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Abstract

The aim of this work is to establish the existence
of invariant manifolds in complexr systems. Con-
sidering trajectory curves integral of multiple time
scales dynamical systems of dimension two and three
(predator-prey models, neuronal bursting models) it
is shown that there exists in the phase space a curve
(resp. a surface) which is invariant with respect to
the flow of such systems. These invariant manifolds
are playing a very important role in the stability of
complex systems in the sense that they are ”restor-
ing” the determinism of trajectory curves.

1 Dynamical systems

In the following we consider a system of ordinary dif-
ferential equations defined in a compact E included

in .
& -5(9

,x,]" € E C R™ and

(1)

with X = (21,29, ...
§()Z') - [fl (X’) fa ()?) ot ()?)r cECR".

The vector S (X ) defines a velocity vector field

in E whose components f; which are supposed to
be continuous and infinitely differentiable with re-
spect to all z; and ¢, i.e., are C* functions in E and
with values included in R. For more details, see for

*P.R.O.T.E.E. Laboratory, I.U.T. de Toulon, Université
du Sud, B.P. 20132, 83957, La Garde cedex, France, E-mail:
ginoux@univ-tln.fr, rossetto@univ-tln.fr

example [1]. A solution of this system is an inte-
gral curve X (t) tangent to S whose values define the
states of the dynamical system described by Equation
(1). Since none of the components f; of the velocity
vector field depends here explicitly on time, the sys-

tem is said to be autonomous.

2 Trajectory curves

The integral of the system (1) can be associated with
the coordinates, i.e., with the position, of a point M
at the instant ¢. The total derivative of V(¢) namely
the instantaneous acceleration vector ¥(¢) may be
written, while using the chain rule, as:

dvV  dS dX q
J= =2 =gV

= = )
dt dx dt 2)

as

where X s the functional jacobian matrix J of the
system (1). Then, the integral curve defined by the
vector function X (t) of the scalar variable ¢ represent-
ing the trajectory of M can be considered as a plane
or a space curve which has local metrics properties

namely curvature and torsion.

2.1 Curvature

The curvature, which expresses the rate of changes of
the tangent to the trajectory curve of system (1), is
defined by
L _15nV]
RT o 3)
VI

where R represents the radius of curvature.



2.2 Torsion

The torsion, which expresses the difference between
the trajectory curve of system (1) and a plane curve,

is defined by:

i (7 V)
17 A VP2

(4)
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where & represents the radius of torsion.

3 Lie Derivative Darboux

Invariant
Let ¢ a C* function defined in a compact E included

in R and X (t) the integral of the dynamic system de-
fined by (1). The Lie derivative is defined as follows:

Lo " dp | dep
Lap= . = -
gp=V-Vop Zzzl 6%301 I (5)

Theorem 1. An invariant curve (resp. surface) is
defined by go()_(') = 0 where ¢ is a C! in an open set
U and such there exists a C* function denoted k(X)
and called cofactor which satisfies

Lgd(X) = k(X)p(X) (6)

forall X € U.

Proof of this theorem may be found in [2].
Theorem 2. If L 3o = 0 then ¢ is first integral of
the dynamical system defined by (1). So, ¢ is first
integral of the dynamical system defined by {¢ = a}

and where « Is constant.

Proof of this theorem may be found in [3].

4 Invariant Manifolds

According to the previous theorems 1 and 2 the fol-
lowing proposition may be established.

Proposition 1. The location of the points where
the local curvature of the trajectory curves integral
of a two dimensional dynamical system defined by (1)
vanishes is first integral of this system. Moreover, the
invariant curve thus defined is over flowing invariant
with respect to the dynamical system (1).

Proof of this theorem may be found in [5].

Proposition 2. The location of the points where
the local torsion of the trajectory curves integral of
a three dimensional dynamical system defined by (1)
vanishes is first integral of this system. Moreover, the
invariant surface thus defined is over flowing invariant
with respect to the dynamical system (1).

Proof of this theorem may be found in [5].

Applications to Complex

Systems

According to this method it is possible to show that
any dynamical system defined by (1) possess an in-
variant manifold which is endowing stability with the
trajectory curves, restoring thus the loss determin-
ism inherent to the non-integrability feature of these
systems. So, this method may be also applied to
any complex system such that predator-prey models,
neuronal bursting models... But, in order to give the
most simple and consistent application, let’s focus on
two classical examples:

e the Balthazar Van der Pol model;

e the Lorenz model.

5.1 Van der Pol model

The oscillator of B. Van der Pol [7] is a second-order
system with non-linear frictions which can be written:

it+a(@®-1)i+z=0.

The particular form of the friction which can be car-
ried out by an electric circuit causes a decrease of the
amplitude of the great oscillations and an increase of



the small. There are various manners of writing the
previous equation like a first order system. Omne of
them is:

, N z®
t=alz - =
Y73
. X
j=_2
Q

When a becomes very large, x becomes a fast variable
and y a slow variable. In order to analyze the limit
a — 00, we introduce a small parameter € = - and

a2

a slow time t' = 5\/3 Thus, the system can be
written:
dx 3
= 1
- f(z,y) - -
= & ]=s ( [ e\FFVT3
_y g(ﬂc,y) —T
dt

(7)
with € a positive real parameter: ¢ = 0.05 and where
the functions f and g are infinitely differentiable with
respect to all x; and ¢, i.e. are C° functions in a
compact E included in R? and with values in R.

According to Proposition 1, the location of the
points where the local curvature vanishes leads to the
following equation:

d(z,y) =9y + (9 + 32%) y + 62" — 22° 4 9z%¢ (8)

According to Theorem 1 (Cf. Appendix for de-
tails), the Lie derivative of Equation (8) may be writ-
ten:

Leo(X) = Tr[J]o(X) + g (=32 —3y+2°) (9)

Let’s plot the function ¢(x,y) (in blue), its Lie
derivative L)qu()z ) (in magenta), the singular ap-
prozimation x +y — % (in green) and the limit cycle
corresponding to system (7) (in red):

According to Fenichel’s theory, there exists a func-
tion ¢(x,y) defining a manifold (curve) which is over-
flowing invariant and which is C"O(e) close to the
singular approximation. It is easy to check that in
the vicinity of the singular approximation which cor-
responds to the second term of the right-hand-side of
Equation (9) we have:

Lgo(X) = Tr[J]o(X).
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Figure 1: Van der Pol model.

Moreover, it can be shown that in the location of the
points where the local curvature vanishes, i.e., where
o(x,y) = 0. Equation (9) can be written:

Led(X)=0.

So, according to Theorem 1 and 2, we can claim that
the manifold defined by ¢(z,y) = 0 is an invariant
curve with respect to the flow of system (7) and is a
local first integral of this system.

5.2 Lorenz model

The purpose of the model established by Edward
Lorenz [6] was in the beginning to analyze the im-
predictible behaviour of weather. It most widespread
form is as follows:

dz
dt f(z,y,2) oy —z)
V= %% =S| g@y2) [=]| —zztrz—y
dz h(z,y, z) ry — Bz
dt
(10)



with o, r and 8 are real parameters: ¢ = 10, 8 =
%, r = 28 and where the functions f, g and h are
infinitely differentiable with respect to all x;, and t,
i.e.,, are C'* functions in a compact E included in
R? and with values in R. According to Proposition
1, the location of the points where the local torsion
vanishes leads to an equation which for place reasons

can not be expressed. Let’s name it as previously:

(11)

According to Theorem 1 (Cf. Appendix for details),
the Lie derivative of Equation (11) may be written:

o(x,y,2).

Lgd(X) = Te[J]¢(X) + P(V - 7) (12)
where P is a polynomial function of both vectors 1%
and 4. Let’s plot the function ¢(z,y,z) and its Lie
derivative L ¢¢(X) and the attractor corresponding
to system (10):

Figure 2: Lorenz model.

It is obvious that the function ¢(x,y,z) defining
a manifold (surface) is merged into the correspond-
ing to its Lie derivative. It is easy to check that in
the vicinity of the manifold ¢(z,y, z) Equation (12)
reduces to:

Lzo(X) = Tr[J]o(X).

Moreover, it can be shown that in the location of the
points where the local torsion vanishes, i.e., where

¢(z,y,z) = 0 Equation (12) can be written:

L3p(X)=0
So, according to Theorem 1 and 2, we can claim that
the manifold defined by ¢(x,y, z) = 0 is an invariant
surface with respect to the flow of system (10) and is
a local first integral of this system.

6 Discussion

In this work, existence of invariant manifolds which
represent local first integrals of two (resp. three) di-
mensional dynamical systems defined by (1) has been
established. From these two characteristics it can
be stated that the former implies that such mani-
folds are representing the stable part of the trajec-
tory curves in the phase space and from the latter
that they are restoring the loss determinism inher-
ent to the non-integrability feature of such systems.
Moreover, while considering that dynamical systems
defined by (1) include complex systems, it is possi-
ble to apply this method to various models of ecol-
ogy (predator-prey models), neuroscience (neuronal
bursting models), molecular biology (enzyme kinet-
ics models)... Research of such invariant manifolds
in coupled systems or in systems of higher dimension
(four and more) would be of great interest.

Acknowledgements

Authors would like to thank Professors M. Agziz-
Alaoui and C. Bertelle for their useful collaboration.

References

[1] Coddington, E.A. & Levinson., N., 1955. Theory
of Ordinary Differential Equations, Mac Graw
Hill, New York.

[2] Darboux, G. 1878. Mémoire sur les équations
différentielles algébriques du premier ordre et du
premier degré. Bull. Sci. Math. Sér. 2 (2), 60-96,
123-143, 151-200.



[3] Demazure, M. 1989. Catastrophes et Bifurca-
tions, Ellipses, Paris.

[4] Fenichel, N. 1979. Geometric singular perturba-
tion theory for ordinary differential equations. J.
Diff. Eq. 31, 53-98

[5] Ginoux, J.M. and Rossetto B. 2006. Invariant
manifolds of complex systems. to appear.

[6] Lorenz, E. N. (1963). Deterministic non-periodic
flows, J. Atmos. Sc., 20, 130-141.

[7] Van der Pol, B. 1926. On ’Relaxation-
Oscillations’, Phil. Mag., 7, Vol. 2, 978-992.
Appendix
First of all, let’s recall the following results:

@i
(||

] _
dt

_’H

£l

(A-1)

Two-dlmensmnal dynamical system Let’s
pose: p(X) = ||¥A V. According to (A-1) the Lie
derivative of this expression may be written:

0 V); i (707) (A-2)
17 AT

dyAvy _

Ly
dt

p(X) =

where % (VAV) =7FAV.
According to Equation (2) the Lie derivative of the
acceleration vector may be written:

dJ

—»: — __' A—
T+ Vo (A3)

it leads to:

Using the following identity:

(J@) Ab+a A (Jb) =

it can be established that:

—

JYAV =Te(J)(F AV)

So, expression (A-2) may be written:

m (Tr(J) (i A V) : (i A V)

<((11JV/\V> : (7/\‘7))

Let’s note that: (ﬁ’/\ 17) . (7/\ ‘7) = [|7A VHQ and

.3 W/\V
that: 8= AT

Lip(X) =

So, equation (A-5) leads to:

B . aJ - =\ -
LepX) =TT AT+ (FVAT) -5 (a0

Since vector ‘é—{V AV has a unique coordinate ac-

cording to the g—direction and since we have posed:
o(X) = ||§ A V||, expression (A-6) may finally be
written:

Lep(X) = H—V/\VH (A-7)

Three-dimensional dynamical system Let’s
o(X) = 7 - (*’y’/\ ‘7) The Lie derivative of

this expression may be written:

i[i-(127)

pose:

Lgp(X) = ——= (A5)
According to g; [7- (ﬁ'/\f/')} = ﬁ' . (ﬁ'/\‘?), it
leads to:
Lgp(X) = : h EZA V)} =5- (7 /\V) (A-9)

The Lie derivative of expression (A-3) leads to:

d2J -
—V
* de?

aJ
— 7425y
7+ at !

(A-5)



Thus, expression (A-9) reads:

Lep(X) = (73)-(7A7)

A-1
(25 By (777) -
at | ae 7
It can also be established that:
(729) - (FAV) =Tx(D) (J7) - (TA V)
So, since we have posed: gp()f) =5 ('7 A ‘7), expres-
sion (A-10) may finally be written:
. . dJ -
Lip(X)= Tr(J)p(X)+ —Tr(J)EV
a7 aJ_  d2J (A-1D)
Va2 V) (FAY
T@V T rE V) (VAV)
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