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Introduction

Many systems in biology, neurophysiology, chemistry, meteorology, electronics exhibit several time scales in their evolution. Such systems, todays called singularly perturbed dynamical systems, have been modeled by a system of differential equations (1) having a small parameter multiplying one or several components of its vector field. Since the works of Andronov & Chaikin [1937] and [START_REF] Tikhonov | On the dependence of solutions of differential equations on a small parameter[END_REF], the singular perturbation method 1 has been the subject of many research, among which we will quote those of [START_REF] Argémi | Approche qualitative d'un problème de perturbations singulières dans R 4[END_REF] who carefully studied the slow motion. According to [START_REF] Tikhonov | On the dependence of solutions of differential equations on a small parameter[END_REF], [START_REF] Takens | Constrained equations, a study of implicit differential equations and their discontinuous solutions[END_REF], [START_REF] Jones | Geometric Singular Perturbation Theory in Dynamical Systems[END_REF] and [START_REF] Kaper | An Introduction to Geometric Methods and Dynamical Systems Theory for Singular Perturbation Problems[END_REF] singularly perturbed systems may be defined as:

(1)

x ′ = ε f ( x, y, ε) , y ′ = g ( x, y, ε), where x ∈ R p , y ∈ R m , ε ∈ R + , and the prime denotes differentiation with respect to the independent variable t. The functions f and g are assumed to be C ∞ functions 2 of x, y and ε in U × I, where U is an open subset of R p × R m and I is an open interval containing ε = 0.

In the case when 0 < ε ≪ 1, i.e., is a small positive number, the variable x is called slow variable, and y is called fast variable. Using Landau's notation: O ε k represents a function f of u and ε such that f (u, ε)/ε k is bounded for positive ε going to zero, uniformly for u in the given domain.

In general it is used to consider that x evolves at an O (ε) rate; while y evolves at an O (1) slow rate. Reformulating system (1) in terms of the rescaled variable τ = εt, we obtain (2) ˙ x = f ( x, y, ε) , ε ˙ y = g ( x, y, ε) .

The dot represents the derivative with respect to the new independent variable τ .

The independent variables t and τ are referred to the fast and slow times, respectively, and (1) and ( 2) are called the fast and slow systems, respectively. These systems are equivalent whenever ε = 0, and they are labeled singular perturbation problems when 0 < ε ≪ 1. The label "singular" stems in part from the discontinuous limiting behavior in system (1) as ε → 0.

In such case system (2) leads to a differential-algebraic system called reduced slow system whose dimension decreases from p + m = n to m. Then, the slow variable x ∈ R p partially evolves in the submanifold M 0 called the critical manifold 3 and defined by

(3) M 0 := ( x, y) : g ( x, y, 0) = 0 .

When D x f is invertible, thanks to the Implicit Function Theorem, M 0 is given by the graph of a C ∞ function x = G 0 ( y) for y ∈ D, where D ⊆ R p is a compact, simply connected domain and the boundary of D is an (p -1)-dimensional C ∞ submanifold 4 .

According to [START_REF] Fenichel | Persistence and smoothness of invariant manifolds for flows[END_REF][START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF] theory if 0 < ε ≪ 1 is sufficiently small, then there exists a function G ( y, ε) defined on D such that the manifold (4)

M ε := ( x, y) : x = G ( y, ε) ,
is locally invariant under the flow of system (1). Moreover, there exist perturbed local stable (or attracting) M a and unstable (or repelling) M r branches of the slow invariant manifold M ε . Thus, normal hyperbolicity of M ε is lost via a saddlenode bifurcation of the reduced slow system (2). Then, it gives rise to solutions of "canard" type that have been discovered by a group of French mathematicians [START_REF] Benoît | Chasse au canard[END_REF]) in the beginning of the eighties while they were studying relaxation oscillations in the classical equation of [START_REF] Van Der Pol | On relaxation-oscillations[END_REF] (with a constant forcing term). They observed, within a small range of the control parameter, a fast transition for the amplitude of the limit cycle varying suddenly from small amplitude to a large amplitude. Due to the fact that the shape of the limit cycle in the phase plane looks as a duck they called it "canard cycle". So a "canard" is a solution of a singularly perturbed dynamical system following the attracting branch M a of the slow invariant manifold, passing near a bifurcation point located on the fold of the critical manifold, and then following the repelling branch M r of the slow invariant manifold.

3 It corresponds to the approximation of the slow invariant manifold, with an error of O(ε). 4 The set D is overflowing invariant with respect to (2) when ε = 0. See [START_REF] Kaper | An Introduction to Geometric Methods and Dynamical Systems Theory for Singular Perturbation Problems[END_REF] and [START_REF] Jones | Geometric Singular Perturbation Theory in Dynamical Systems[END_REF].

Remark 1. Geometrically a maximal canard corresponds to the intersection of the attracting and repelling branches M a ∩ M r of the slow manifold in the vicinity of a non-hyperbolic point. Canards are a special class of solution of singularly perturbed dynamical systems for which normal hyperbolicity is lost. Canards in singularly perturbed systems with two or more slow variables ( x ∈ R p , p 2 ) and one fast variable ( y ∈ R m , m = 1) are robust, since maximal canards generically persist under small parameter changes5 .

In dimension three, [START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF] has stated a theorem for the existence of canards (recalled in Sec. 3) in which he proved that if the "reduced vector field" has a pseudo-singular point of saddle type (whose definitions are recalled in Sec. 2), then the "full system" exhibits a canard solution which evolves from the attractive part of the slow manifold towards its repelling part. So, the first aim of this work (presented in Sec. 4) is to extend this theorem to dimension four.

Then, it is also stated that such condition for the generic existence of the peculiar solutions, called "canards", in singularly perturbed dynamical systems of dimension three and four with only one fast variable can be found according to the Flow Curvature Method developed by [START_REF] Ginoux | Slow Invariant Manifolds as Curvature of the Flow of Dynamical Systems[END_REF] and [START_REF] Ginoux | Differential Geometry applied to Dynamical Systems[END_REF] and recalled in Sec. 5.

Thus, we will establish that Benoît's condition for the generic existence of "canards" solutions in such systems is also given by the existence of a pseudo-singular point of saddle type for the flow curvature manifold of the "reduced systems". This result, presented in Sec. 5, is based on the use of the so-called "Second derivative test" involving the Hessian of hypersurfaces. Applications to Chua's cubic model of dimension three and four enables to state existence of "canards" solutions in such systems.

Definitions

Let's consider a n-dimensional singularly perturbed dynamical system which may be written as:

(5)

˙ x = f ( x, y, ε) , ε ˙ y = g ( x, y, ε) , where x = (x 1 , . . . , x p ) t ∈ R p , y = (y 1 , . . . , y m ) t ∈ R m , f = (f 1 , . . . , f p ) t , g = (g 1 , .
. . , g m ) t , ε ∈ R + such that 0 < ε << 1, and the dot denotes differentiation with respect to the independent variable t. The functions f i and g i are assumed to be C 2 functions of x i and y j (with 1 < i < p and 1 < j < m).

In order to tackle this problem many analytical approaches such as asymptotic expansions and matching methods were developed (see Zvonkin & Schubin [1984] and [START_REF] Rossetto | Trajectoires lentes de systèmes dynamiques lents-rapides[END_REF]). According to O'Malley [1991] the asymptotic expansion is expected to diverge. Then, [START_REF] Benoît | Les canards de R 3[END_REF][START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF] used non-standard analysis to study canards in R 3 .

In the middle of the seventies, a geometric approach developed by [START_REF] Takens | Constrained equations, a study of implicit differential equations and their discontinuous solutions[END_REF] consisted in considering that the following system:

(6) ˙ x = f ( x, y, ε) , 0 = g ( x, y, ε) ,
which has been called constrained system corresponds to the singular approximation of system (5) and where g ( x, y, ε) = 0 defines the so-called slow manifold S 0 or critical manifold of the singular approximation, i.e. the zero order approximation in ε of the slow manifold.

Three-dimensional singularly perturbed systems

In dimension greater than two, it is important to distinguish cases depending on fast dimensions m and slow dimensions p. For three-dimensional singularly perturbed dynamical systems we have two cases: (p, m) = (2, 1) and (p, m) = (1, 2). In this work we will only focus on the former case which has been subject of extensive research led by Eric [START_REF] Benoît | Chasse au canard[END_REF][START_REF] Benoît | Les canards de R 3[END_REF][START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF][START_REF] Benoît | Perturbation singulière en dimension trois : Canards en un point pseudosingulier noeud[END_REF] and summed up below. So, in the case (p, m) = (2, 1) three-dimensional singularly perturbed dynamical systems (5) may be defined as:

(7) ẋ1 = f 1 (x 1 , x 2 , y 1 ) , ẋ2 = f 2 (x 1 , x 2 , y 1 ) , ε ẏ1 = g 1 (x 1 , x 2 , y 1 ) , where x = (x 1 , x 2 ) t ∈ R 2 , y = (y 1 ) ∈ R 1 , 0 < ε << 1
and the functions f i and g 1 are assumed to be C 2 functions of (x 1 , x 2 , y 1 ).

3.1. Fold, cusp and pseudo-singular points.

Let's recall the following definitions

Definition 2.

The location of the points where ∂ y1 g 1 (x 1 , x 2 , y 1 ) = p (x 1 , x 2 , y 1 ) = 0 and g 1 (x 1 , x 2 , y 1 ) = 0 is called the fold.

Following to [START_REF] Argémi | Approche qualitative d'un problème de perturbations singulières dans R 4[END_REF], the cofold is defined as the projection, if it exists, of the fold line onto S 0 along the y 1 -direction.

According to [START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF] system (7) may have various types of singularities.

Definition 3.

-The fold is the set of points where the slow manifold is tangent to the y 1direction. -The cusp is the set of points where the fold is tangent to the y 1 -direction.

-The stationary points are not on the fold according to genericity assumptions.

-The pseudo-singular points are defined as the location of the points where

(8) g 1 (x 1 , x 2 , y 1 ) = 0, ∂g 1 (x 1 , x 2 , y 1 ) ∂y 1 = 0, ∂g 1 (x 1 , x 2 , y 1 ) ∂x 1 f 1 (x 1 , x 2 , y 1 ) + ∂g 1 (x 1 , x 2 , y 1 ) ∂x 2 f 2 (x 1 , x 2 , y 1 ) = 0.
The concept of pseudo-singular points has been originally introduced by [START_REF] Takens | Constrained equations, a study of implicit differential equations and their discontinuous solutions[END_REF] and [START_REF] Argémi | Approche qualitative d'un problème de perturbations singulières dans R 4[END_REF]. Again, according to [START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF]:

-the first condition indicates that the point belongs to the slow manifold, -the second condition means that the point is on the fold, -the third condition shows that the projection of the vector field on the (x 1 , x 2 )-plane is tangent to the fold.

Reduced vector field.

If x 1 can be expressed as an implicit function of x 2 and y 1 defined by g 1 (x 1 , x 2 , y 1 ) = 0, the "reduced normalized vector field" reads:

(9) ẋ2 = -f 2 (x 1 , x 2 , y 1 ) ∂g 1 ∂y 1 (x 1 , x 2 , y 1 ) , ẏ1 = ∂g 1 ∂x 1 f 1 (x 1 , x 2 , y 1 ) + ∂g 1 ∂x 2 f 2 (x 1 , x 2 , y 1 ) .
3.3. Reduced vector field method.

By using the classification of fixed points of two-dimensional dynamical systems based on the sign of the eigenvalues of the functional Jacobian matrix, [START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF] characterized the nature of the pseudo-singular point M of the "reduced vector field" (9). Let's note ∆ and T respectively the determinant and the trace of the functional Jacobian matrix associated with system (9). The pseudo-singular point M is:

• a saddle if and only if ∆ < T 2 4 and ∆ < 0.

• a node if and only if 0 < ∆ < T 2 4 .

• a focus if and only if

T 2 4 < ∆.
Then, Benoît [1983, p. 171] states the following theorem for the existence of canards: Theorem 4.

If the "reduced vector field" (9) has a pseudo-singular point of saddle type, then system (7) exhibits a canard solution which evolves from the attractive part of the slow manifold towards its repelling part.

Proof. See Benoît [1983, p. 171].

3.4. Chua's system.

Let's consider the system introduced by [START_REF] Itoh | Canards and Chaos in Nonlinear Systems[END_REF]:

(10) ẋ = z -y, ẏ = α(x + y), ε ż = -x -k(z),
where k(z) = z 3 /3 -z and α is a constant.

According to Eq. ( 9) the reduced vector field reads:

(11) ẏ = αk ′ (z)(-k(z) + y) = α(z 2 -1) - z 3 3 + z + y , ż = y -z.
By Def. 3 the singularly perturbed dynamical system (10) admits M (±2/3, ±1, ±1) as pseudo-singular points. The functional Jacobian matrix of reduced vector field (11) evaluated at M reads:

(12) 0 10α 3 1 -1 from which we deduce that: ∆ = -10α 3 and T = -1. So, we have:

(13) T 2 4 -∆ = 1 12 (3 + 40α) .
Thus, according to Th. 4, if 3 + 40α > 0 and α > 0, then M is a pseudo-singular saddle point and so system (10) exhibits canards solution. [START_REF] Itoh | Canards and Chaos in Nonlinear Systems[END_REF], p. 2791] have also noticed that if α > 0, system (10) has a pseudo-singular saddle point.

Nevertheless, the original system (10) admits, except the origin, two fixed points

I(± √ 6, ∓ √ 6, ∓ √ 6
). The functional Jacobian matrix of the "normalized slow dynamics" evaluated at I reads:

(14)   0 -5 5 5α 5α 0 0 1 -1  
from which we deduce that there are three eigenvalues:

λ 1 = 0 ; λ 2,3 = 1 2 -1 + 5α ± 1 -90α + 25α 2
Then, if these eigenvalues are complex conjugated we have:

2Re (λ 2,3 ) = -1 + 5α
But, according to the theorem of [START_REF] Lyapounov | The general problem of the stability of motion[END_REF], fixed points I are non stable equilibria provided that -1 + 5α > 0.

Thus, "canards" solutions are observed in Chua's system (10) for α > 1/5 as exemplified in Fig. 1 in which such solutions passing through the pseudo-singular saddle point M (2/3, 1, 1) have been plotted for parameter set (α = 0.2571389636, ε = 1/20) in the (x, y, z) phase space. In Fig. 2 "canards solutions" winding around the pseudo-singular saddle point M (2/3, 1, 1) have been plotted for various values of parameter α in the (z, x) phase plane for ε = 1/20. Remark 5. Let's notice that we would have obtained the same kind of figures with the pseudo-singular saddle point M (-2/3, -1, -1) due to the symmetry of the system (10).

Four-dimensional singularly perturbed systems

For four-dimensional singularly perturbed dynamical systems we have three cases: (p, m) = (3, 1), (p, m) = (2, 2) and (p, m) = (1, 3). In this work we will only focus on the former case which will be subject to a special analysis allowing to extend Benoît's Theorem 4 to dimension four. So, in the case: (p, m) = (3, 1) four-dimensional singularly perturbed dynamical systems may be defined as:

(15) ẋ1 = f 1 (x 1 , x 2 , x 3 , y 1 ) , ẋ2 = f 2 (x 1 , x 2 , x 3 , y 1 ) , ẋ3 = f 3 (x 1 , x 2 , x 3 , y 1 ) , ε ẏ1 = g 1 (x 1 , x 2 , x 3 , y 1 ) , where x = (x 1 , x 2 , x 3 ) t ∈ R 3 , y = (y 1 ) ∈ R 1 , 0 < ε << 1,
and the functions f i and g 1 are assumed to be C 2 functions of (x 1 , x 2 , x 3 , y 1 ).

The definitions of fold, cusp and pseudo-singular fixed points may be extended to dimension four. 4.1. Fold, cusp and pseudo-singular points.

Let's propose the following definitions Definition 6.

The location of the points where ∂ y1 g 1 (x 1 , x 2 , x 3 , y 1 ) = p (x 1 , x 2 , x 3 , y 1 ) = 0 and g 1 (x 1 , x 2 , x 3 , y 1 ) = 0 is called the fold.

The cofold is still defined as the projection, if it exists, of the fold line onto S 0 along the y 1 -direction.

As previously system (15) may have various types of singularities.

Definition 7.

-The fold is the set of points where the slow manifold is tangent to the y 1direction. -The cusp is the set of points where the fold is tangent to the y 1 -direction.

-The stationary points are not on the fold according to genericity assumptions.

-The pseudo-singular points are defined as the location of the points where (16)

g 1 (x 1 , x 2 , x 3 , y 1 ) = 0, ∂g 1 (x 1 , x 2 , x 3 , y 1 ) ∂y 1 = 0, ∂g 1 ∂x 1 f 1 + ∂g 1 ∂x 2 f 2 + ∂g 1 ∂x 3 f 3 = 0.
Again, following [START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF]:

-the first condition indicates that the point belongs to the slow manifold, -the second condition means that the point is on the fold, -the third condition shows that the projection of the vector field on the (x 1 , x 2 )-plane is tangent to the fold.

Reduced vector field.

If x 1 can be expressed as an implicit function of x 2 , x 3 and y 1 defined by g 1 (x 1 , x 2 , x 3 , y 1 ) = 0, the "reduced normalized vector field" reads:

(17) ẋ2 = -f 2 (x 1 , x 2 , x 3 , y 1 ) ∂g 1 ∂y 1 (x 1 , x 2 , x 3 , y 1 ) , ẋ3 = -f 3 (x 1 , x 2 , x 3 , y 1 ) ∂g 1 ∂y 1 (x 1 , x 2 , x 3 , y 1 ) , ẏ1 = ∂g 1 ∂x 1 f 1 + ∂g 1 ∂x 2 f 2 + ∂g 1 ∂x 3 f 3 .
4.3. Reduced vector field method.

By using the classification of fixed points of three-dimensional dynamical systems based on the sign of the eigenvalues, we can characterize the nature of the pseudosingular point M of the "reduced vector field" (16). Let's note ∆ and T respectively the determinant and the trace of the functional Jacobian matrix associated with system (16) and S = 3 i=1 J ii where J ii is the minor obtained by removing the i th row and the i th column in the functional Jacobian matrix. The discriminant of the characteristic polynomial of the functional Jacobian matrix reads:

R = 4P 3 + 27Q 2 with P = S - T 2 3 and Q = - 2T 3 27 + T S 3 -∆
Then, the pseudo-singular point M :

• a saddle if and only if R < 0, i.e. S < T 2 3 and ∆ < 0.

• a node if and only if R < 0 and ∆ > 0.

• a focus if and only if R > 0. Thus, we can extend Benoît's Theorem 4 to dimension four. Theorem 8. If the "reduced vector field" (17) has a pseudo-singular point of saddle type6 , then system (15) exhibits a canard solution which evolves from the attractive part of the slow manifold towards its repelling part.

Proof. Proof is based on the same arguments as previously.

Chua's system.

Let's consider the system introduced by [START_REF] Thamilmaran | Hyperchaos in a modified canonical Chua's circuit[END_REF]:

(18) ẋ = β 1 (z -x -u) , ẏ = β 2 z, ż = -α 2 z -y -x, ε u = x -k(u),
where

k(u) = c 1 u 3 + c 2 u, ε = 1/α 1 , α 2 , c 1,2 and β 1,2 are constant.
According to Eq. ( 17) the reduced vector field reads:

(19) ẏ = -β 2 -3c 1 u 2 -c 2 z, ż = --3c 1 u 2 -c 2 -y -c 1 u 3 -c 2 u -α 2 z , u = β 1 -u + z -c 1 u 3 -c 2 u .
By Def. 7 the singularly perturbed dynamical system (18) admits:

M (0, ± 1 3 -c 2 3c 1 (3 + 2c 2 ), ± -c 2 3c 1 )
as pseudo-singular points. From the functional Jacobian matrix of system ( 19) evaluated at M we compute the characteristic polynomial from which we deduce that:

R = - 4 27 β 3 1 c 2 2 (3α 2 + 2c 2 (1 + α 2 )) 2 (8c 2 (3α 2 + 2c 2 (1 + α 2 )) + 3β 1 ).
In the parameter set used in system (18) β 1 > 0 and c 2 < 0.

So, R < 0 provided that:

8c 2 (3α 2 + 2c 2 (1 + α 2 )) + 3β 1 < 0 ⇔ α 2 < -16c 2 2 -3β 1 8c 2 (3 + 2c 2 )
From the functional Jacobian matrix we also deduce that:

∆ = 0
This implies that one of the three (real) eigenvalues (say λ 1 ) is null. So, in order to have a pseudo-singular saddle point the two remaining eigenvalues (say λ 2 and λ 3 ) must be of different sign.

But, since S = λ 1 λ 2 + λ 1 λ 3 + λ 2 λ 3 it means that S = λ 2 λ 3 < 0. Thus, we may have

S = λ 2 λ 3 = - 2 3 β 1 c 2 (3α 2 + 2c 2 (1 + α 2 )) < 0 ⇔ α 2 < -2c 2 3 + 2c 2
Combining the two required conditions, i.e., R < 0 and ∆ < 0 (S < 0 in this case) we find that:

α 2 < -2c 2 3 + 2c 2 < -16c 2 2 -3β 1 8c 2 (3 + 2c 2 ) = -2c 2 3 + 2c 2 + -3β 1 8c 2 (3 + 2c 2 )
.

So, according to Th. 8, if α 2 < -2c 2 /(3 + 2c 2 ), then M is a pseudo-singular saddle point and so system (18) exhibits canards solution.

Thus, "canards" solutions are observed in Chua's system (18) for α 2 < -2c 2 /(3+ 2c 2 ) as exemplified in Fig. 3 in which such solutions passing through the pseudosingular saddle point M have been plotted for parameter set ε = 1/α 1 = 1/10.1428 = 0.098592 ; α 2 = 0.9 ; β 1 = 0.121 ; β 2 = 0.0047 ; c 1 = 0.393781 ; c 2 = -0.72357 in the (u, z, x) phase space. 

Flow curvature method

A new approach called Flow Curvature Method based on the use of Differential Geometry properties of curvatures has been recently developed by [START_REF] Ginoux | Slow Invariant Manifolds as Curvature of the Flow of Dynamical Systems[END_REF] and [START_REF] Ginoux | Differential Geometry applied to Dynamical Systems[END_REF]. According to this method, the highest curvature of the flow, i.e. the (n -1) th curvature of trajectory curve integral of n-dimensional dynamical system defines a manifold associated with this system and called flow curvature manifold.

Definition 9.

The location of the points where the (n -1) th curvature of the flow, i.e. the curvature of the trajectory curve X, integral of any n-dimensional singularly perturbed dynamical system (5) vanishes, defines a (n -1)-dimensional flow curvature manifold the equation of which is:

(20) φ( X) = ˙ X • ( ¨ X ∧ ... X ∧ . . . ∧ (n) X ) = det( ˙ X, ¨ X, ... X, . . . , (n) 
X ) = 0 where (n)

X represents the time derivatives up to order n of X = ( x, y) t .

5.1. Three-dimensional singularly perturbed systems.

According to the Flow Curvature Method the flow curvature manifold of the reduced vector field (9) is defined by: ( 21)

φ( X) = det( ˙ X, ¨ X) = 0
where X = (x 2 , y 1 ) t . We suppose that the flow curvature manifold φ(x 2 , y 1 ) admits at M (x * 2 , y * 1 ) an extremum such that:

∂ x2 φ = ∂ y1 φ = 0.
The Hessian matrix of the manifold φ(x 2 , y 1 ) is defined, provided that all the second partial derivatives of φ exist, by

(22) H φ(x2,y1) =      ∂ 2 φ ∂x 2 2 ∂ 2 φ ∂x 2 ∂y 1 ∂ 2 φ ∂y 1 ∂x 2 ∂ 2 φ ∂y 2 1      .
Then, according to the so-called Second Derivative Test (see for example [START_REF] Thomas | Maxima, Minima, and Saddle Points, §12.8 in Calculus and Analytic Geometry[END_REF]) and by noticing ( 23)

D 1 = ∂ 2 φ ∂x 2 2 , D 2 = ∂ 2 φ ∂x 2 2 ∂ 2 φ ∂x 2 ∂y 1 ∂ 2 φ ∂y 1 ∂x 2 ∂ 2 φ ∂y 2 1 if D 2 = 0, the flow curvature manifold (21) admits M (x * 2 , y * 1 ) as a • local minimum, if and only if (D 1 , D 2 ) = (+, +),
• local maximum, if and only if (D 1 , D 2 ) = (-, +), and • saddle-point, if and only if D 2 < 0.

Thus, we have the following proposition:

Proposition 10.

If the flow curvature manifold of the "reduced vector field" (9) admits a pseudosingular point of saddle-type, then system (7) exhibits a canard solution which evolves from the attractive part of the slow manifold towards its repelling part.

Proof. According to the theorem of Hartman-Grobman [1964] the flow of any dynamical system ( 9) is locally topologically conjugated to the flow of the linearized system in the vicinity of fixed points. So, let's consider the linearized system in the basis of the eigenvectors:

ẋ1 = λ 1 x 1 , ẋ2 = λ 2 x 2 .
where λ 1,2 are the eigenvalues of the functional Jacobian matrix. The flow curvature manifold (21) associated with this linearized system reads:

φ( X) = det( ˙ X, ¨ X) = x 1 x 2 λ 1 λ 2 (λ 2 -λ 1 )
Then, it's easy to check that the determinant D 2 of the Hessian may be written as:

D 2 = -∆ 2 T 2 -4∆
from which we deduce that if D 2 < 0 then M is a saddle-point provided that T = λ 1 + λ 2 and ∆ = λ 1 λ 2 are not null.

Remark 11. This idea corresponds to topographic system introduced by [START_REF] Poincaré | Sur les courbes définies par une équation différentielle[END_REF][START_REF] Poincaré | Sur les courbes définies par une équation différentielle[END_REF] in his memoirs entitled: "Sur les courbes définies par une équation différentielle". Topographic system consists in using level set such as f (x 1 , x 2 ) = constant surrounding fixed points in order to define their nature (node, saddle, foci) and their stability. Moreover, Prop. 10 leads to the same kind of result as that obtained by [START_REF] Szmolyan | Canards in R 3[END_REF] but without needing to make a change of variables on system (7) other than that proposed by [START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF][START_REF] Benoît | Perturbation singulière en dimension trois : Canards en un point pseudosingulier noeud[END_REF].

The Flow Curvature Method has been successfully used by the [START_REF] Ginoux | Flow Curvature Method applied to Canard Explosion[END_REF] for computing the bifurcation parameter value leading to a canard explosion in dimension two already obtained according to the so-called Geometric Singular Perturbation Method.

Chua's system.

Let's consider again the system (10) of [START_REF] Itoh | Canards and Chaos in Nonlinear Systems[END_REF] ẋ = zy,

ẏ = α(x + y), ε ż = -x -k(z),
where k(z) = z 3 /3 -z and α is a constant. The reduced vector field (11):

ẏ = αk ′ (z)(-k(z) + y) = α(z 2 -1) - z 3 3 + z + y , ż = y -z.
The flow curvature manifold (21) associated with this reduced vector field reads:

φ(y, z) = α 9 [-3(y -z)(6y 2 z + 4z 3 (-2 + z 2 ) + y(-6 + 9z 2 -5z 4 ))
+ z(-6 + z 2 )(-1 + z 2 ) 2 (-3y -3z + z 3 )α] = 0. Proposition 10 enables to state that the determinant of the Hessian evaluated at (y * , z * ) = (±1, ±1) becomes

D 2 = - 100 27 α 2 (3 + 40α),
from which one deduces that if 3 + 40α > 0 then M is a pseudo-singular saddle point and so systems (10) exhibits a canard solution. Thus, we find Benoît's result according to the Flow Curvature Method.

Four-dimensional singularly perturbed systems.

According to the Flow Curvature Method the flow curvature manifold of the reduced vector field (17) is defined by: ( 24)

φ( X) = det( ˙ X, ¨ X, ... X) = 0
where X = (x 2 , x 3 , y 1 ) t . We suppose that the flow curvature manifold φ(x 2 , x 3 , y 1 ) admits at M (x * 2 , x * 3 , y * 1 ) an extremum such that:

∂ x2 φ = ∂ x3 φ = ∂ y1 φ = 0.
The Hessian matrix of the manifold φ(x 2 , x 3 , y 1 ) is defined, provided that all the second partial derivatives of φ exist, by

(25) H φ(x2,x3,y1) = ∂ 2 φ ∂x 2 2 ∂ 2 φ ∂x 2 ∂x 3 ∂ 2 φ ∂x 2 ∂y 1 ∂ 2 φ ∂x 3 ∂x 2 ∂ 2 φ ∂x 2 3 ∂ 2 φ ∂x 3 ∂y 1 ∂ 2 φ ∂y 1 ∂x 2 ∂ 2 φ ∂y 1 ∂x 3 ∂ 2 φ ∂y 2 1 .
Then, according to the so-called Second Derivative Test and while noticing D 1 the determinant of the upper left 1 × 1 submatrix of H φ , D 2 the determinant of the 2 × 2 matrix of H φ defined as:

(26) D 1 = ∂ 2 φ ∂x 2 2 , D 2 = ∂ 2 φ ∂x 2 2 ∂ 2 φ ∂x 2 ∂x 3 ∂ 2 φ ∂x 3 ∂x 2 ∂ 2 φ ∂x 2 3
, by D 3 the determinant of the 3 × 3 matrix of H φ defined as:

(27) D 3 = ∂ 2 φ ∂x 2 2 ∂ 2 φ ∂x 2 ∂x 3 ∂ 2 φ ∂x 2 ∂y 1 ∂ 2 φ ∂x 3 ∂x 2 ∂ 2 φ ∂x 2 3 ∂ 2 φ ∂x 3 ∂y 1 ∂ 2 φ ∂y 1 ∂x 2 ∂ 2 φ ∂y 1 ∂x 3 ∂ 2 φ ∂y 2 1 , if D 3 = 0, the flow curvature manifold (24) admits M (x * 2 , x * 3 , y * 1 ) as a • local minimum, if and only if (D 1 , D 2 , D 3 ) = (+, +, +) • local maximum, if and only if (D 1 , D 2 , D 3 ) = (-, +, -) • saddle-point, in all other cases.
So, we have the following proposition.

Proposition 12.

If the flow curvature manifold of the "reduced vector field" (17) admits a pseudosingular saddle-point, then system (15) exhibits a canard solution which evolves from the attractive part of the slow manifold towards its repelling part.

Proof. According to Hartman-Grobman's Theorem [1964] the flow of any dynamical system ( 17) is locally topologically conjugated to the flow of the linearized system in the vicinity of fixed points. So, let's consider the linearized system in the basis of the eigenvectors:

ẋ1 = λ 1 x 1 , ẋ2 = λ 2 x 2 , ẋ3 = λ 3 x 3 .
where λ 1,2,3 are the eigenvalues of the functional Jacobian matrix. The flow curvature manifold (24) associated with this linearized system reads:

φ( X) = det( ˙ X, ¨ X, ... X) = x 1 x 2 x 3 λ 1 λ 2 λ 3 (λ 2 -λ 1 )(λ 1 -λ 3 )(λ 2 -λ 3 ).
Then, it's easy to check that the determinant D 3 of the Hessian evaluated at M is such that 7 :

D 3 ∝ -2∆ 2 R,
from which we deduce that if D 3 is positive, i.e. R < 0, then M is a saddle-point provided that (D 1 , D 2 ) = (+, +). 5.4. Chua's system.

Let's consider again the system (18) of [START_REF] Thamilmaran | Hyperchaos in a modified canonical Chua's circuit[END_REF]:

ẋ = β 1 (z -x -u) , ẏ = β 2 z, ż = -α 2 z -y -x, ε u = x -k(u).
where k(u) = c 1 u 3 + c 2 u, ε = 1/α 1 , α 2 , c 1,2 and β 1,2 are constant.

The reduced vector field (17) reads:

ẏ = -β 2 -3c 1 u 2 -c 2 z, ż = --3c 1 u 2 -c 2 -y -c 1 u 3 -c 2 u -α 2 z , u = β 1 -u + z -c 1 u 3 -c 2 u .
The flow curvature manifold (24) associated with this reduced vector field reads8 : φ( X) = det( ˙ X, ¨ X, ... X) = φ(y, z, u) = 0.

By considering that the parameter set of this system is such that β 2 ≪ 1 and according to proposition 12 we find that:

D 1 ∝ c 2 (3α 2 + 2c 2 (1 + α 2 )) 2 , D 2 ∝ -(6c 2 α 2 + 4c 2 2 (1 + α 2 ) + β 1 ), D 3 ∝ (6c 2 α 2 + 4c 2 2 (1 + α 2 ))(6c 2 α 2 + 4c 2 2
(1 + α 2 ) + β 1 )P (α 2 , c 2 ), where P (α 2 , c 2 ) is a positive quadratic polynomial in α 2 . Since c 2 < 0, we deduce that M is a saddle point provided that α 2 < -2c 2 3 + 2c 2 .

Thus, we find Benoît's result according to the Flow Curvature Method.

7

The symbol ∝ means proportional to.

Discussion

In this work Benoît's theorem for the generic existence of "canards" solutions in singularly perturbed dynamical systems of dimension three with one fast variable has been extended to those of dimension four. Then, it has been established that this result can be found according to the Flow Curvature Method. The Hessian of the flow curvature manifold and the so-called Second Derivative Test enabled to characterize the nature of the pseudo-singular saddle points. Applications to Chua's cubic model of dimension three and four highlighted the existence of "canards" solutions in such systems. According to Prof. Eric Benoît (personal communications) the cases (p, m) = (3, 1) and (p, m) = (2, 2) for which his theorems [START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF][START_REF] Benoît | Perturbation singulière en dimension trois : Canards en un point pseudosingulier noeud[END_REF] for canard existence at pseudo-singular points of saddle-type still holds have been completely analyzed while the case p = 1 and m = 3 remains an open problem since the fold becomes a two-dimensional manifold and the pseudo-singular fixed points become pseudo-singular curves. In this case, fold and cusps are defined according to the theory of surfaces singularities and are strongly related to Thom's catastrophe theory [START_REF] Thom | Structural Stability and Morphogenesis: An Outline of a General Theory of Models Reading[END_REF]. Zvonkin, A. K. & Shubin, M. A. [1984] "Non-standard analysis and singular perturbations of ordinary differential equations," Uspekhi Mat. Nauk. 39 2 (236), 69-131.

Figure 1 .

 1 Figure 1. Canards solutions of Chua's system (10).

Figure 2 .

 2 Figure 2. Canards solutions of Chua's system (10).

Figure 3 .

 3 Figure 3. Canards solutions of Chua's system (18).

See Benoît [1983[START_REF] Benoît | Perturbation singulière en dimension trois : Canards en un point pseudosingulier noeud[END_REF],[START_REF] Szmolyan | Canards in R 3[END_REF] and[START_REF] Wechselberger | Existence and Bifurcation of Canards in R 3 in the case of a Folded Node[END_REF].

In dimension three, a saddle point is a singular point having its three eigenvalues real but "not all with the same sign". SeePoincaré [1886, p. 154].

This equation which is too large to be presented here is available at http://ginoux.univ-tln.fr.
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