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Abstract

The simplest electronic circuit with a memristor was recently pro-
posed. Chaotic attractors solution to this memristive circuit are topo-
logically characterized and compared to Rössler-like attrators.
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1 Introduction

In classical electronics, there are three passive circuit elements: the resistor,
the capacitor and the inductor. In 1971, Leon Chua introduced a fourth
“missing” element which he named a memristor — for memory resistor —
by using symmetry arguments [Chua, 1971]. Chua also derived the proper-
ties of this element. However, it is only in 2008 that Strukov and co-workers
[Strukov et al, 2008] found a memristance arising in a nanoscale system in
which solid-state electronic and ionic transport are coupled under an ex-
ternal bias voltage. In 1976 Chua and Kang generalized the memristor to
a broader class of nonlinear dynamical systems they called memristive sys-
tems [Chua, 1976 ]. Few chaotic memristive electronic circuits were already
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proposed [Itoh & Chua, 2008] and [Muthuswamy & Kakate, 2010] but they
were four-dimensional. It is only recently that a three-dimensional system
was proposed to describe a memristive circuit [Muthuswamy & Chua, 2010].
This 3D system is the simplest three-element electronic circuit producing
chaotic behaviors since it is only made of two linear passive energy-storage
elements, and an active memristive device [Chua, 1976 ]. Such a simple
electronic circuit is not an algebraically minimal system for which only five
terms in the three right members of the set of ordinary differential equa-
tions are allowed [Zhang & Heidel, 1997]. The system here studied has five
linear terms and two nonlinear terms. The fact that this simple memristive
circuit is not a minimal system is an advantage since very often, minimal
systems have very tiny parameter domains associated with chaotic regimes
and small attraction basin. As a consequence, the simple memristive circuit
has a quite large attraction basin and a quite large domain of its parameter
space over which the system is chaotic.

In this letter, we will perform a topological analysis of chaotic attractors
of this memristive circuit. The subsequent part of this letter is organized as
follows. Section 2 is devoted to the governing equations and their geometric
interpretation in terms of flow curvature manifold. In section 3 the topolog-
ical anlaysis in terms of branched manifold — or template — is presented.
Section 4 gives some concluding remarks.

2 The governing equations and their geometric in-

terpretation

2.1 The set of differential equations

The simplest electronic circuit producing chaotic attractors was proposed by
[Muthuswamy & Chua, 2010]. The corresponding block diagram is shown
in Fig. 1. It is made of a linear passive inductor, a linear passive capacitor
and a nonlinear active memristor. This electronic circuit can be described
by the set of three differential equations







ẋ = y

ẏ = −
x

3
+

y

2
−

yz2

2

ż = y − αz − yz

. (1)
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It is written here in a slighly modified form since the third equation is not 1

ż = −y(1− z)− αz (2)

as in [Muthuswamy & Chua, 2010] but rather

ż = y(1− z)− αz . (3)

The nonlinearity is thus inverted. As a consequence, the orientation of the
attractor in the x-y plane is rotated by π as easily checked in Fig. 2. There
is no difference observed in the topology of these two attractors. This system
has a single fixed point located at the origin of the phase space.

Figure 1: Block diagram of the simplest electronic circuit producing chaotic
behavior.

2.2 Flow curvature manifold

Any trajectory solution to the dynamical system (1) and denoted X(t) de-
scribes the motion of a point M in the phase space R

3(X) whose position
depends on time t. This curve can also be defined by its parametric repre-
sentation 





x = Fx(t)

y = Fy(t)

z = Fz(t)

(4)

where Fi are the right members of the governing equations (1) that are
assumed to be continuous, C∞ functions. The curvature κ1 of any solution

1We picked a slightly different memristor characteristic to demonstrate the simplest

three-element chaotic circuit in Fig. 1 is robust with respect to the choice of the memristor

nonlinearity.
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Figure 2: Chaotic attractor solution to the minimal electronic circuit with
a memristor. Parameter value: α = 0.98.

to system (1) is defined as

κ1 =
Det

(

Ẋ, Ẍ
)

∥
∥
∥Ẋ

∥
∥
∥

3
. (5)

Curvature measures the deviation of the curve from a straight line in the
neighborhood of any of its points. In a similar way, the torsion κ2 is defined
as

κ2 =
Det

(

Ẋ, Ẍ,
...
X

)

∥
∥
∥Ẋ ∧ Ẍ

∥
∥
∥

2
. (6)

The torsion expresses the departure between the solution to system (1) and
its projection into a place locally tangent to it.

It is known since Poincaré that the fixed points of a dynamical sys-
tem provides some information on the structure of the solution to that
system into the corresponding phase space. Fixed points belong to the
zero-dimensional invariat set of the dynamical system. It is also known that
fixed points do not provide all information needed to fully understand the
structure of the trajectories in the phase space. Good examples of such
situation include dynamical systems producing chaotic attractor structured
around a single fixed point. Few of them may be found in the collection of
quadratic systems proposed by [Sprott, 1994].
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To extract additional information, nullclines were sometimes used as in
[Thomas & Kaufman, 2001]. But this is found only in the works made in the
context of Fluid Mechanics [Roth & Peikert, 1998] where one-dimensional
invariant sets were investigated as connecting fixed points (when there are
more than one) and structuring the flow. One-dimensional invariant set can
be defined according to the following theorem [Gilmore et al, 2010].

Theorem 1. The one-dimensional invariant set of a three-dimensional dy-

namical system is defined as the location of the points where the velocity

vector field is co-linear to the acceleration vector field, that is, to the location

of the points where

κ1 = 0 ⇔ Det
(

Ẋ, Ẍ
)

= 0 (7)

More recently, one of us investigated two-dimensional invariant sets in
the context of the development of singularly perturbed systems or slow-fast
systems. In particular, a new geometric approach has been developed in
order to directly provide the slow invariant manifold of any n-dimensional
dynamical system, singularly perturbed or not [Ginoux, 2009]. Thus flow
curvature manifold can be defined as follows.

Theorem 2. The flow curvature manifold of a three-dimensional dynamical

system is defined as the location of points where

κ2 = 0 ⇔ φ(X) = Det
(

Ẋ, Ẍ,
...
X

)

= 0 . (8)

Solving this equation directly provides the analytical equation for the slow

invariant manifold associated with such a system.

The flow curvature manifold is thus defined as [Ginoux & Letellier, 2009]

φ(x) = Ẋ · (Ẍ ∧
...
X) = 0 . (9)

Differentiating the acceleration vector Ẍ = JẊ where J is the functional
Jacobian matrix of the system, and inserting this expression into (9), we
obtain

φ(X) = Ẋ ·
(

J Ẋ ∧ J Ẍ

)

︸ ︷︷ ︸

φc

+ Ẋ ·

(

Ẍ ∧
dJ

dt
Ẋ

)

︸ ︷︷ ︸

φt

(10)

where φc is the time-independent component and φt is the time-dependent
component. Since φc does not contain the time derivative of J it is associ-
ated with the linear component of the vector field and φt with the nonlinear
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component. In the neighborhood of fixed points X, the time-independent
component of the flow curvature manifold corresponds to the osculating
plane. As a consequence, the attractor takes the shape of φc in this neigh-
borhood because the osculating plane cannot be crossed by a trajectory
[Ginoux & Letellier, 2009].

The two components of the flow curvature manifold of the memristive
circuit (1) are shown in Fig. 3a. As expected, in the neighborhood of the
fixed point, the time-independent component of the flow curvature manifold
is tangent to the osculating plane. The component φt presents an hyper-
boloid (Fig. 3b). The trajectory wraps around a significant part of this
surface. Close to the fixed point, the trajectory crosses component φt as
observed in the Rössler system [Ginoux & Letellier, 2009]. Such an inter-
section between the trajectory and component φt could be an explaination
for the limitation to the development of the dynamics.

3 Topological analysis

For α = 0.98, the memristor electronic circuit (1) produces a chaotic attrac-
tor (Fig. 2). A Poincaré section can be safely defined as

P ≡ {xn, zn | yn = 0, ẏ < 0} . (11)

Using parameter α as a bifurcation parameter, a bifurcation diagram is
computed (Fig. 4). When α is increased, the diagram starts with a period-
doubling cascade as a route to chaos. A crisis is observed around α =
0.25507, a value at which the attractor size suddenly increases. For slightly
greater α-values, a second period-doubling cascade issued from a period-2
orbit is observed. The development of the dynamics is observed at least
up to α = 0.53. Then for α slightly less than 0.6 a bubbling is observed.
The chaotic behavior is developed up to another bubbling observed in the
middle of the period-3 window (α ≈ 0.69). A last bubbling occurs in the
middle of the second period-3 window (α ≈ 0.85). For greater α-value, the
dynamics is reduced by sub-critical bifurcations, destroying periodic orbits.
The diagram is ended by an inverse period-doubling cascade leading to a
period-1 limit cycle.

When 0.98 < α < 1.276, there are two attractors: one is chaotic and
one is a period-1 limit cycle. Depending on the initial conditions, the tra-
jectory thus settles down onto one of these two attractors. This bistability
disappears when the limit cycle collides with the chaotic attractor for α is
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slightly greater than 0.98. We will thus investigate in details the topology
of chaotic attractors in the neighborhood of these two crises.

Let us start with the chaotic attractor observed when the α-value is close
to the boundary crisis, that is, when α = 0.98 (Fig. 2). A first-return map
to the Poincaré section (11) is computed (Fig. 5). It is a unimodal map with
a differential maximum as expected after a period-doubling cascade. Such
a maximum defines a partition of the attractor that allows us to distinguish
two topologically distinct domains in the attractor [Letellier et al, 1995].
Increasing (decreasing) branches are necessarily associated with domains —
stripes — with an odd (even) number of π-twists. In the present case, the
attractor is made of one stripe with one negative (anti-clockwise) and π-twist
and one stripe with two negative π-twists as detailed below. We choose to
label the increasing monotonic branch of the first-return map by symbol “2”
and the decreasing monotonic branch by symbol “1”. Each revolution over
the attractor — around the fixed point — is thus encoded according to

∣
∣
∣
∣
∣

1 if xn > xmax

2 if xn < xmax
(12)

where xmax = 2.305. Using this encoding, a trajectory in the phase space
R
3(x, y, z) is mapped into a symbolic sequence [Letellier et al, 1995].
The boundary crisis occurs when the symbolic dynamics is complete,

that is, all symbolic sequences built with the two symbols “1” and “2” are
realized as unstable periodic orbits. This always arises when the end of one
of the monotonic branches touches the first bisecting line. In the present
case (Fig. 5) this is the increasing branch that touches the bisecting line.
The fact that a boundary crisis occurs exactly when the symbolic dynamics
is complete is a rather common feature since most of the quadratic minimal
systems investigated by [Malasoma & Letellier, 2010] exhibit such property.

The next step in the topological analysis is to extract the smallest unsta-
ble periodic orbits and to compute some linking numbers. A linking number
counts the number of times a periodic orbit turns around another one. It
can be counted in a regular plane projection by identifying orientated cross-
ings. A crossing is counted only when one orbit “crosses” the other in the
plane projection (self-crossings are ignored). Crossings are then orientated
according to the third coordinates (see [Letellier et al, 1995] for details). For
instance, orbits (2) and (21) exhibit four negative crossings (Fig. 6). The
corresponding linking number is thus

Lk (21, 2) =
1

2
[−4] = −2 . (13)
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This means that orbit (21) turns twice in the anti-clockwise direction around
orbit (2).

We computed linking numbers for few pairs of periodic-orbits and checked
that all of them were correctly predicted by the template shown in Fig. 7a).
The template exhibits a global negative π-twist (left part of the template
shown in Fig. 7a). As a consequence, the attractor is a non trivial suspen-
sion of a unimodal map (a trivial suspension would not present the global
π-twist). The odd branches is thus in the middle of the attractor and not
at its periphery. Due to that, it is said that the attractor is governed by
an inverted Horseshoe map [Gilmore, 1998]. The template proposed in Fig.
7a can be deformed under an isotopy (a continuous deformation without
any cutting) into a “standard” template according to [Tufillaro et al, 1992].
This standard representation allows us to describe the template in terms of
the following linking matrix:

Mij =

[

−1 −2

−2 −2

]

. (14)

Diagonal terms Mii provides the numbers of (local) π-twist of each stripe.
As shown in the standard template (Fig. 7b) there is therefore one negative
π-twist for the odd — red — stripe (associated with the decreasing branch of
the first-return map) and two negative π-twists for the even — green — strip
(corresponding to the increasing branch). Off-diagonal terms Mij (i 6= j)
means that stripe 1 crosses stripe 2 once in the negative way as observed
in the right part of the template shown in Fig. 7b. With this convention,
linking numbers can be algebraically predicted from the linking matrix (14)
and the orbital sequences [Le Sceller et al, 1994].

The second parameter value for which a topological analysis of the
chaotic attractor solution to system (1) is chosen at the crisis observed
around α = 0.25507. The chaotic attractor (Fig. 8) looks simpler than
the attractor (Fig. 2) previously characterized. In particular, the global π
twist is no longer seen.

The first-return map to the Poincaré section (11) confirms that this is no
longer an inverted Horseshoe since the increasing branch — associated with
an even number of π-twists — is now in the middle of the attractor (lower
x-value in Fig. 9, thus closer to the fixed point). This map has a “layered”
decreasing branch. The end of the upper branch is exactly at the same
ordinate (xn+1) as the differentiable maximum. This special characteristic
was sometimes encountered in few other systems, and always associated with
a crisis. This was for instance observed in a minimal system proposed by
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[van der Schrier & Maas, 2000]: in this case, a boundary crisis that ejects
the trajectory to infinity was observed [Malasoma & Letellier, 2010].

The symbolic dynamics is obviously not complete (the increasing branch
does not touch the bisecting line) but as soon as the upper decreasing branch
has an ordinate greater than the maximum, there is an abrupt creation of
a large number of periodic orbits. Indeed, by increasing α to 0.25515, the
increasing branch is nearly completed and a third (increasing) branch occurs
(Fig. 10), thus revealing the explosive character of the dynamics when the
end of the upper decreasing branch has an ordinate that becomes greater
than the ordinate of the maximum (Fig. 10).

Periodic orbits were extracted for α = 0.25507. Linking numbers were
computed as shown in Fig. 11. All of the identified oriented crossings found
were negative. As expected after the first sight of the chaotic attractor (Fig.
8), the global negative π-twist is no longer observed and all of the computed
linking numbers were well predicted by the template proposed in Fig. 12.
This is now a trivial suspension of a unimodal map. The inner stripe —
close to the fixed point — has no local torsion and the outer stripe has a
negative π twist. The linking matrix is therefore as

Mij =

[

0 −1

−1 −1

]

. (15)

The cyan stripe associated with the increasing branch of the first-return map
is thus encoded with integer “0” and the decreasing red branch with integer
“1”. Stripe 1 of this template is topologically equivalent to stripe 1 of the
template proposed for α = 0.98 (Fig. 7b). In fact, this is the same stripe
in both cases. When the bifurcation parameter α is varied from 0.25507
to 0.98, periodic points in stripe 0 are progressively pruned while periodic
points in stripe 2 are created.

At intermediate value like α = 0.533, the three branches co-exist (Fig.
13) in addition with a fourth one encoded by 4. It can be shown in fact
that the corresponding stripe present a local torsion equal to four negative
π-twists. The chaotic attractor can be therefore split into four stripes whose
topology can be synthetized by a template described by the linking matrix

Mij =








0 −1 −1 −1

−1 −1 −2 −2

−1 −2 −2 −3

−1 −2 −3 −3








. (16)

9



This matrix matches with those proposed for the Rössler attractor of the
funnel type [Letellier et al, 1995]. From the topological point of view, the
dynamics produced by the memristive circuit is equivalent to those produced
by the Rössler system.

The limitation of the dynamics could be explained by the time dependent
component of the flow curvature manifold φt as we did for few Rössler-like
systems in [Ginoux & Letellier, 2009]. From component φt as shown in Fig.
15, it is obvious that the trajectory crosses component φt in the neighbor-
hood of the fixed point. Such a feature was always remarked in different
systems where some significant pruning was also noted. This means that,
for instance, when four branches are observed in the first-return map (Fig.
13), all possible symbolic sequences are not realized as unstable periodic
orbits. Since crossings of the trajectory occurs in the neighborhood of the
fixed point and since this is the increasing branch encoded by 0 that is the
closes to the fixed point, symbolic sequences with many consecutive “0”
are forbidden. Consequently, the symoblic sequences containing these sub-
sequences are no longer realized as periodic orbits. This is clearly seen in
the four branches map (Fig. 13) where the increasing branch “0” is almost
removed.

4 Conclusion

An electronic circuit with a memristor provides one of the simplest physical
realization of a dynamical system producing chaos. The governing equations
are not minimal from the algebraic point of view but this ensures in fact
the robustness of the chaotic behaviour so produced. Indeed, it is very often
observed that minimal systems have chaotic solutions for very tiny domain of
their parameter space and the attraction basin is quite limited. The simplest
memristive circuit is therefore a very good candidate for belonging to the
class of benchmark physical realizations for producing chaotic behaviors.

In this paper we investigate the topological structure of phase portraits
solution to this simple memristive circuit. It was shown that the chaotic
attractors produced by this circuit were of the Rössler-like type, that is,
they are topologically equivalent to the attractors produced by the well-
known Rössler system which results from a simplification of an oscillating
abstract chemical reaction. The dynamical regimes solution to the simplest
electronic circuit cannot be as developed in the Rössler system, due to a
strong limitation of the development of the dynamics induced by the time
dependent component of the flow curvature manifold. This leads to an
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inverse period-doubling cascade that constrains the behavior to be a limit-
cycle for large value of the bifurcation parameter.
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(a) Time-independent component φc

(b) Time-dependent component φt

Figure 3: The two components of the flow curvature manifold φ for the
memristive circuit with parameter values: α = 0.98.
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Figure 4: Bifurcation diagram versus parameter α of the minimal electronic
circuit with a memristor.
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Figure 5: First-return map to a Poincaré section of the chaotic attractor
solution to the minimal electronic circuit with a memristor. Parameter
value: α = 0.98.
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Figure 6: Pair of unstable periodic orbits extracted from the chaotic attrac-
tor solution to the simplest electronic circuit with a memristor. Parameter
value: α = 0.98. The linking number Lk(2,21)=-2 according to the four
negative crossings identified in the x-y plane projection.
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(a) Direct template (b) Standard template

Figure 7: Template for the chaotic attractor solution to the minimal elec-
tronic circuit with a memristor. Parameter value: α = 0.98. The global
negative π-twist (a) is send to the right part (b) under an isotopy.
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Figure 8: Chaotic attractor solution to the minimal electronic circuit with
a memristor. Parameter value: α = 0.25507.
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Figure 9: First-return map to a Poincaré section of the chaotic attractor
solution to the minimal electronic circuit with a memristor. Parameter
value: α = 0.25507.
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Figure 10: First-return map to a Poincaré section of the chaotic attractor
solution to the minimal electronic circuit with a memristor. Parameter
value: α = 0.25515.
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Figure 11: Pair of unstable periodic orbits extracted from the chaotic attrac-
tor solution to the minimal electronic circuit with a memristor. Parameter
value: α = 0.25507. The linking number Lk(1,10)=-1 according to the two
negative crossings identified in the x-y plane projection.

Figure 12: Template for the chaotic attractor solution to the minimal elec-
tronic circuit with a memristor. Parameter value: α = 0.25507.
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Figure 13: Three-modal first-return map to a Poincaré section of the chaotic
attractor solution to system (1). Parameter values: α = 0.533.
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Figure 14: Chaotic attractor solution to system (1). Parameter values:
α = 0.533.
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Figure 15: Time dependent component φt of the flow curvature manifold for
the memristive circuit. Parameter value: α = 0.533.
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