ V is to the "fast" eigenvector on the left t -→ Y λ 1 , we deduce:

Proposition A-3: A necessary and sufficient condition of obtaining the slow manifold equation of a two dimensional dynamical system is that its velocity vector field -→ V is perpendicular to the fast eigenvector t -→ Y λ 1 on the left associated in the fast eigenvalue λ 1 of the transposed functional jacobian of the tangent linear system. That is to say:

-

→ V ⊥ t -→ Y λ 1 (A -16)
While using this orthogonality condition, the equation constituting the first order approximation in ε of the slow manifold of a two dimensional dynamical system is written:

-→ V • t -→ Y λ 1 = 0 ⇔ λ 1 - ∂g ∂y dx dt + 1 ε ∂f ∂y dy dt = 0 (A -17)
Slow manifold equation of a three dimensional dynamical system

Let's consider a dynamical system defined under the same conditions as (1) or (2). The eigenvectors associated in the eigenvalues of the transposed functional jacobian of the tangent linear system are written:

t -→ Y λ i     ∂g ∂x ∂h ∂y + ∂h ∂x λ i -∂g ∂y 1 ε ∂f ∂y ∂h ∂x + ∂h ∂y λ i -1 ε ∂f ∂x -1 ε ∂f ∂y ∂g ∂x + λ i -1 ε ∂f ∂x λ i -∂g ∂y     (A -18) with i =1, 2, 3
t -→ Y λ 1 represents the "fast" eigenvector on the left associated in the dominant eigenvalue, i.e., the largest eigenvalue in absolute value and t -→ Y λ 2 , t -→ Y λ 3 are the "slow" eigenvectors on the left. But since according to [START_REF] Rossetto | Slow-fast autonomous dynamical systems[END_REF], the velocity vector field -→ V is perpendicular to the "fast" eigenvector on the left t -→ Y λ 1 , we deduce:

Proposition A-4: A necessary and sufficient condition of obtaining the slow manifold equation of a three dimensional dynamical system is that its velocity vector field -→ V is perpendicular to the fast eigenvector t -→ Y λ 1 on the left associated in the fast eigenvalue λ 1 of the transposed functional jacobian of the tangent linear system. That is to say:

-→ V ⊥ t -→ Y λ 1 (A -19)
While using this orthogonality condition, the equation constituting the first order approximation in ε of the slow manifold of a three dimensional dynamical system is written:

-→ V ⊥ t -→ Y λ 1 ⇔ -→ V • t -→ Y λ 1 = 0 (A -20)

Equivalence of both conditions

Proposition A-5: Both necessary and sufficient collinearity / coplanarity and orthogonality conditions providing the slow manifold equation are equivalent.

Proof of the Proposition 5 in dimension two

In dimension two, the slow manifold equation may be obtained while considering that the velocity vector field -→ V is:

-either collinear to the "slow" eigenvector -→ Y λ 2 -either perpendicular to the "fast" eigenvector on the left t -→ Y λ 1

There is equivalence between both conditions provided that the "fast" eigenvector on the left t -→ Y λ 1 is orthogonal to the "slow" eigenvector -→ Y λ 2 . Both coordinates of these eigenvectors defined in the above section make it possible to express their scalar product:

t -→ Y λ 1 • -→ Y λ 2 = λ 1 λ 2 - ∂g ∂y (λ 1 + λ 2 ) + ∂g ∂y 2 + 1 ε ∂f ∂y ∂g ∂x
While using the trace and determinant of the functional jacobian of the tangent linear system, we have:

t -→ Y λ 1 • -→ Y λ 2 = 1 ε ∂f ∂x ∂g ∂y - ∂f ∂y ∂g ∂x - ∂g ∂y 1 ε ∂f ∂x + ∂g ∂y + ∂g ∂y 2 + 1 ε ∂f ∂y ∂g ∂x = 0 So, t -→ Y λ 1 ⊥ -→ Y λ 2 (A -21)
Thus, collinearity and orthogonality conditions are completely equivalent.

Proof of the Proposition 5 in dimension three

In dimension three, the slow manifold equation may be obtained while considering that the velocity vector field -→ V is:

-either coplanar to the "slow" eigenvectors -→ Y λ 2 and -→ Y λ 3 -either perpendicular to the "fast" eigenvector on the left t -→ Y λ 1

There is equivalence between both conditions provided that the "fast" eigenvector on the left t -→ Y λ 1 is orthogonal to the plane containing the "slow" eigenvectors -→ Y λ 2 and -→ Y λ 3 . While using the co-ordinates of these eigenvectors defined in the above section, the sum and the product (also the square of the sum and the product) of the eigenvalues of the functional jacobian of the tangent linear system, the following equality is demonstrated:

-→ Y λ 2 ∧ -→ Y λ 3 = t -→ Y λ 1 (A -22)
Thus, coplanarity and orthogonality conditions are completely equivalent.

Note:

In dimension three numerical studies shown significant differences in the plot of the slow manifold according to whether one or the other of the both conditions (coplanarity (A-14) or orthogonality (A-20)) were used. These differences come from the fact that each one of these two conditions uses one or two eigenvectors whose co-ordinates are expressed according to the eigenvalues of the functional jacobian of the tangent linear system. Since these eigenvalues can be complex or real according to their localization in the phase space the plot of the analytical equation of the slow manifold can be difficult even impossible. Also to solve this problem it is necessary to make the analytical equation of the slow manifold independent of the eigenvalues. This can be carried out by multiplying each equation of the slow manifold by one or two "conjugated" equations. The equation obtained will be presented in each case (dimension two and three) in the next section.

Slow manifold equation independent of the eigenvectors

Proposition A-6: Slow manifold equations of a dynamical system obtained by the collinearity / coplanarity and orthogonality conditions are equivalent.

Proof of the Proposition 6 in dimension two

In order to demonstrate the equivalence between the slow manifold equations obtained by each condition, they should be expressed independently of the eigenvalues. So let's multiply each equation (A-11) then (A-17) by its "conjugated" equation, i.e., an equation in which the eigenvalue λ 1 (resp. λ 2 ) is replaced by the eigenvalue λ 2 (resp. λ 1 ). Let's notice that the "conjugated" equation of the equation (A-11) corresponds to the collinearity condition between the velocity vector field -→ V and the eigenvector -→ Y λ 1 . The product of the equation (A-11) by its "conjugated" equation is written:

-→ V ∧ -→ Y λ 1 • -→ V ∧ -→ Y λ 2 = 0
So, while using the trace and the determinant of the functional jacobian of the tangent linear system we have: In the same manner, the product of the equation (A-17) by its "conjugated" equation which corresponds to the orthogonality condition between velocity vector field -→ V and the eigenvector t -→ Y λ 2 is written:

-→ V • t -→ Y λ 1 -→ V • t -→ Y λ 2 = 0
So, while using the trace and the determinant of the functional jacobian of the tangent linear system we have: These two last conditions are, according to the definition of a dynamical system, satisfied because if they were not both differential equations which constitute the system would be completely uncoupled and it would not be a system anymore. Thus, the equations obtained by the collinearity and orthogonality conditions are equivalent.

-→ V ∧ -→ Y λ 1 • -→ V ∧ -→ Y λ 2 = 0 ⇔ -→ V • t -→ Y λ 1 -→ V • t -→ Y λ 2 = 0 (A -25)
Equations (A-23) and (A-24) provide the slow manifold equation of a two dimensional dynamical system independently of the eigenvalues of the functional jacobian of the tangent linear system. In order to express them, we adopt the following notations for:

-the velocity vector field In order to demonstrate the equivalence between the slow manifold equations obtained by each condition, the same step as that exposed in the above section is applied. The slow manifold equation should be expressed independently of the eigenvalues. In dimension three, each equation (A-14) then (A-20) must be multiplied by two "conjugated" equations obtained by circular shifts of the eigenvalues. Let's notice that the first of the "conjugated" equations of the equation (A-14) corresponds to the coplanarity condition between the velocity vector field -→ V and the eigenvectors -→ Y λ 1 and -→ Y λ 2 , the second corresponds to the coplanarity condition between the velocity vector field -→ V and the eigenvectors -→ Y λ 1 and -→ Y λ 3 . The product of the equation (A-14) by its "conjugated" equation is written:

-→ V • -→ Y λ 1 ∧ -→ Y λ 2 • -→ V • -→ Y λ 2 ∧ -→ Y λ 3 • -→ V • -→ Y λ 1 ∧ -→ Y λ 3 = 0 (A -28)
In the same manner, the product of the equation (A-20) by its "conjugated" equation which corresponds to the orthogonality condition between the velocity vector field -→ V and the eigenvector t -→ Y λ 2 and, the orthogonality condition between the velocity vector field -→ V and the eigenvector t -→ Y λ 3 is written:

-→ V • t -→ Y λ 1 -→ V • t -→ Y λ 2 -→ V • t -→ Y λ 3 = 0 (A -29)
By using Eq. (A-22) and all the circular shifts which result from this we demonstrate that Eqs. (A-28) and (A-29) are equal. Thus, the equations obtained by the coplanarity and orthogonality conditions are equivalent.

-→ V • -→ Y λ 1 ∧ -→ Y λ 2 • -→ V • -→ Y λ 2 ∧ -→ Y λ 3 • -→ V • -→ Y λ 1 ∧ -→ Y λ 3 = 0 ⇔ (A -30) -→ V • t -→ Y λ 1 -→ V • t -→ Y λ 2 -→ V • t -→ Y λ 3 = 0
Equations (A-28) and (A-29) provide the slow manifold equation of a three dimensional dynamical system independently of the eigenvalues of the functional jacobian of the tangent linear system. In order to express them, we adopt the following notations for:

-the velocity vector field Starting from the coplanarity condition (A-14) and while replacing the eigenvectors by their co-ordinates (A-12) and while removing all the eigenvalues λ 2 and λ 3 thanks to the sum and the products (and also the square of the sum and the products) of the eigenvalues of the functional jacobian of the tangent linear system, we obtain the following equation:

  ) presented below. Abbreviations mean: -T.L.S.A.: Tangent Linear System Approximation -A.D.G.F.: Application of the Differential Geometry Formalism Determination of the slow manifold analytical equation T.L.S.A. A.D.G.F.

  The singular approximation of the acceleration provides the equation:
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 1 Figure 1: Slow manifold (in blue) and stable domain of the Van der Pol system (in white).
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 2 Figure 2: Zoom of the stable part of the B. Van der Pol system.
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 3 Figure 3: Singular approximation of the acceleration of the B. Van der Pol system (in magenta).
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 4 Figure 4: Isoclines of the acceleration vector of the B. Van der Pol system.
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 5 Figure 5: Slow manifold of the L.O. Chua. Model.
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 6 Figure 6: Attractive part of the slow manifold of the L.O. Chua model.

Figure 7 :

 7 Figure 7: Singular approximation of the acceleration of the L.O. Chua model.

Figure 8 :

 8 Figure 8: Slow manifold of the E.N. Lorenz model.

Figure 9 :

 9 Figure 9: Attractive part of the slow manifold of the E.N. Lorenz model.

Figure 10 :

 10 Figure 10: Deployment of the singular manifold of the Volterra-Gause model.

  23) and (A-24) providing the slow manifold equation of a two dimensional dynamical system independently of the eigenvalues of the functional jacobian of the tangent linear system are then written:c ẋ2 -(ad) ẋ ẏb ẏ2 = 0 with α ij = = 0 if i + j = 2 = 0 if i + j = 2 α 20 = c α 11 = -(ad) α 02 = -bTable2: Slow manifold analytical equation of a two dimensional dynamical systemProof of the Proposition 6 in dimension three

  c (λ ie) cd + f (λ ia) -bd + (λ ia) (λ ie) (λ 1e) bg + h (λ 1a) -bd + (λ 1a) (λ 1e)  
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Corollaries

To the dynamical system defined by (1) or ( 2) is associated a tangent linear system defined as follows:

where δ X = X -X 0 , X 0 = X (t 0 ) and

Corollary 1. The nonlinear part condition implies the stability of the slow manifold. So, according to Proposition 3.3 it results that the velocity varies slowly on the slow manifold. This involves that the functional jacobian J X 0 varies slowly with time, i.e.,

The solution of the tangent linear system (A-2) is written:

where n is the dimension of the eigenspace, a i represents coefficients depending explicitly on the co-ordinates of space and implicitly on time and -→ Y λ i the eigenvectors associated in the functional jacobian of the tangent linear system.

Corollary 2. In the vicinity of the slow manifold the velocity of the dynamical system defined by ( 1) or ( 2) and that of the tangent linear system (4) merge.

where -→ V T represents the velocity vector associated in the tangent linear system.

The equation (A-31) is absolutely identical to that which one would have obtained by the orthogonality condition (A-20). Let's multiply the equation (A-31) by its "conjugated" equations in λ 2 and λ 3 , i.e., by (A 2 ẋ -B 2 ẏ + C ż) and by (A 3 ẋ -B 3 ẏ + C ż). The coefficients A i , B i are obtained by replacing in the equations (A-32) the eigenvalue λ 1 by the eigenvalue λ 2 then by the eigenvalue λ 3 respectively for i = 2, 3. We obtain:

By developing this expression we obtain a polynomial comprising terms comprising the sum and product of the eigenvalues and also of the square of the sum and the product of the eigenvalues and which are directly connected to the elements of the functional jacobian matrix of the tangent linear system. The equation obtained is the result of a demonstration (available by request to the authors) which establishes a relation between the coefficients of this polynomial and the elements of the functional jacobian matrix of the tangent linear system.

The expression (A-34) represents the slow manifold equation of a three dimensional dynamical system independently of the eigenvalues of the functional jacobian of the tangent linear system. Both expression (A-27) and (A-34) are also available at the address: http://ginoux.univ-tln.fr Slow manifold analytical equation of a three dimensional dynamical system

abe -2bcg -2ceh + ach + bf h + abi + bei + chibi 2 α 012 = 2bcdace + ce 2abfbefc 2 gcf h + acicei + 2bf i α 111 = abda 2 ebde + ae 2acg + 3bf g -3cdh + ef h + a 2 ie 2 i + cgif hiai 2 + ei 2 Table 3: Slow manifold analytical equation of a three dimensional dynamical system