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Abstract

Comparing neuronal bursting models (NBM) with slow-fast au-
tonomous dynamical systems (S-FADS), it appears that the specific
features of a (NBM) do not allow a determination of the analytical
slow manifold equation with the singular approximation method. So,
a new approach based on Differential Geometry, generally used for (S-
FADS), is proposed. Adapted to (NBM), this new method provides
three equivalent manners of determination of the analytical slow man-
ifold equation. Application is made for the three-variables model of
neuronal bursting elaborated by Hindmarsh and Rose which is one
of the most used mathematical representation of the widespread phe-
nomenon of oscillatory burst discharges that occur in real neuronal
cells.

1 Slow-fast autonomous dynamical systems, neu-

ronal bursting models

1.1 Dynamical systems

In the following we consider a system of differential equations defined in a
compact E included in R:

d ~X

dt
= ~ℑ

(

~X
)

(1)

with

~X = [x1, x2, ..., xn]
t
∈ E ⊂ R

n

1



and

~ℑ
(

~X
)

=
[

f1

(

~X
)

, f2

(

~X
)

, ..., fn

(

~X
)]t

∈ E ⊂ R
n

The vector ~ℑ
(

~X
)

defines a velocity vector field in E whose components

fi which are supposed to be continuous and infinitely differentiable with
respect to all xi and t, i.e., are C∞ functions in E and with values included
in R, satisfy the assumptions of the Cauchy-Lipschitz theorem. For more
details, see for example [2]. A solution of this system is an integral curve
~X (t) tangent to ~ℑ whose values define the states of the dynamical system
described by the Eq. (1). Since none of the components fi of the veloc-
ity vector field depends here explicitly on time, the system is said to be
autonomous.

1.2 Slow-fast autonomous dynamical system (S-FADS)

A (S-FADS) is a dynamical system defined under the same conditions as pre-
viously but comprising a small multiplicative parameter ε in one or several
components of its velocity vector field:

d ~X

dt
= ~ℑε

(

~X
)

(2)

with

~ℑε

(

~X
)

=

[

1

ε
f1

(

~X
)

, f2

(

~X
)

, ..., fn

(

~X
)

]t

∈ E ⊂ R
n

0 < ε ≪ 1

The functional jacobian of a (S-FADS) defined by (2) has an eigenvalue
called “fast”, i.e., great on a large domain of the phase space. Thus, a “fast”
eigenvalue is expressed like a polynomial of valuation −1 in ε and the eigen-
mode which is associated with this “fast” eigenvalue is said:

- “evanescent” if it is negative,
- “dominant” if it is positive.

The other eigenvalues called “slow” are expressed like a polynomial of
valuation 0 in ε.
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1.3 Neuronal bursting models (NBM)

A (NBM) is a dynamical system defined under the same conditions as previ-
ously but comprising a large multiplicative parameter ε−1 in one component
of its velocity vector field:

d ~X

dt
= ~ℑε

(

~X
)

(3)

with

~ℑε

(

~X
)

=
[

f1

(

~X
)

, f2

(

~X
)

, ..., εfn

(

~X
)]t

∈ E ⊂ R
n

0 < ε ≪ 1

The presence of the multiplicative parameter ε−1 in one of the compo-
nents of the velocity vector field makes it possible to consider the system
(3) as a kind of slow -fast autonomous dynamical system (S-FADS). So, it
possesses a slow manifold, the equation of which may be determined. But,
paradoxically, this model is not slow-fast in the sense defined previously. A
comparison between three-dimensional (S-FADS) and (NBM) presented in
Table 1 emphasizes their differences. The dot (·) represents the derivative
with respect to time and ε ≪ 1.

Table 1: Comparison between (S-FADS) and (NBM)

(S-FADS) vs (NBM)

d ~X

dt





ẋ

ẏ

ż



 = ~ℑε









1

ε
f (x, y, z)

g (x, y, z)

h (x, y, z)









d ~X

dt





ẋ

ẏ

ż



 = ~ℑε







f (x, y, z)

g (x, y, z)

εh (x, y, z)







d ~X

dt





ẋ

ẏ

ż



 = ~ℑε







fast

slow

slow







d ~X

dt





ẋ

ẏ

ż



 = ~ℑε







fast

fast

slow
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2 Analytical slow manifold equation

There are many methods of determination of the analytical equation of the
slow manifold. The classical one based on the singular perturbations theory
[1] is the so-called singular approximation method. But, in the specific case
of a (NBM), one of the hypothesis of the Tihonov’s theorem is not checked
since the fast dynamics of the singular approximation has a periodic solution.
Thus, another approach developed in [4] which consist in using Differential
Geometry formalism may be used.

2.1 Singular approximation method

The singular approximation of the fast dynamics constitutes a quite good
approach since the third component of the velocity is very weak and so, z is
nearly constant along the periodic solution. In dimension three the system
(3) can be written as a system of differential equations defined in a compact
E included in R:

d ~X

dt
=







dx
dt

dy
dt

dz
dt






= ~ℑε







f (x, y, z)

g (x, y, z)

εh (x, y, z)







On the one hand, since the system (3) can be considered as a (S-FADS),
the slow dynamics of the singular approximation is given by:

{

f (x, y, z) = 0
g (x, y, z) = 0

(4)

The resolution of this reduced system composed of the two first equations
of the right hand side of (3) provides a one-dimensional singular manifold,
called singular curve. This curve doesn’t play any role in the construction
of the periodic solution. But we will see that there exists all the more a slow
dynamics. On the other hands, it presents a fast dynamics which can be
given while posing the following change:

τ = εt ⇔
d

dt
= ε

d

dτ
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The system (3) may be re-written as:

d ~X

dτ
=







dx
dτ

dy
dτ

dz
dτ






= ~ℑε







ε−1f (x, y, z)

ε−1g (x, y, z)

h (x, y, z)






(5)

So, the fast dynamics of the singular approximation is provided by the
study of the reduced system composed of the two first equations of the right
hand side of (5).

d ~X

dτ

∣

∣

∣

∣

∣

fast

=

(

dx
dτ

dy
dτ

)

= ~ℑε

(

ε−1f (x, y, z∗)

ε−1g (x, y, z∗)

)

(6)

Each point of the singular curve is a singular point of the singular approx-
imation of the fast dynamics. For the z value for which there is a periodic
solution, the singular approximation exhibits an unstable focus, attractive
with respect to the slow eigendirection.

2.2 Differential Geometry formalism

Now let us consider a three-dimensional system defined by (3) and let’s define
the instantaneous acceleration vector of the trajectory curve ~X (t). Since the
functions fi are supposed to be C∞ functions in a compact E included in
R, it is possible to calculate the total derivative of the vector field ~ℑε. As
the instantaneous vector function ~V (t) of the scalar variable t represents
the velocity vector of the mobile M at the instant t, the total derivative of
~V (t) is the vector function ~γ (t) of the scalar variable t which represents
the instantaneous acceleration vector of the mobile M at the instant t. It is
noted:

~γ (t) =
d~V (t)

dt
(7)

Even if neuronal bursting models are not exactly slow-fast autonomous
dynamical systems, the new approach of determining the slow manifold
equation developed in [4] may still be applied. This method is using Differ-
ential Geometry properties such as curvature and torsion of the trajectory
curve ~X (t), integral of dynamical systems to provide their slow manifold
equation.
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Proposition 2.1 The location of the points where the local torsion of the
trajectory curves integral of a dynamical system defined by (3) vanishes,
provides the analytical equation of the slow manifold associated with this
system.

1

ℑ
= −

~̇γ ·

(

~γ × ~V
)

∥

∥

∥~γ × ~V
∥

∥

∥

2
= 0 ⇔ ~̇γ ·

(

~γ × ~V
)

= 0 (8)

Thus, this equation represents the slow manifold of a neuronal bursting
model defined by (3).

The particular features of neuronal bursting models (3) will lead to a
simplification of this Proposition 1. Due to the presence of the small mul-
tiplicative parameter ε in the third components of its velocity vector field,
instantaneous velocity vector ~V (t) and instantaneous acceleration vector
~γ (t) of the model (3) may be written:

~V





ẋ

ẏ

ż



 = ~ℑε









O
(

ε0
)

O
(

ε0
)

O
(

ε1
)









(9)

and

~γ





ẍ

ÿ

z̈



 =
d~ℑε

dt









O
(

ε1
)

O
(

ε1
)

O
(

ε2
)









(10)

where O (εn) is a polynomial of n degree in ε

Then, it is possible to express the vector product ~V × ~γ as:

~V × ~γ =





ẏz̈ − ÿż

ẍż − ẋz̈

ẋÿ − ẍẏ



 (11)

Taking into account what precedes (9, 10), it follows that:

~V × ~γ =









O
(

ε2
)

O
(

ε2
)

O
(

ε1
)









(12)
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So, it is obvious that since ε is a small parameter, this vector product
may be written:

~V × ~γ ≈





0
0

O
(

ε1
)



 (13)

Then, it appears that if the third component of this vector product
vanishes when both instantaneous velocity vector ~V (t) and instantaneous
acceleration vector ~γ (t) are collinear. This result is particular to this kind of
model which presents a small multiplicative parameter in one of the right-
hand-side component of the velocity vector field and makes it possible to
simplify the previous Proposition 1.

Proposition 2.2 The location of the points where the instantaneous veloc-
ity vector ~V (t) and instantaneous acceleration vector ~γ (t) of a neuronal
bursting model defined by (3) are collinear provides the analytical equation
of the slow manifold associated with this dynamical system.

~V × ~γ = ~0 ⇔ ẋÿ − ẍẏ = 0 (14)

Another method of determining the slow manifold equation proposed
in [14] consists in considering the so-called tangent linear system approxi-
mation. Then, a coplanarity condition between the instantaneous velocity
vector ~V (t) and the slow eigenvectors of the tangent linear system gives the
slow manifold equation.

~V .
(

~Yλ2
× ~Yλ3

)

= 0 (15)

where ~Yλi
represent the slow eigenvectors of the tangent linear system.

But, if these eigenvectors are complex the slow manifold plot may be in-
terrupted. So, in order to avoid such inconvenience, this equation has been
multiplied by two conjugate equations obtained by circular permutations.

[

~V ·

(

~Yλ2
× ~Yλ3

)]

·

[

~V ·

(

~Yλ1
× ~Yλ2

)]

·

[

~V ·

(

~Yλ1
× ~Yλ3

)]

= 0

It has been established in [4] that this real analytical slow manifold
equation can be written:

(

J2~V
)

·

(

~γ × ~V
)

= 0 (16)
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since the the tangent linear system approximation method implies to
suppose that the functional jacobian matrix is stationary. That is to say

dJ

dt
= 0

and so,

~̇γ = J
d~V

dt
+

dJ

dt
~V = J~γ +

dJ

dt
~V = J2~V +

dJ

dt
~V ≈ J2~V

Proposition 2.3 The coplanarity condition (15) between the instantaneous
velocity vector and the slow eigenvectors of the tangent linear system trans-
formed into the real analytical equation (16) provides the slow manifold equa-
tion of a neuronal bursting model defined by (3).

3 Application to a neuronal bursting model

The transmission of nervous impulse is secured in the brain by action po-
tentials. Their generation and their rhythmic behaviour are linked to the
opening and closing of selected classes of ionic channels. The membrane
potential of neurons can be modified by acting on a combination of differ-
ent ionic mechanisms. Starting from the seminal works of Hodgkin-Huxley
[7, 11] and FitzHugh-Nagumo [3, 12], the Hindmarsh-Rose [6, 13] model con-
sists of three variables: x, the membrane potential, y, an intrinsic current
and z, a slow adaptation current.

3.1 Hindmarsh-Rose model of bursting neurons










dx
dt

= y − f (x)− z + I

dy
dt

= g (x)− y

dz
dt

= ε (h (x)− z)

(17)

I represents the applied current, f (x) = ax3 − bx2 and g (x) = c− dx2

are respectively cubic and quadratic functions which have been experimen-
tally deduced [5]. ε is the time scale of the slow adaptation current and
h (x) = x − x∗ is the scale of the influence of the slow dynamics, which
determines whether the neuron fires in a tonic or in a burst mode when it is
exposed to a sustained current input and where (x∗, y∗) are the co-ordinates
of the leftmost equilibrium point of the model (1) without adaptation, i.e.,
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I = 0.
Parameters used for numerical simulations are:
a = 1, b = 3, c = 1, d = 5, ε = 0.005, s = 4, x∗ = −1−

√
5

2
and I = 3.25.

While using the method proposed in the section 2 it is possible to deter-
mine the analytical slow manifold equation of the Hindmarsh-Rose 84’model
[6].

3.2 Slow manifold of the Hindmarsh-Rose 84’model

In Fig. 1 is presented the slow manifold of the Hindmarsh-Rose 84’model
determined with the Proposition 1.

Figure 1: Slow manifold of the Hindmarsh-Rose 84’model with the Prop. 1.
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The slow manifold provided with the use of the collinearity condition
between both instantaneous velocity vector and instantaneous acceleration
vector, i.e., while using the Proposition 2 is presented in Fig. 2.

Figure 2: Slow manifold of the Hindmarsh-Rose 84’model with the Prop. 2.
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Figure 3 presents the slow manifold of the Hindmarsh-Rose 84’model
obtained with the tangent linear system approximation, i.e., with the use of
Proposition 3.

Figure 3: Slow manifold of the Hindmarsh-Rose 84’model with the Prop. 3.
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4 Discussion

Since in the case of neuronal bursting model (NBM) bursting models one of
the Tihonov’s hypothesis is not checked, the classical singular approximation
method can not be used to determine the analytical slow manifold equation.
In this work the application of the Differential Geometry formalism provides
new alternative methods of determination of the slow manifold equation of
a neuronal bursting model (NBM).

• the torsion method, i.e., the location of the points where the local
torsion of the trajectory curve, integral of dynamical systems vanishes,

• the collinearity condition between the instantaneous velocity vector
−→
V , the instantaneous acceleration vector −→γ ,

• the tangent linear system approximation, i.e., the coplanarity condition
between the instantaneous velocity vector eigenvectors transformed
into a real analytical equation.

The striking similarity of all figures due to the smallness of the param-
eter ε highlights the equivalence between all the propositions. Moreover,
even if the presence of this small parameter ε in one of the right-hand-side
component of the instantaneous velocity vector field of a (NBM) prevents
from using the singular approximation method, it clarifies the Proposition
1 and transforms it into a collinearity condition in dimension three, i.e.,
Proposition 2. Comparing (S-FADS) and (NBM) in Table 1 it can be noted
that in a (S-FADS) there is one fast component and two fast while in a
(NBM) the situation is exactly reversed. Two fast components and one
slow. So, considering (NBM) as a particular class of (S-FADS) we suggest
to call (NBM) fast-slow instead of slow-fast in order to avoid any confusion.
Further research should highlight other specific features of (NBM).
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