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Abstract

A set of simulated experiments was analysed in order to compare the influence of the titration type and of data treatment methods on the
accuracy of metal complexing parameters determination for one- and two-ligand systems. The simulated data corresponded to those obtained
by anodic stripping voltammetry and were chosen to represent experiments in linear, logarithmic and decade titration modes. The values
of preset complexing parameters for one- and two-ligand systems were chosen to fit into the expected experimental range. Random noise
was added to the data prior to the treatment. Five different data treatments were applied: Chau–Buffle, Ružić–van den Berg and Scatchard
linearisations, and non-linear fitting and PROSECE optimisations.

The investigation has shown that even in the case of a one-ligand system, logarithmic and decade titrations are much better compared to the
linear ones. Linearisation methods are in many cases inferior to those using optimisation algorithms. Random noise has a significant influence
on the results of linearisation methods as well. For linearisation methods, in the case of a one-ligand system, high correlation has been found
for the confidence interval of the calculated parameters and the difference between the preset and the calculated values. This correlation is
proposed to be used as an estimation for the results quality in real experiments. PROSECE is by far superior to other methods in most of
the cases due to its flexible and powerful mathematical background. It is highly recommended as a tool for data treatment. Construction of
“contour-graphs” enables error prediction of the calculated complexing parameters. PROSECE is proposed as an orientation and valorisation
tool in real samples analyses.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In natural waters, speciation of trace metals is highly
linked to the presence of complexing groups, such as natural
organic matter[1–4]. The determination of their complex-
ing properties, according to a discrete model that provides
insight into the complex interactions by determining, e.g.
complexing capacities and stability constants (LiT, Ki), has
been the subject of many studies for over 30 years[5–7].

For this purpose, different methods of data treatment,
derived from voltammetric or potentiometric experiments

∗ Corresponding author. Tel.:+33-49-4142492; fax:+33-49-4142168.
E-mail address:cgarnier@univ-tln.fr (C. Garnier).

(anodic and cathodic stripping voltammetry: ASV-CSV,
ion selective electrode: ISE,. . . ), have been developed.
The Earlier the techniques were based on mathematical
data transformation[5,8–14]aiming to obtain linearisation.
Therefore, they are rather easy to apply, especially for a
one-metal—one-ligand system. Increase in the precision of
analytical techniques and their automation led to two-ligand
models. In that case, mathematical transformation of ex-
perimental data (Ružić and Scatchard transformations with
two ligands [8,10]), followed by partial linearisation of
these data, allows the calculation of complexing parameters
of ligands. These linearisation techniques are used in the
studies aiming to define complexing properties of natural
samples regarding trace metals such as Cd, Cu, Pb, etc.
[15–22]. However, taking into account the development
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of high-performance computing tools to define more com-
plex models which integrate various chemical interactions
[23–30], data treatment based on optimisation calculation
of the complexing parameters by fitting to experimental
data has been developed. Using all data points, arbitrari-
ness of dividing a curve into quasi-linear subsections was
eliminated[31]. These data treatments use either bulk data
or modified data according to the Ružić or Scatchard ap-
proaches[32,33]. Furthermore, they allow the determination
of more than two different groups of ligands[34], which
seems to be more useful than linearisation data treatments
in the complexing studies aimed to define behaviour of
ligands in natural waters.

Those studies are based on experimental data obtained
from sample titrations, i.e. metal additions, coupled with
ASV, CSV or ISE measurements[26,28,34–36]. The number
of standard additions, their repartition and covered concen-
tration range, which characterise these titrations, are gener-
ally quite arbitrary. However, for the analysis of multi-ligand
systems, these characteristics are certainly important to cor-
rectly determine the complexing parameters, especially since
they are dependent on the analytical technique used (i.e. its
detection limit, analytical window, etc.).

In the present work, we analyse the influence of metal
standard addition repartition (linear, decade and logarithmic)
on the results of simulated experimental data fitting. The
same simulated experimental data points will be treated with
the methods of Chau–Buffle[5,9], Scatchard[8], Ružíc–van
den Berg[10], non-linear fitting[32] and PROSECE[37].
The objective of the present work is to optimise experimen-
tal conditions to obtain the most reliable results. The work
has determined (i) the uncertainty of metal complexing ca-
pacity parameters calculated by each method, and (ii) which
method is the most rigorous for each simulatedLiT, Ki ex-
ample.

2. Simulation of “experimental” data points

Simulation of experimental data points, i.e. their numer-
ical generation, is useful for the comparative analysis that
will be provided in this work, where we focus on a sim-
ple case of a 1:1 metal–ligand system and analyse the cases
of one- and two-ligand complexes with a single metal. To
calculate each point according to the design of experimen-
tal standard additions, the program MINEQL[38] is used.
It is not a trivial calculation, as given by Pižeta and Bran-
ica [32] to find the exact-metal free concentration from the
metal added, when the number of ligands is larger than 1.

The concentration ranges and the number of additions of
titrated metal were determined as a function of the anal-
ysed ligands. The range limits were based on the analyti-
cal window of common electrochemical techniques (ASV
or CSV) used when measuring metal complexing properties
of natural samples. It has been stated in the literature that
it was difficult to correctly determine more than four dif-

ferent ligand groups[18,20,34]. In practice, the concentra-
tion range very rarely covers more than four decades (e.g.
pMT = −log(MT) from 10 to 6, whereMT is total metal
concentration). Application of many standard additions is
facilitated by automatic burettes controlled by a computer,
however, this is limited in practice by the total duration of
the titration. For example, one titration of Suwannee River
fulvic acid with cadmium and lead (30 additions in a loga-
rithmic mode) using differential pulse (DP) ASV (Metrohm
stand 663+�Autolab+4 Metrohm burettes) required more
than 48 h for complete characterisation of the complexing
properties[39]. According to this knowledge we estimated
as follows: for one ligand the concentration range of metal
additions can be fixed to two decades (1–100 nM) defined
by 20 points considered to be a minimum for complexing
studies, and for four ligands it can be fixed to four decades
(1–10,000 nM) by 35 points, which are a priori realistic and
sufficient, compared to the experiments performed with nat-
ural samples[15,17,19,36]. By interpolation, a simple cal-
culation gives 2.66 decades for two ligands, i.e. 1–457 nM,
defined by 25 standard addition points.

To analyse the effect of titration mode on simulation,
three different strategies of non-arbitrary standard additions
of metal ions were simulated: linear, decade and logarith-
mic additions, bearing in mind the possibility of utilising
automated burettes in a real experiment.

These three modes consist, respectively, fromi = 1 to n
additions:

• constant increments ofMT, i.e. MT,i = MT,n/n,

• constant increments ofMT in one decade of concentration,
i.e. for 1–10 nM:MT,i = i×10−9, for 10–100 nM:MT,i =
(i − 10) × 10−8, etc.,

• constant increments of pMT, i.e. MT,i =
10−(pMT,0−(pMT,0−pMT,n)×(i/n)), wheren is the total num-
ber of points in the titration,MT,0, MT,n, MT,i are the
initial, final andith total metal concentrations.

In order to obtain realistic data, taking into account pre-
vious results of Pižeta and Branica[32] about the influence
of noise added to the data (0–10%) and considering an in-
crease in the sensitivity of electrochemical instruments, a
random noise of 2% was added to the points after the simu-
lation (MINEQL) and before fitting. The set of applied ran-
dom noise values varies between two simulated experiments
with differentLiT, Ki values, but remains unchanged for one
experiment treated by the three titration modes.

The position of the points selected for simulation in logK
× logLT space, compared to Pižeta and Branica[32], is
presented inFig. 1.

3. Methods of data treatment and fitting to the model

The methods of data treatment for metal complexing ca-
pacity and stability constant determination comprise three
linearisation methods: (a) linear regression proposed by
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Fig. 1. Repartition of ligands complexing properties used in this study ((�) one-ligand, (�) first of two-ligand, (�) second of two-ligand) and in Pižeta
and Branica previous study ((�) one-ligand, (×) first of two-ligand, (�) second of two-ligand).

Chau [5] in combination with linearisation proposed by
Buffle [9], (b) linearisation by a mathematical transforma-
tion proposed by Scatchard[8], and (c) Ružíc [10] and
van den Berg[11] followed by linear regression; as well
as two optimisation methods: (i) non-linear fitting of the
data transformed according to Ružić–van den Berg method
when they are not linear after the transformation, proposed
by Pižeta and Branica[32], and (ii) a matrix approach by
the program named PROSECE (summarized inTable 1).
MT consists of the metal initially present in the solution
(M0) and the metal added (Ma). Mf means free metal, not
inertly bound to the complexing ligand, which is a mea-
sured value in voltammetry. Theoretically, the methods
based on mathematical transformation of data (linearisation
in this case) are more sensitive to the noise ofMf than the
methods using non-modified data. Indeed, transformations
induce noise propagation which influences the two axesy,
x = f(Mf , MT).

PROSECE (Programme d’Optimisation et de SpEcia-
tion Chimique dans l’Environnement), was developed in
RCMO-PROTEE laboratory (with the help of P. Seppecher
(ANLA laboratory, University of Toulon and Var)), for com-
plexing studies using a discrete model. It has been written
on the basis of the numerical calculation program Octave
(freeware). This new software is available on request. It
uses a speciation subroutine coupled to an optimisation one.
The speciation calculation is based on mass balance reso-
lution by the Newton–Raphson optimisation method, after

Morel’s table definition representing all complexing equa-
tions between the principal components (M, Li, H, etc.) and
the component species and compounds (Mf , Lif , MLi, etc.)
in the defined chemical system[40]. After the definition of
the initial values for complexing parameters (LiT, Ki) which
must be determined, the speciation modulus calculates the
concentrations of component species and compounds. Com-
parison with experimental (or simulated) data gives an error
value. The optimisation process, by means of a modified
simplex [41], adjusts these selected values of complexing
parameters, giving a new set of parameters for the speciation
part, which continues until minimum error value has been
reached. For instance, PROSECE allows the modelling of
natural organic matter complexing and competing properties
versus proton and trace metals by optimisation of a set of
complexing parameters (total ligand concentrations, acidity
constants, stability constants versus trace metals)[37].

4. One-ligand systems

From previous knowledge and experience of the detec-
tion and determination of metal complexing capacity with
one ligand, a two decades range of metal standard additions
is necessary. As Ružić [10] has shown thatK × LT > 1 is
necessary to obtain reliable results, the analyses and com-
parisons were made for the caseK × LT = 50 in the pairs
as follows:LT = 10, 50 and 90 nmol l−1 andK = 5× 109,
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Table 1
Overview of the data treatment methods for metal complexing capacity determination

Graphical presentation Mathematical treatment and explanation

One-ligand system: linearisations

Linear regression of last points of the curveMf = aMT + b, LT is
determined by extrapolation:LT = −b/a, linearisation of experimental
points according toLT/(MT − Mf ) = (c/Mf ) + d, whereLT is
determined by the method of Chau.K = 1/c (d = 1)

Mathematical transformation of experimental data points according to
(MT − Mf )/Mf = f(MT − Mf ), linear regression:
(MT − Mf )/Mf = a(MT − Mf ) + b, K = −a, LT = −b/a

Mathematical transformation of experimental data points according to
Mf /(MT − Mf ) = f(Mf ), linear regression:Mf /(MT − Mf ) = aMf + b,
K = a/b, LT = 1/a

Two-ligand system: linearisations

Mathematical transformation of experimental data points according to
(MT − Mf )/Mf = f(MT − Mf ), linear regression of the first data points
and the last ones:Y1 = a(MT − Mf ) + b andY2 = c(MT − Mf ) + d,
calculation ofL1T, L2T, K1, K2 = f(a, b, c, d)
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Table 1 (Continued)

Graphical presentation Mathematical treatment and explanation

Mathematical transformation of experimental data points according to
Mf /MT − Mf = f(Mf ), linear regression:
Y1 = (Mf /(MT − Mf ))Mf →∞ = aMf + b,
Y2 = 1/(aMf + b − (Mf /(MT − Mf ))Mf →∞) = cMf + d, calculation of
L1T, L2T, K1, K2 = f(a, b, c, d)

One- and multi-ligand systems: fitting

After Ružíc–van den Berg linearisation, for more than one-ligand
(N > 1), non-linear fitting based on Levenberg–Marquardt method:
Mf /(MT − Mf ) = 1/

∑N
i=1(LiT/Mf + (1/Ki))

Speciation calculus based on mass balance table resolution. Comparing
the “experimental” and the calculated concentrations, an optimisation
process, using a modified simplex, adjusts the complexing parameters
until reaching an optimum error

1 × 109 and 5.56 × 108 l mol−1, respectively. InFig. 1, it
is presented that the points are in the probable and conve-
nient areas of possible experimental situations. Simulated
data points, representing each pair ofLT andK for different
types of standard additions in linear, decade and logarithmic
modes are presented inFig. 2.

All the results for a one-ligand system are summarised in
Tables 2 and 3. The values obtained by data treatment are
given together with the preset values (Kth, Lth). When it was
possible to calculate these, the values of confidence interval
(e1) of the calculated parameters are given in % (�K% and
�LT%). The difference between the preset and the calculated
values is callede2. Correlation of log(e1) versus log(e2) is

summarized inTable 3. It shows an important correlation
for linearisation methods, which could be used in predicting
the efficiency of parameter determination.

4.1. Linear additions

The results obtained for linear mode have drawn clear
distinction between different techniques of data treatment.
Thus, the errors forK andLT fluctuate from 0.1 to 122.9%,
and from 0 to 54.5%, respectively, depending on the exper-
iment and on data treatment.

PROSECE is the only method which allows correctK and
LT determinations, whichever theLT value in the studied
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Fig. 2. No-noised simulated additions for one ligand model experiments (see the corresponding preset parameters values in Table 2 marked by (a)).

Table 2
Results obtained for one ligand system

Linear Logarithmic Decade

Exp. 1 Exp. 2 Exp. 3a Exp. 1a Exp. 2 Exp. 3 Exp. 1 Exp. 2a Exp. 3

Kth 5.00E+09 1.00E+09 5.56E+08 5.00E+09 1.00E+09 5.56E+08 5.00E+09 1.00E+09 5.56E+08
LTth 1.00E−08 5.00E−08 9.00E−08 1.00E−08 5.00E−08 9.00E−08 1.00E−08 5.00E−08 9.00E−08
K 3.95E+09 1.05E+09 7.25E+08 4.50E+09 1.02E+09 7.62E+08 4.01E+09 1.06E+09 6.94E+08

Chau–Buffle linearisations
�K (%) 110.7 0.5 0.6 1.3 0.6 0.7 1.3 0.5 0.5
LT 1.54E−08 4.75E−08 6.88E−08 1.10E−08 4.87E−08 6.54E−08 1.23E−08 4.70E−08 7.19E−08
�LT (%) 121.4 18.7 23.5 33.4 ND ND 0.0 0.0 ND
K −1.15E+09 1.03E+09 5.58E+08 −2.54E+09 1.02E+09 5.56E+08 −3.55E+09 1.01E+09 5.56E+08

Ružić–van den Berg linearisation
�K (%) −466.8 11.9 1.0 −427.5 5.8 0.6 −779.4 7.7 0.7
LT 9.48E−09 4.96E−08 8.97E−08 9.25E−09 4.95E−08 8.96E−08 9.45E−09 4.96E−08 8.97E−08
�LT % 7.7 0.5 0.2 5.4 0.4 0.2 5.6 0.4 0.2
K 9.52E+08 1.00E+09 5.55E+08 5.00E+09 9.97E+08 5.57E+08 4.98E+09 9.99E+08 5.56E+08

Scatchard linearisation
�K (%) 67.2 0.0 0.0 0.2 0.0 0.0 0.3 0.0 0.0
LT 1.04E−08 4.97E−08 8.99E−08 9.90E−09 4.98E−08 8.96E−08 9.90E−09 4.98E−08 8.97E−08
�LT (%) 162.4 1.5 1.3 7.6 1.3 1.5 9.7 1.2 1.3
K 4.81E+09 1.01E+09 5.62E+08 4.92E+09 9.90E+08 5.59E+08 4.94E+09 1.00E+09 5.59E+08

PROSECE
�K (%) ND ND ND ND ND ND ND ND ND
LT 1.00E−08 4.97E−08 8.95E−08 1.00E−08 4.98E−08 8.96E−08 1.00E−08 4.97E−08 8.96E−08
�LT (%) ND ND ND ND ND ND ND ND ND

a Simulated data shown in Fig. 2.

analytical window (errors between 0.6 and 3.9% for K, and
between 0.0 and 0.6% for LT).

As long as the LT value is large enough, correct results
are obtained for Ružić–van den Berg and Scatchard lineari-

Table 3
Correlation coefficient (R) between log(e1) and log(e2) values

Chau–Buffle
linearisations

Ružić–van
den Berg
linearisations

Scatchard
linearisations

PROSECE

K1 0.231 0.993 0.864 ND
L1T 0.560 0.980 0.919 ND

sations (errors <3% for K and LT). In contrast, the first ex-
periment, representing low concentration ligands, leads to
negative K values for Ružić–van den Berg and high error for
Scatchard, showing unsuitability of the linear mode treated
by linearisations for the lowest LT values.

Chau–Buffle linearisation gives reliable results only when
LT is centred on the analytical window (shape of experi-
ment 2 in Fig. 2). Indeed, a small preset value for LT leads
to an incorrectly calculated LT value since only the last few
titration points were used for Chau linearisation. Further,
when those titration points are too far from the cure (i.e.
complexing capacity equivalent value) they are sensitive to
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the noise (shape of experiment 1 in Fig. 2). A large value
for LT also leads to a large error for LT, because MT,n is
small compared to the theoretical LT, which is leads to the
situation that the last titration points are in the curved por-
tion, i.e. narrowly reaching complexing capacity equivalent
value (shape of experiment 3 in Fig. 2). These two different
phenomena increase the error for K determination by Buffle
linearisation using Chau LT value.

Generally, a linear titration seems to be adapted to LT
and K determinations only for high ligand concentrations
when there are enough data before the curved portion. In
that case, Ružić–van den Berg and Scatchard linearisations
give reliable results. However, data treatment by PROSECE
uses all data points without mathematical transformation and
achieves correct results even for small LT values.

4.2. Decade and logarithmic additions

In general, the results obtained by decadic and logarith-
mic additions are improved compared to the linear additions
results, but they do not allow these two non-linear titration
modes to be distinguished.

Scatchard linearisation and PROSECE modelling allow
the determination of K and LT with very low error val-
ues (<1.7%), regardless the LT position on the metal range
scanned. Thus, these titration modes increase the sensitiv-
ity for complexing parameters optimisation, especially for
small values of LT.

In contrast, they do not increase the Ružić–van den Berg
ability to correctly determine the stability constant, which is
always negative when the LT value is low.

The errors for K and LT with Chau–Buffle linearisation are
slightly improved, particularly in the case of low LT values.

For the case of a 1:1 metal–ligand system, when carried
out at constant K×LT values, these experiments have shown
that a fitting process by using non-modified data, such as
PROSECE, is the most efficient technique, despite the ap-
parent simplicity of the system. Indeed, the results obtained
are close to the predetermined values, regardless of the titra-
tion mode or the LT value used.

By better defining low metal concentration ranges,
logarithmic and decade additions greatly increase the
sensitivity of Scatchard linearisation for the determina-
tion of the complexing parameters whichever the ligand
concentration.

Table 4
The Case of two ligands, preset complexing parameters values for simulated experiments

+ − No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L1T 30 nM 10 nM + + − + − − + + − − + + − + − −
K1 1010 108 − − − − + − + + − + + − − + + +
L2T 300 nM 100 nM − + − + − − + − + + − − + + + −
K2 107 106 − − − + − + + − − + + + + − − +

In contrast, Ružić–van den Berg linearisation, depen-
dent on high metal concentrations (due to the mathematical
transformation used), seems to be less adapted to the sta-
bility constant determination when the ligand concentration
is small, which happens frequently in natural systems. The
errors obtained are not minimised by the use of non-linear
titrations.

The Chau–Buffle method, using two successive lineari-
sations, produces less reliable results than those obtained
by the other methods.

5. Two-ligand systems

In contrast to one-ligand case, where only three simulated
experiments have been carried out with the preset K × LT
values, a factorial matrix [41] has been used for two-ligand
systems to evaluate the number and the type of experiments
to be performed. Considering two ligands defined by four
parameters (Ki and LiT), 24 = 16 experiments have been
simulated by using high (+) and low (−) values for each pa-
rameter. Previous results, showing the influence of the values
of the complexing parameters and of random noise added
to the retrieving of the simulated data [10,14,18,32,33], as
well as the use of different analytical techniques and differ-
ent models to determine those parameters in natural sam-
ples [15–30], led us to choose the Ki and LiT values for this
study. Thus, (+) and (−) values for K1, L1T, K2, L2T are,
respectively, 1010 and 108, 30 and 10 nM, 107 and 106, and
300 and 100 nM (i.e. K1 × L1T: 1–300, K2 × L2T: 0.1–3,
K1/K2: 10–104). Table 4 shows the values used for these
16 simulated experiments, using Yates matrix design [41].
Three of these simulated experiments (n◦3, 5 and 7) have
been plotted using Mf = f(MT) and pMf = f(pMT) scales,
in linear, logarithmic and decade titration modes (Fig. 3).
Experiments 3 and 5 could not be distinguished in linear
mode, whatever the considered scale, but were significantly
different in logarithmic or decade titration modes using the
pMf = f(pMT) scale.

To each simulated experiment, random noise of 2% was
added to the calculated points of free metal concentrations
(Mf ). In order to be better defined and not biased by the
knowledge of the correct answers, optimisation methods
(non-linear fitting and PROSECE) always employ the same
initial values for the calculated parameters (K1 = 109,
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Fig. 3. No-noised simulated additions for two ligands simulated experiments nos. 3, 5 and 7.

L1T = 20 nM, K2 = 3.16 × 106, L2T = 200 nM), which
are not necessarily optimal, i.e. in the case of real experi-
mental data treatment, one would change the initial param-
eters in order to optimise the results, especially if negative
results occur. In order correctly to compare the efficiency of
titration modes (linear, logarithmic and decade) and of the
methods for data treatment (Ružić and Scatchard linearisa-
tions, non-linear fitting and PROSECE), errors for four dif-
ferent parameters have been calculated. They are based on
the differences between the theoretical value of complexing
parameter (Xth) and the calculated value (Xcalc), according
to the following equation:

Xerror =
√(

Xth − Xcalc
)2

Xth2 × 100.

Theoretically, using Yates method, it would be possible
to quantify the effects of these different factors (i.e. Ki and
LiT) on the responses (i.e. errors values) with the use of
equations which would allow to determine the influence of
Ki and LiT values on the data treatment. However, this is
based on the assumption that response varies linearly when
a parameter changes from (+) to (−) value. In our case,
it does not seem realistic, and the calculations have shown
that it is impossible to link modelling error with the preset
values of Ki and LiT.

To estimate possible correlations between these differ-
ent parameters, the obtained errors have been presented as:
K1 error = f(L1T error), K2 error = f(L2T error), L2T error =
f(L1T error), K2 error = f(L1T error), K1 error = f(L2T error)

and K2 error = f(K1 error). Thus, the error for K1 seems to be
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well correlated to the L1T error, which emphasizes the re-
ciprocal influence of strong ligand binding parameters. The
same phenomenon, although less pronounced, is obtained
between K2 and L2T errors. In contrast, K2 versus L1T and
K1 versus L2T errors have shown inverse correlations, i.e.
wrong determination of one parameter is often linked to the
correct determination of the other one, and vice versa.

However, except for those tendencies, relatively few cor-
relations can be observed, which shows the complex depen-
dence between all these complexing parameters.

5.1. Linear additions

Undeniably, PROSECE fitting gives the best results for
Ki and LiT determinations, independently of the preset
values. Only a few of the simulated experiments led to sig-
nificant errors for L1T and L2T. These corresponded to the
experiments where the preset parameter values were low.

In contrast, Ružić linearisation with its mode of addition
does not allow a correct determination of K1, to whichever
of the preset values applied. Indeed, for 10 of them, the
obtained values are negative. Retrieving of ligands con-
centrations is correct, almost independent of the conditions
(variations in errors are small for all experiments) but less
than for PROSECE. Determinations of K2 are always bet-
ter than those of K1; they are more accurate the K2 × L2T
becomes larger.

For the determination of K1, Scatchard linearisation seems
to be markedly more convenient than Ružić method. How-
ever, the results obtained by this linearisation do not reach
the reliability of those obtained by PROSECE. In contrast,
in retrieving L2T with negative values for two experiments,
it is less accurate than Ružić method. This shows the impor-
tance and the influence of mathematical transformation on
the final result, i.e. the values of complexing parameters.

Despite data linearisation when using Ružić method,
non-linear fitting seems to be less sensitive with regard to K1
calculation. However, with five negative values for K1 and
two negative values for L1T, the obtained results differ from
the preset values. Also, K2 and L2T errors are often larger
than those obtained by Ružić and Scatchard linearisations.

Linear additions do not seem to be adapted for determi-
nation of complexing properties of strong ligands at low
concentrations, which are frequently found in natural wa-
ters, except if PROSECE is used. With PROSECE the errors
are 30% on average compared to other methods which gave
errors of 50–500%. This can be probably explained by an
insufficient definition of the concentration range between 1
and 50 nM (only three points).

However, as regards the complexing properties of the
weaker ligands of higher concentrations, despite large
number of data defining them (20 data points from 100
to 457 nM), linearisations and non-linear fitting do not al-
low accurate determination of K2, possibly due to too low
L2T × K2 values. Only L2T is correctly determined (20%
error on average).

5.2. Logarithmic additions

Results obtained for the determination of K1 and L1T
are clearly improved with the use of logarithmic addi-
tions compared to linear ones, whatever the data treatment
used.

This titration mode allows a complete elimination of all
the aberrant results occurred in Ružić linearisation, i.e. neg-
ative K1 values. Except for one simulated experiment, the
same happened to the results from non-linear fitting. Thus,
mean errors for L1T, for these two methods of data treatment,
change respectively from 43.9% (linear) to 11.4% (logarith-
mic) for Ružić linearisation and from 512.4 to 15.6% for
non-linear fitting. So, mean errors for K1 decrease, respec-
tively, from 1457 to 8.5% for Ružić linearisation and from
96.6 to 52.6% for non-linear fitting.

Except for one simulated experiment with an L1T error
of 220%, PROSECE allows determination of complexing
parameters of the first ligand with mean errors <9% (50%
of the experiments with an error of 3%). It seems to be the
most suitable method for the determination of complexing
properties of low concentrations of strong ligands.

Although markedly improved, results obtained by
Scatchard linearisation are not in the same range (mean
errors: 20%).

Concerning L2T determination, linearisations and non-
linear fitting give slightly more correct results than PROS-
ECE, which is influenced by the values of K1/K2 and those
of L1T/L2T. For the same parameter, Scatchard linearisation
benefits the most when changing from linear to logarithmic
mode.

The K2 parameter remains better determined by PROS-
ECE than by linearisation data treatments, which give very
large errors. Non-linear fitting and linearisation data treat-
ments, which are very sensitive to L2T and K2 values com-
pared to the L1T and K1 ones, lead to significant errors for
a large number of experiments.

Generally, non-linear fitting and linearisation data treat-
ments will correctly determine the concentration of weak
ligands, but only PROSECE can determine the stability con-
stant of these ligands, despite the low values of K2 × L2T
(between 0.1 and 3).

Logarithmic additions, improving markedly the titration
accuracy at low concentrations (16 points from 0 to 50 nM,
compared to 3 points in the linear mode), amplify the res-
olution of the complexing properties of low concentration
of strong ligands regardless of the data treatment used. This
phenomenon is obvious for K1 determination by Ružić lin-
earisation and non-linear fitting.

Despite a decreasing number of points defining high con-
centrations (7 points from 100 to 457 nM compared to 20
points for linear additions), the results of Ružić linearisation
and PROSECE determinations of the complexing properties
of weaker ligands are similar to those obtained in the linear
mode. They are even slightly improved as regards K2 treated
by non-linear fitting and L2T calculated by Scatchard.
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5.3. Decade additions

The results obtained with this titration mode are in general
very close to those calculated from the logarithmic ones. So,
these additions largely improve the determination of com-
plexing parameters for low concentrations of strong ligands
compared to linear additions.

The resolution obtained by Ružić linearisation seems to
be slightly better than that by logarithmic additions. This
data treatment appears to be suitable for the calculation of
K1 and L1T but only when the precision in the analytical
window is sufficient at low total metal concentrations.

Although less correct, Scatchard linearisation leads to er-
rors for L1T and K1 < 15%.

With one simulated experiment leading to a negative K1,
and mean errors of 25%, non-linear fitting seems to be the
least adapted of the four data treatments.

Despite one simulated experiment with large error for K1
with PROSECE, errors are slightly improved compared to
logarithmic additions (mean error 5%, except the maximal
error for K1). Similar to other addition modes, this data treat-
ment seems to be the most adapted to determine complexing
parameters of strong ligands.

In contrast to L1T and K1, determination of L2T and K2 is
not improved by the use of this titration mode compared to
the logarithmic mode. Linearisations give correct value for
L2T but poor results for K2. Non-linear fitting improves a
little the determination of the latter. Similar to logarithmic
additions, PROSECE seems not to be the best adapted to
define L2T correctly but it is the only one that allows an
almost correct calculation of K2.

Similar to the logarithmic mode, this titration mode, by
largely increasing the precision of the lowest concentrations
(16 points compared to 3 points in the linear case), improves
the resolution of complexing parameters for strong ligands.

In contrast, the number of points in a higher concentra-
tion range being smaller than for other titration modes (only
five points between 100 and 457 nM), leads to poorer deter-
mination of weaker ligands.

Table 5
The influence of random noise distribution on the complexing parameters determination for different data treatment methods (mean values, standard
deviation and number of negative values calculated for 10 different sets of noise-added data in simulated experiments nos. 5 and 7)

Ružić linearisation Scatchard linearisation PROSECE Non-linear fitting

Mean
value

S.D.
(%)

N < 0 Mean
value

S.D.
(%)

N < 0 Mean
value

S.D.
(%)

N < 0 Mean
value

S.D.
(%)

N < 0

Exp. 5: linear theory
L1T 1.00E−08 5.65E−09 27.6 0 1.44E−08 3.9 0 1.06E−08 5.3 0 5.66E−09 100.6 4
K1 1.00E+10 −2.94E+08 109.9 10 3.08E+08 18.5 0 5.01E+09 138.1 0 5.83E+08 215.9 5
L2T 1.00E−07 8.71E−08 51.2 0 −1.51E−07 294.4 7 2.43E−07 20.0 0 5.05E−07 285.0 1
K2 1.00E+06 2.32E+06 45.1 0 −2.33E+05 327.1 7 3.71E+05 31.5 0 4.25E+06 93.4 1

Exp. 7: logarithmic theory
L1T 3.00E−08 2.99E−08 2.4 0 3.06E−08 2.2 0 3.00E−08 0.4 0 3.00E−08 3.0 0
K1 1.00E+10 1.00E+10 2.9 0 9.77E+09 2.6 0 9.99E+09 0.7 0 1.01E+10 7.6 0
L2T 3.00E−07 2.83E−07 3.1 0 2.80E−07 3.1 0 2.95E−07 2.4 0 2.97E−07 2.6 0
K2 1.00E+07 1.22E+07 6.6 0 1.38E+07 6.8 0 1.03E+07 3.8 0 1.02E+07 6.0 0

5.4. Influence of random noise distribution

In order to approach realistic [Mf ] values, random noise
between −2 and 2% was added to the values simulated by
MINEQL. However, it seems necessary to comprehend the
effect of noise distribution on the complexing parameters
determination. For this purpose, the data from two previ-
ous simulated experiments (no. 5 in linear mode and no.
7 in logarithmic mode, cf. Table 4) have been treated by
all methods, after the addition of 10 different sets of ran-
dom noise. The first simulated experiment corresponds to
the one for which it was difficult to retrieve the preset val-
ues in all data treatment methods, especially with lineari-
sations and non-linear fitting that have led to negative K1,
L1T and/or L2T values. In contrast, the second experiment
gave correct results whichever data treatment method was
used.

Theoretically, linearisations should be more sensitive to
these random noise distributions than fitting (especially for
the first experiment), because, in contrast to fitting, they take
into account only a part of the data points which increase
the noise effect. Moreover, mathematical transformations by
data linearisation affect X and Y values (X, Y = f([Mf ])),
while the use of non-transformed data as in the case of
PROSECE affects only Y values (cf. Table 1). All obtained
results are summarised in Table 5.

As expected, the techniques based on data transformation
(followed by linearisation or fitting) appeared to be more
sensitive to data noise (i.e. mean values were far from the
preset ones, with large standard deviations, and a great num-
ber of negative values) than PROSECE, which is working
with non-modified data. Thus, this data treatment can lead
to aberrant values (e.g. negative values) of the parameters
of the first and/or the second ligand, but depending on ran-
dom noise distribution, even more so as K2 × L2T factor
or L1 become low, which is a common situation in natural
conditions. When K1 × L1T and K2 × L2T are large, i.e.
greatly larger than 1, the four data treatment methods give
quite similar results.
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Fig. 4. “Contour-graphs” of “K1 error = f((L1T × K1), (L2T × K2))” obtained with Ružić linearisation in linear (A) and logarithmic (B) additions ((+)
calculated K1 error , (�) calculated but negative K1, (�) calculated and higher than 1000).

5.5. Possibility of error prediction

Taking into account the results obtained in these 16 ex-
periments, with different K1 × L1T and K2 × L2T values,
the question arose whether it would be possible to predict
errors of the complexing parameters for simulated experi-
ments with other preset values and to estimate the accuracy
of the results obtained by treating the data of a real experi-
ment obtained from natural samples analysis (Fig. 3).

Considering the K1 × L1T and K2 × L2T values of
16 experiments, “contour-graphs” showing parameter er-
rors = f((L1T × K1), (L2T × K2)) have been plotted in a
logarithmic scale for each couple of titration mode-data
treatment method, using Surfer 6 software. From a large
number of graphs obtained (48), only two are presented in
Fig. 4. All figures could be found at: http://mounier.univ-
tln.fr/ACAgarnier2003.html.

To test the possible prediction capability of these graphs,
five new experiments, with different Ki × LiT values, were
simulated in linear and logarithmic modes. To estimate er-

Table 6
Parameters values of the additional simulated experiments for error prediction test and the errors obtained for K1, for the data treatment by Ružić
linearisation for linear and logarithmic titration modes (errors values in italic correspond to the negative values of K1), viz. Fig. 4. (×)

No. L1T (nM) K1 L2T (nM) K2 L1T × K1 L2T × K2 K1 error linear (%) K1 error logarithmic (%)

1 20 1 × 1010 200 1 × 107 200 2 111.8 1.4
2 20 1 × 108 200 1 × 106 2 0.2 103.2 5.5
3 10 5 × 109 100 5 × 106 50 0.5 101.7 7.4
4 20 1 × 1010 200 1 × 106 200 0.2 102.7 1.2
5 20 1 × 108 200 1 × 107 2 2 641.8 39.5
6 30 1.67 × 109 300 1.67 × 106 50 0.5 116.6 0.0

ror variability at the same Ki × LiT values, a sixth ex-
periment has been added, with Ki × LiT values of the
third experiment only with different parameter values. All
the points are shown as (×) in Fig. 4 and the parame-
ters of these new simulated experiments are summarised
in Table 6. These six experiments were treated using all
the defined techniques to obtain calculated error values. For
each experiment, error estimation consists of reading-out,
on a “contour-graph” , the error value at the Ki × LiT the-
oretical point, and comparing it with the value actually
obtained.

Theoretically, three different cases are expected to be ob-
tained depending on whether the estimated values are:

• Close to the calculated ones: graphs are adapted to predict
accuracy of a given titration mode-data treatment couple,
to determine complexing parameters.

• Higher than the calculated ones: prediction is pessimistic,
which is not a disadvantage since graphs allow estimation
of upper limit values.

http://mounier.univ-tln.fr/ACAgarnier2003.html
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• Inferior to the calculated ones: the proposed plots are not
adapted to estimate the complexing parameters errors for
a non-simulated experiment.

By plotting the estimated errors versus the calculated
ones, for linearisation techniques, correlation is obtained.
It confirms that “contour-graphs” allow the correct estima-
tion of error (Fig. 4B), except when the obtained parameter
values are incorrect (such as a negative K1 obtained by the
Ružić method in linear mode (Fig. 4A)).

In contrast, predictions for the fitting techniques are less
correct. In most cases prediction values overestimate the real
values. Despite the important gap obtained, predicted errors
can even be used as upper limits.

Regarding the variability of errors for different parameters
values, with the same Ki × LiT values (i.e. the difference be-
tween experiments 3 and 6), in all cases, standard deviations
of calculated errors between these two experiments were
>50%. Moreover, differences between the predicted values
and the mean calculated values are, in general, smaller than
those standard deviations. This means that, even if the varia-
tions of errors in parameters determinations are large, for dif-
ferent parameters with combinations with the same Ki × LiT
values, the errors predicted with “contour-graphs” are in the
variation domain of real errors, and are therefore usable for
prediction.

6. Conclusions

The provided analyses of the influence of the titration type
and of data treatment method on the accuracy of metal com-
plexing parameters determination for one- and two-ligand
systems based on the simulated data corresponding to those
obtained by anodic stripping voltammetry, suggest the fol-
lowing conclusions:

Even with one ligand system, logarithmic and decadic
titrations are much better than the linear ones.

Linearisation methods are in many cases inferior to the
optimisation methods, especially in a linear titration mode.
Random noise has a significant influence on the results of
linearisation methods (especially in the case of two-ligand
systems), while only a part of the data points participates in
the determination of complexing parameters. On the other
hand, for linearisation methods, in the case of one-ligand
systems, a high correlation between the confidence interval
of the calculated parameters and the difference between the
preset and the calculated values is found. This correlation
is proposed to be used as an estimate for the quality of the
results in real experiments.

PROSECE is by far superior to other methods (linearisa-
tions and non-linear fitting) in most cases due to its flexible
and powerful mathematical background. It is a result of
computer programming development and is highly recom-
mended as a tool for data treatment. Using non-transformed
data, PROSECE minimizes the effect of data noise prop-

agation, which seems to be favourable for complexing
parameters determination compared to other data treatment
methods defined.

Construction of “contour-graphs” enables certain error
prediction of the calculated complexing parameters and is
proposed as an orientation and valorisation tool in real sam-
ples analyses.
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