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Voltammetry is a method able to distinguish in certain degree the speciation of dissolved metals. An analysis of its ability to discern
nd more complex dissolved metal–ligand systems has been carried out by simulating the experiments for determination of m
omplexing parameters. Logarithmic equidistant addition of metal was presumed, covering 2.5 decades. The data obtained wit
arameter values were subsequently fitted to the presumed models. Data points under the detection limit DL = 10−10 mol L−1 were eliminated
nd random noise following a realistic shape was added to the points to approach them to the real experiment. Four models were
imulation and up to five models for fitting.
The analysis of the results shows that with the nowadays state-of-the-art measurement and data treatment techniques, in mos

t was possible to distinguish more complex and also more probable bi-ligand and mixed metal–ligand complexes from the s
etal–ligand systems. Statistical evidences to validate the right model were given. Its applicability has been confirmed by generati
ata mining server (DMS) rule.
2005 Elsevier B.V. All rights reserved.

eywords:Voltammetry; Metal–ligand complexing parameters; Multiligand systems; Mono- and bi-ligand complexes; Mixed-ligand(s) complexes; P
MS

. Introduction

As written in numerous papers, there has been a lot of
ork done and many efforts put in measuring metal–ligand

nteractions in model solutions and natural waters, while it
s evident that the metals speciation is a good indicator of
heir bioavailability and hence, their toxicity[1–7]. Voltam-
etric methods with standard addition of metal ions of in-

erest have shown to be one of the most non-destructive and
ubtle techniques, able to recognize metal–ligand complex-
tion by directly measuring the free and labile fraction of
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metal and distinguishing free metal and labile from in
metal complexes[8–12]. There are numerous models wh
deal with metal speciation with natural organic matter
have become sophisticated taking into account more
more components and parameters affecting the meta
ciation and conditions when the bioavailable species c
be present, as well as the models of natural organic
ter description, which is heterogeneous and complex
nature. They use large database knowledge about th
dynamic stability constants when discrete ligand appr
is applied[13–18] or when continuous functions are as
ciated with NOM properties and affinity to metal, ma
cations or proton[19–23], both needing a verification in e
periments of various techniques. By the combination of
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model—experiment approach, one can advance in charac-
terization of samples of interest and obtain a more global
speciation conception. In concrete applications, i.e. experi-
mental verifications, the complexity of the system imposed
the need for simplification[24,25], a stepwise approach. In-
deed, it has been shown that many situations and experi-
mental data could be explained and covered by a simpli-
fied conception of 1:1 metal–ligand complexes with their
numerical indications of capacity and conditional complex
stability constants[26–33]; on the other hand for a more
complex conception there were no means of enough sensi-
tive measurements and calculations, regarding voltammetric
method approach[34,35]. When facing the complex struc-
ture of the real sample matrix, we always have to bear in
mind that from single technique measurements (voltammet-
ric or any other) one can get information about the so called
conditional stability constants, which does not diminish the
significance of the analyses, but necessitates further interpre-
tation.

Ligands with strong complexing abilities will tend towards
making bi-ligand complexes with trace metals, especially in
the situations of low concentrations of the metals available
[18,24,34,36–46]. In natural water systems, which contain
different ligands, mixed metal–ligand complexes are more
probable to occur than the pure single metal–ligand ones[47].
Their quantitative characterization is not an easy task and is
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systems, as well as mixed ligand systems with the studied
metal.

2. Simulation of experiment and formation of data
sets for fitting

The simulation of experiment, i.e. numerical generation of
data points that strictly imitate the distribution and the num-
ber of standard additions, that takes into account the existing
sensitivity of the available instruments and noise distribution
curve, is useful in predicting the recognition of information
comprised in real, experimental data points, as shown previ-
ously[57,59]. According to the design of experimental stan-
dard additions, each point representing the sum of the free
and the labile fraction of added metal was calculated by the
program MINEQL[60].

The concentration ranges, the number of additions of
titrated metal as well as the logarithmic type of additions
were taken from the previous results[57], i.e. for one and
two ligand cases which were analyzed in this work, the con-
centration range of added metal from 1 to 457 nmol L−1 is
covered by 25 standard addition points with constant incre-
ments of pMT, i.e.

MT,i = 10−(pMT,0+(pMT,0−pMT,n)×(i/n))
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ot often found in the literature. In contrast, theoretical ca
ations based on the knowledge of simpler systems, ana
f factors affecting the recognition of ternary complexes,

he reviews about particular ligand’s behaviour in the e
onment (e.g.[48–52]) can be found. Mixed metal–ligan
omplexes were studied in order to improve the sensit
f the voltammetry as electroanalytical method by mult
nhancement of metal–mixed ligands complexes adsor
nto mercury drop electrode and formation of metal–m

igands–surface complex, known as synergetic adsor
53–55]. Also, this could be a possible type of process (am
hose well known) for metals removing from aqueous
ems. Experimental results on synergetic adsorption phe
na of uranium and copper at the hanging mercury
lectrode have been published[53–55]. If we broaden th
roblematic to the formation of metal–ligand–surface c
lexes (surfaces found in natural waters and sediment
urface adsorptions acting as a ligand), there is a gro
otivation for the study of ternary complexes[56].
In our previous paper, a detailed analysis of the stat

he-art in metal complexing parameters determination in
ral water systems for 1:1 metal–ligand systems has
iven [57]. Starting from these results and using the

imal conditions described, possible to perform with
owadays voltammetric experimental setup[58] (i.e. non-

inear, logarithmic standard additions) we wanted to ana
n more detail the ability of our experimental conditio
nd analyzing tools to distinguish the situations diffe

rom 1:1 metal–ligand situations that might occur in n
ral water systems, such as one and two 1:2 metal–li
heren is 25 andMT,0,MT,n andMT,i are the initial, the fina
ndith total metal concentrations, respectively.

This design of titration, named logarithmic, has been
ubject of the development of an automatic apparatus,
PASV measurements of labile trace metal concentra

61].
Considering the non-uniform repartition of the stand

eviation of the measurements obtained on real logarit
ddition titration of cadmium[61], it seemed interesting to t
eproducing that type of variation and apply it in this stu
he noise added to the simulated data before fitting the
orresponds to:

(M) = 1

exp((M/M∞) × 10)− ((e0 − e∞ − 1)/(e0 − e∞))

+e∞

hereM andM∞ are the concentrations of metal added
ng and at the end of the titration, respectively,e0 ande∞ the
oise limits at the beginning and end of the titration, 20
%, respectively. So the added noise depends on metal

ion and consists of adding random noise to the data p
etween−e(M) and +e(M). This process of data modificati
y noise addition is presented inFig. 1.

Taking into account that analytical techniques used fo
haracterization of natural ligand complexing properties
ecially when real samples are concerned, can seldom

he concentration values lower than 0.1 nmol L−1, this value
as put as a limit to remove all the data points obtained by
ulation which are lower than 0.1 nmol L−1, i.e. the detectio
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Fig. 1. An example of modification of data simulated by MINEQL after
noise addition and removal of the points below 1× 10−10 mol L−1.

limit (DL) = 1 × 10−10 mol L−1. So, the number of points of
one data set exposed to fitting was not always 25, it came
down even to 8 for the experiments where the complexation
intensity was the strongest. InFig. 1, 14 points are left after
noise application and detection limit restriction.

The existence of two ligands (L) was simulated, a strong
(X) and a weak (Y) of 30 and 300 nmol L−1 concentrations,
respectively. The position of the points selected for simu-
lation in log(β1) × log(β2) space, representing the first and
the second stability constants between metal (M) and lig-
and (L = X or Y) (β1 = [ML]/[M][L]; β2 = [ML 2]/[M][L] 2),
is presented inFig. 2. These values have been chosen taking
into account the results obtained in the literature (or on real
systems)[27–29,31–33,57,39–41,62]. The stability constant
values chosen for simulation are summarised inTable 1.

Regarding the formation constants of mixed complexes,
i.e. MXY, it has been shown[50,51] that they should be re-
lated to the formation constants of the bi-ligand complexes by
a relation of the following kind:βXY =ω × (β2X × β2Y)1/2,
with ω ≥ 2. In our analysis, we used three different values of

F tants
w
t

Table 1
Values of stability constants of mono-, bi- and mixed complexes used for
simulation in various combinations

log(β1X) log(β2X) log(β1Y) log(β2Y) log(βXY )

8 16 6 12 14.3, 17.3 and 20.3
10 20 7 14 17.3, 20.3 and 23.3
12 24 8 16 20.3, 23.3 and 26.3

ω for the same combinations of formation constants as those
used for simulation of single complexes, i.e. 2, 2× 103 and
2× 106 (Table 1).

Four different groups of models were simulated us-
ing MINEQL: S1 = ML (for X and Y); S2 = ML + ML2
(for X and Y); S4 = MX + MX2 + MY; and S5 = MX + MX2
+ MY + MY 2 + MXY. The preset values of complexing pa-
rameters used for simulation can be read out fromFig. 2and
from Tables 2–5, respectively. For example: data set 7 stands
for logβ1 = 10, logβ2 = 16, L = X = 30nmol L−1, the relevant
results are found inTable 3.

For each group of simulated points, three forms of data sets
were prepared, namely: (a) for all 25 originally calculated
data points, (b) for data points after removal of the points
lower than the selected determination limit DL, in our case
DL = 1× 10−10 M (number of data points diminished up to
8), and (c) for data points obtained after removal of data <DL
and application of the random noise.

3. Fitting strategy

Also resulting from our previous paper[57], the program
PROSECE and its complete procedure was applied in all the
fittings. Besides its proven suitability shown in the previous
analyses, its structure is much more flexible and able to adapt
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ig. 2. The legend of distribution of metal first and second stability cons
ith stronger (X = 30 nmol L−1) and weaker (Y = 300 nmol L−1) ligand used

o simulate the experiments.
tself to various fitting models used in this study compa
o the other programs that could have been applied in
59]. Its drawback is, however, the lack of fitted parame
onfidence limits estimate.

In order to limit the total number of fittings, which
uch analyses easily becomes too big and the obtaine
ults not easy to elaborate, the schedule of fitting ge
lly comprised the models similar or simpler than th
sed to simulate the data sets. Altogether five differen

ing models were applied to data sets, namely, F1 =
2 = ML + ML2; F3 = MX + MY; F4 = MX + MX 2 + MY and
5 = MX + MX2 + MY + MY 2 + MXY.

In the case of the “right” (matching) fitting model with t
imulation model, one can discuss the errors of fitting, i.e
ifferences between the preset and the obtained metal–l
omplexing parameters, but since in general we do not k
hich model is the right one, we should pay more atten

o the other parameters of fitting, such as the amoun
he shape of the residual of fitting. The parameter that
eemed to be interesting and drawing attention when
yzing the residuals was the number of zero crossings o
esidual.
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Table 2
Results obtained with PROSECE fitting of the six S1-type experiments using F1, F2 and F3 complexing models on c-type of data sets (n: number of simulated
points after removal of points <DL,LT: ligand concentrations in nmol L−1, resn: normalized residuals of PROSECE fitting)

Ligand S1 sim. Preset values F1* = ML F2 = ML + ML 2 F3 = MX + MY

log(β1) LT n log(β1) LT resn log(β1) log(β2) LT resn log(β1X) XT log(β1Y) YT resn

X 1 8 30 25 8.0 30.0 0.951 8.0 12.7 30.2 0.952 8.0 30.0 4.2 245 0.949
2 10 30 14 9.9 30.0 0.120 10.0 15.0 30.0 0.124 10.0 30.0 5.1 6.0 0.119
3 12 30 11 12.1 30.0 0.173 11.5 17.6 30.0 0.173 12.7 30.0 −0.5 106 0.173

Y a 6 300 25 6.0 288 0.600 5.5 11.7 550 0.598 6.2 19.7 6.0 271 0.600
b 7 300 25 7.0 298 0.740 6.9 12.4 319 0.740 7.2 19.7 7.0 280 0.740
c 8 300 20 8.0 304 0.994 8.0 9.4 304 0.994 8.0 18.5 8.0 285 0.994

Table 3
Results obtained with PROSECE fitting of the 18 S2-type experiments using F1, F2 and F3 complexing models on c-type of data sets; other parameters are the
same as inTable 2

S2 sim. Preset values F1 = ML F2* = ML + ML 2 F3 = MX + MY

log(β1) log(β2) LT n log(β1) LT resn log(β1) log(β2) LT resn log(β1X) XT log(β1Y) YT resn

4 8 16 30 24 8.8 17 1.612 8.2 16.0 26.6 0.848 8.8 16.3 5.5 279 1.129
5 8 20 30 14 10.8 15 0.185 10.8 17.8 14.9 0.185 10.7 14.9 2.4 292 0.185
6 8 24 30 14 16.0 15 0.248 18.2 19.4 15.0 0.248 14.7 15.0 −63.0 1112 0.248
7 10 16 30 14 10.0 30 0.453 10.0 14.5 30.2 2.137 10.0 30.0 3.0 0 0.453
8 10 20 30 14 10.0 19 1.667 11.5 20.9 19.7 1.483 10.3 17.9 5.6 197 0.923
9 10 24 30 14 16.5 15 0.326 19.5 11.3 15.2 0.326 15.1 15.2 −14.4 808 0.326
10 12 16 30 11 10.7 30 0.157 10.6 9.1 29.8 0.156 11.1 29.7 4.3 123 0.156
11 12 20 30 14 16.4 30 0.123 20.1 8.9 29.9 0.123 11.2 29.9 5.8 11 0.109
12 12 24 30 14 10.0 20 1.631 11.2 20.7 20.9 1.394 10.1 18.7 5.6 200 0.908
d 6 12 300 25 6.3 216 0.351 6.2 11.4 227 0.351 6.7 22.1 4.2 202 0.353
e 6 14 300 24 7.9 110 1.678 6.8 14.2 238 1.114 8.4 23.4 5.9 203 1.171
f 6 16 300 10 9.5 140 3.918 9.5 16.5 142 1.029 8.2 26.5 5.7 206 1.470
g 7 12 300 25 7.1 282 0.837 6.9 12.7 322 0.784 7.6 18.9 5.1 199 0.777
h 7 14 300 24 7.9 156 1.868 7.4 14.1 220 1.124 8.6 7.9 6.1 188 1.513
I 7 16 300 10 9.6 132 3.444 9.6 16.1 135 2.387 7.8 37.3 5.3 217 0.944
j 8 12 300 20 8.0 300 1.360 8.0 9.6 300 1.360 8.0 24.0 5.5 204 1.361
k 8 14 300 19 8.1 276 1.623 2.8 13.8 755 1.277 8.8 21.0 6.3 201 1.222
l 8 16 300 9 9.4 158 5.398 9.2 16.4 184 2.373 6.6 20.1 4.1 200 4.886

Table 4
Results obtained with PROSECE fitting of the 15 S4-type experiments using the following fitting models: F1 = ML, F2 = ML + ML2, F3 = MX + MY and
F4 = MX + MX2 + MY; other parameters are the same as inTable 2

S4 sim. Preset values F1, resn F2, resn F3, resn F4*

log(β1X) log(β2X) XT log(β1Y) YT n resn log(β1X) log(β2X) XT log(β1Y) YT

a + 4 8 16 30 6 300 24 3.716 2.233 0.914 0.732 8.5 15.9 19.8 6.1 256
a + 6 8 24 30 6 300 14 4.059 2.954 0.170 1.166 14.0 27.5 21.6 5.7 475
a + 8 10 20 30 6 300 14 5.877 5.833 0.419 0.428 10.2 16.5 18.0 6.4 186
a + 10 12 16 30 6 300 11 3.366 3.351 0.233 0.235 11.4 18.1 30.4 6.0 302
a + 12 12 24 30 6 300 14 5.797 5.758 0.410 0.419 10.3 17.1 18.3 6.4 185
b + 4 8 16 30 7 300 23 5.956 5.955 1.158 0.911 8.7 15.9 16.8 7.0 317
b + 6 8 24 30 7 300 14 6.910 6.910 0.337 0.844 13.7 27.4 27.2 6.9 297
b + 8 10 20 30 7 300 14 8.875 7.764 0.608 0.593 11.4 13.3 15.9 7.0 302
b + 10 12 16 30 7 300 11 5.767 5.767 0.917 0.516 11.2 11.3 30.8 7.0 306
b + 12 12 24 30 7 300 14 9.279 9.279 0.348 0.348 10.7 12.8 17.6 7.0 317
c + 4 8 16 30 8 300 19 1.231 1.231 1.062 1.126 8.0 16.6 12.6 8.0 318
c + 6 8 24 30 8 300 13 4.594 4.594 3.958 0.931 11.6 9.4 16.0 8.0 304
c + 8 10 20 30 8 300 13 4.592 4.592 4.313 0.743 15.1 7.9 14.9 8.0 309
c + 10 12 16 30 8 300 11 6.771 6.771 6.566 0.761 13.8 −2.1 30.4 8.0 299
c + 12 12 24 30 8 300 13 4.993 4.993 4.693 1.061 10.4 11.6 19.3 8.0 307
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Table 5
Results obtained with PROSECE fitting of the 15 S5-type experiments using the following fitting models: F1 = ML, F2 = ML + ML2, F3 = MX + MY,
F4 = MX + MX2 + MY and F5 = MX + MX2 + MY + MY 2 + MXY; other parameters are the same as inTable 2

S5 sim. ω n F1, resn F2, resn F3, resn F4, resn F5*

resn log(β1X) log(β2X) XT log(β1Y) log(β2Y) log(βXY ) YT

d + 4 2 23 4.356 2.708 1.100 0.930 0.908 8.5 16.1 23.9 5.8 12.1 12.2 368
d + 4 2× 103 12 4.501 4.501 0.247 0.406 0.924 9.0 18.0 27.4 6.3 12.9 20.1 188
d + 4 2× 106 11 3.464 3.422 0.211 0.191 0.236 9.3 24.6 30.4 6.3 11.2 29.5 211
f + 6 2 8 2.984 2.984 0.694 1.612 0.576 7.3 14.7 19.7 9.6 16.6 23.5 156
f + 6 2× 103 8 3.547 3.547 2.411 2.732 0.795 7.2 15.3 18.2 9.7 16.8 19.6 155
f + 6 2× 106 8 2.656 2.656 1.393 0.595 0.765 5.9 18.7 16.8 9.6 16.5 18.3 152
h + 8 2 13 9.316 9.316 1.085 1.305 1.001 8.8 16.1 19.2 7.6 14.3 19.2 220
h + 8 2× 103 11 6.013 6.013 1.008 3.567 0.475 9.6 16.3 29.8 7.4 14.0 18.9 237
h + 8 2× 106 11 6.504 6.504 3.604 1.344 0.395 8.8 12.0 29.6 7.2 14.1 17.9 264
j + 10 2 11 7.084 7.084 6.883 0.545 0.560 4.4 4.6 31.0 8.0 12.3 26.4 332
j + 10 2× 103 11 7.015 7.015 6.834 0.748 0.917 7.1 15.2 29.4 8.0 7.5 19.9 331
j + 10 2× 106 11 7.037 7.037 6.709 0.472 0.443 8.6 18.0 30.9 8.0 9.0 19.1 303
l + 12 2 8 8.021 7.900 1.957 8.088 1.969 8.3 15.1 13.8 9.1 16.6 18.6 217
l + 12 2× 103 8 6.697 6.697 5.035 5.609 1.660 7.3 16.2 16.9 9.2 16.7 17.1 211
l + 12 2× 106 8 7.051 7.051 5.634 6.879 1.721 7.5 14.4 22.1 9.2 16.8 17.0 207

4. Results and discussion

Before we start the fitting procedure that should comprise
several models, we should try to globally estimate the re-
sults by watching the shape of the data expressed in term
of Mf versusMT, pMf versus pMT and linearization modes
of Scatchard[63] and/or Rǔzić–Van den Berg[35,64–66],
whereMf stands for concentration of metal (free and labile)
measured by voltammetry andMT for total metal added in
standard addition procedure. That could give us the idea of
the kind of fitting model to be used, or at least to discard
some of the models. In the first presentation (Mf versusMT),
one can try to estimate the total ligand capacity by notic-
ing where the tangent to the data points interceptsX-axis,
suiting the Chau method of linearization[67]. In the second
presentation (pMf versus pMT), if there is more than one in-
flection, and in the third presentation (linearization) if there
is an indication of curvature of the data points, we can be sure
that the structure is more complicated than 1:1 metal–ligand
complexation.

The comparison of the three forms of data set results shows
that difference is bigger between (a) and (b) than between (b)
and (c). This is promising since the error function applied to
the simulated data points is arbitrary in any case. Also, the
detection limit of 10−10 mol L−1, used to remove the data
points was rather severe; it could be expected to be lowered
u tical
t was
n od-
n
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(res = sum(abs(ln(Ccalc) − ln(Csim)))), which is the sum of
absolute values of differences between the natural logarithms
of calculated and simulated data points. The values of resid-
uals are normalised to the number of data points in order to
allow the comparison of the results for data sets of various
lengths. It is interesting to compare consequent values ob-
tained for the same set of simulated data by application of
different fitting models.

The normalized residuals of all fittings for the data sets (c)
(data points obtained after removal of data <DL and appli-
cation of the random noise) of the four groups of simulated
S1, S2, S4 and S5 models fitted by up to five F1–F5 fitting
models, are shown inFig. 3and will be discussed separately.
In general, at first sight, for the S1 and S2 cases the resid-
uals are similar for all fittings, in which case, with the help
of statistics we decide whether to accept a more complicated
model or stay to the simpler one. For the S4 and S5 cases, we
can notice that the application of the right model can in aver-
age be distinguished from the wrong ones by comparing the
normalized residual values. In the tables the matching model
is marked with an asterisk (*).

4.1. One-ligand systems (S1 and S2 simulations)

One-ligand system was presented with both ligands, L = X
a ono-
l ated
d ML,
F

4
nger
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p to two orders of magnitude, depending on the analy
echnique used. It has to be noticed that noise insertion
ot that important for the final results concerning the go
ess of fit.

As only the (c) case represents possible simulation o
xperiment and as usually we do not know which mo
or fitting the experimental data is the right one, the m
aluable information about the fit we have, besides l
al parameter values, i.e. positive numbers for concentr
nd stability constants values, is the value of the resid
nd Y, and their corresponding stability constants for m
igand as well as bi-ligand cases. Each of the simul
ata sets was fitted by three different models, F1 =
2 = ML + ML2 and F3 = MX + MY.

.1.1. S1 simulation
Six different data sets were considered, three for stro

X) and three for weaker (Y) ligands; the preset value
omplexing parameters, capacity and stability constant
iven in Table 2and can also be read out fromFig. 2. The
esults of (a) and (b) fittings with ML model were rath
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Fig. 3. Residuals of fitting for data sets obtained after removal of data below the DL and application of random noise. S for simulation and F for fit-
ting models: S1 = F1 = ML; S2 = F2 = ML + ML2; F3 = MX + MY; S4 = F4 = MX + MX2 + MY; S5 = F5 = MX + MX2 + MY + MY 2 + MXY. Legends correspond
to tables notation and are named from left to right for each F. S1: 1, 2, 3, a, b and c; S2: 4, 5, 6, 7, 8, 9, 10, 11, 12, d, e, f, g, h, i, j, k and l; S4:
a + 4, a + 6, a + 8, a + 10, a + 12, b + 4, b + 6, b + 8, b + 10, b + 12, c + 4, c + 6, c + 8, c + 10 and c + 12; S5: d + 4 +ω = 2, d + 4 +ω = 2× 103, d + 4 +ω = 2× 106,
f + 6 +ω = 2, f + 6 +ω = 2× 103, f + 6 +ω = 2× 106, h + 8 +ω = 2, h + 8 +ω = 2× 103, h + 8 +ω = 2× 106, j + 10 +ω = 2, j + 10 +ω = 2× 103, j + 10 +ω = 2× 106,
l + 12 +ω = 2, l + 12 +ω = 2× 103 and l + 12 +ω = 2× 106.

straightforward, almost perfectly matching the preset values,
and are not surprising and to be discussed. The results of the
simulated points fitting after removal of <DL points and noise
insertion with three different models are shown inTable 2.
Concerning normalized residuals (residuals divided by num-
ber of points), all the three fittings have similar residuals. In
that case the simplest model should be accepted, which is the
right decision according to theF-test [68]. It is interesting
that for F2 model, the second constantβ2 has just been fig-
ured out by the fitting program, with almost no influence on

the result of total ligand (except for the Sim. a case). The F3
model applied on strong ligands gives unacceptable results,
but when applied on weaker ligands it just divides the total
ligand in two groups of almost equal constants, which points
that the decision of accepting the F1 model as the right one
would be the correct choice.

4.1.2. S2 simulation
Eighteen different data sets were simulated, 9 for stronger

(X) and 9 for weaker (Y) ligands. The results of data fitting
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from the (c) cluster with the same three models as in the
S1 case are shown inTable 3. Looking only to the residu-
als provides no enough evidence to determine which model
for fitting is the right one. On the contrary, for the set of
stronger (X) ligands, lower residuals were obtained with a
model offering two, rather than one ligand with two constants
for mono- and bi-ligand complexes. In the group of S2 sim-
ulations, there is expressed the strongest impact of passing
from fitting of all 25 data points (a), to fitting of data points
without those eliminated by the DL (b) and fitting of noisy
data (c). By analyzing only the (c) cluster, one can hardly
decide about the right model and consequently about the val-
ues of the complexing parameters. In such a case the answer
lies in redesigning the experiments either by measuring more
replicates or refining and increasing the number of standard
additions in order to increase the detection limit and lower
the noise.

4.2. Two-ligand systems (S4 and S5 simulations)

Two-ligand systems were presented with the mixtures
of ligands X and Y with the metal M and stability
constants for mono-, bi-ligand cases as well as mixed
metal–ligand complexes. Each of the simulated data sets
was fitted by four or five various models, F1 = ML,
F2 = ML + ML , F3 = MX + MY, F4 = MX + MX + MY and
F
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given inTable 5, Fig. 2 andTable 1, one can read out their
ligand concentrations and stability constants used. InTable 5
the obtained fitting parameters for the matching model as
well as the values of the residuals for all the models ap-
plied are given together with the number of points of each
data set for the (c) cluster. In 10 out of the 15 cases the nor-
malized residual was the smallest for the matching model,
which is a better score than in the case of S4 simulation.
However, the values of complexing parameters were esti-
mated with higher tolerances. Ligand concentrations were
underestimated, weaker ligands in higher extent than the
stronger ones, in more than half of the cases. From five of
the simulated stability constants the best retrieved constants
after noising procedure wereβ1Y andβ2Y, the constants for
weaker mono- and bi-ligand–metal complexes. It is evident
that for such rather complicated model, broader range of val-
ues of simulated parameters should be selected and the sim-
ulated data consequently treated in order to survey a spe-
cific rule and/or a range of more certain recognition of preset
parameters.

Starting from these results, two characteristic cases were
studied in more detail, i.e. the case d + 4,ω = 2 and the case
f + 6, ω = 2× 106. Three-fold repetition of the experiments
was simulated in order to test its influence on the correct
retrieving of the parameters. The results given inTable 6
brought to the conclusion that measurement repeating in great
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.2.1. S4 simulation
Fifteen different data sets were simulated following

4 model, i.e. there is one stronger (X) ligand that fo
ono- and bi-ligand–metal complexes and one weake

igand that forms mono complex. According to their simu
ion names given inTable 4andFig. 2, one can read out the
igand concentrations and stability constants used. InTable 4,
he obtained fitting parameters for the matching model as
s the values of the residuals for all the models applie
iven together with the number of points of each data se

he (c) cluster.
In 9 out of the 15 cases the normalized residual wa

mallest for the matching model. The weaker ligand con
ration was retrieved with better score than the stronger
ith less than 10% of error, 11 out of the 15 and 3 out o
5, respectively. Stability constant of the weaker ligand
ell retrieved in all the 15 cases, while for the stronger lig

his happened in only 3 out of the 15 cases. Those po
ases were characterized at the same time with the num
oints considerably high, i.e. the constants were the lo
f the proposed constant sets.

.2.2. S5 simulation
Fifteen different data sets were simulated following

5 model, i.e. there is one stronger ligand that forms m
nd bi-ligand–metal complexes, one weaker ligand that f
ono- and bi-ligand–metal complexes, and there is
ixed-ligand complex. According to their simulation nam
xtent eliminates the influence of the noise (seen from
omparison of the corresponding (b) and (c) set of res
ut cannot compensate for the missing of the data points
comparison of a-type of data with b- and c-types inTable 6),
hich in fact carry the major part of information about
trong complex parameter values.

.3. Data mining server rules

Handling with a big quantity of calculated data, we tr
o possibly find a general rule that could help us recog
he right model of fitting, in our case simulated data, bu
eneral, measured data of some unknown samples.

To that purpose we have prepared our data accordi
he rules of the data mining server (DMS)[69], where dat
nalysis is performed based on knowledge induction b

nductive learning by logic minimization (ILLM) system
sing known data sets and their classification this prog
earches for classification rules that could be applied t
ew data sets of the same kind. An attempt of mixing
b) and (c) sets of data did not give any meaningful re
o we restricted ourselves to the (c) set. A table with 239
mple rows (containing all the mentioned sets of simul
ata fitted to all the mentioned models) was constructe
f them was found in the positive class, which in our case
matching simulation and fitting model. Defined attribu
ere all preset parameter values of metal complexing ca

ty and their mutual differences and products, the numb
ata points in a particular set, the results of fitting includ

he amount of residual of fitting, and the residual normal
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Table 6
Results obtained with PROSECE fitting of two S5-type experiments using the fitting model F5; type: data type—see text; av: average of the three repetitions
of the same simulated point with different random noise; other parameters are the same as inTable 2

Sim. Fitting model n Type n of meas. resn log(β1X) log(β2X) log(β1Y) log(β2Y) log(βXY ) XT YT

Preset values 8.0 16.0 6.0 12.0 14.3 30.0 300

d + 4ω = 2 F5* 25 a 1 0.194 8.7 16.1 6.0 12.7 14.4 17.4 277
F5* 23 b 1 0.056 8.4 16.1 6.0 12.5 14.6 21.6 286
F5* 23 c 1 0.908 8.5 16.1 5.8 12.1 12.2 23.9 368
F5* 69 c 3 1.066 8.4 16.1 5.9 12.2 14.2 24.0 341
F5* 23 (av) c 3 0.623 8.5 16.1 5.7 12.2 8.4 23.9 383

Sim. Fitting
model

n Type n of meas. resn log(β1X) log(β2X) log(β1Y) log(β2Y) log(βXY ) XT YT

Preset values 8.0 24.0 6.0 16.0 26.3 30.0 300

f + 6ω=2× 106 F5* 25 a 1 3.071 −3.6 25.2 5.4 16.1 26.3 31.2 264
F5* 8 b 1 0.583 6.7 16.6 9.6 16.7 24.2 17.5 156
F5* 8 c 1 0.765 5.9 18.7 9.6 16.5 18.3 16.8 152
F5* 24 c 3 1.326 7.1 15.9 9.6 16.7 20.9 19.9 157
F5* 8 (av) c 3 0.663 7.2 16.1 9.6 16.7 21.6 19.2 157

to the number of data points (resn) as well as the number of
zero crossings of the residual.

A reasonable result is a rule obtained by the generalization
parameterg= 100, which claims: fitting is good if resn < 2.53.
This rule has a sensitivity of 100% and a specificity of 53.9%.
Such a result was a confirmation of classical statistical ap-
proach to the fitting problem where the analysis of residuals
is provided.

Another table (with 75 example rows, 15 out of which
were positive, i.e. matching simulation and fitting model)
was prepared with the examples of only S5, fitted with all
the F1–F5 fitting models. A reasonable result is a rule ob-
tained by the generalization parameterg= 20, which claims
fitting is good if resn < 2.19 (sensitivity of 100% and speci-
ficity of 72.4%). When compared to the first table of sim-
ulated and fitting models all together, the second table with
only one simulated model (the most complex in our analysis),
shows more specificity for less generalization, which was ex-
pectable. Furthermore, the second table is a good model of
a real experiment data treatment. By applying this rule, we
could count on selecting all (100%) the matching models and
27.6% of the wrong models. Further combining with other
disposable evidences such as critical logical inspection of the
parameters values and error distribution (e.g. number of zero
crossing of the residuals) could eventually bring us higher
specificity.

5
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This study showed that by means of voltammetric instru-
mentation supplied with automatic burettes and sophisticated
data treatment that enables quick scanning through differ-
ent fitting models, it is possible to conclude more precisely
about the metal–ligand structure in a measured sample. How-
ever, for more accurate values of the complexing param-
eters, a more detailed study should be undertaken includ-
ing repeating of experiments, and/or putting denser metal
additions (in cases of strong ligands when larger number
of first additions are so complexed to leave the free metal
below the detection limit), considering that rather a subtle
structure of dissolved metal–ligand complexes is tried to be
distinguished.

Analyses by the method of data mining server confirmed
the statistical methods of residuals analysis and have shown to
be applicable in such simulation—fitting modelling systems
as a prediction tool and help as one of the criteria in data
interpretation. A more specific rule is to be expected with a
denser web of modelled parameters, which could be the aim
of some future work.
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