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The present study investigated the effect of water cationic composition (Ca, Mg, Na, pH) on the bioaccu-
mulation and elimination rates of copper by an aquatic moss (Fontinalis antipyretica), under laboratory
conditions. For this purpose, mosses were exposed to copper at an environmentally relevant and usually
non-toxic concentration (5 pgL™!) in natural waters where cationic composition and concentrations
were varied.

To describe copper bioaccumulation by aquatic mosses, a two-compartment model was the first-order
kinetics, was developed and calibrated under a wide range of water cationic composition. Bioaccumula-
tion rates of Cu in mosses were significantly reduced as the concentrations of competitive cations in solu-
tion increased. Hence, in hard-water, Ca and Mg cations play a protective role as they compete with Cu?*
ions for the absorption on transport sites at the organism-water interface. Based on the relationships
between each major cation concentration and the exchange kinetics on mosses, the binding constants
(Kc;p) of each competing cations to the biological surfaces were derived. Using the present cationic-
dependant kinetic model, it is now feasible to incorporate water cationic composition in the (re)interpre-
tation of bryophytes contamination levels and in the (re)definition of Water Quality Criteria (WQC) as
illustrated through two selected examples of biomonitoring programmes. In the framework of future
national water quality guidelines revisions, a such flexible and mechanistic biomonitoring tool (integrat-
ing the protective effects of competing cations) may greatly improve the ability of regulators to derive
site-specific Cu (metal) guidelines for protecting aquatic biota, while limiting the use of conservative
assumptions.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

ity to accumulate trace metals to easily measurable levels (Claveri
et al,, 1994), and (iv) their ability to rapidly (days to weeks) re-

The regulatory context related to the monitoring of water sys-
tems (e.g. the European Water Framework Directive) requires that
Water Quality Criteria (WQC) and surveillance networks are based
on biologically relevant endpoints, e.g. concentrations of pollutants
accumulated in biota. In order to provide biologically meaningful
estimates of metal contamination in natural waters, biological
monitors have frequently been used in various monitoring pro-
grams (Claveri et al.,, 1994, 1995; Croteau et al., 1998; Cenci,
2001). Among primary producers, aquatic mosses, because of (i)
their widespread distribution in lotic ecosystems (if not present,
mosses are easily transplanted to sites under investigation (Fer-
nandez et al., 2006)), (ii) their ecological importance, (iii) their abil-

* Corresponding author. Tel.: +331 30 87 73 06.
E-mail address: ferreira.dani@caramail.com (D. Ferreira).

0045-6535/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.chemosphere.2008.10.031

spond to a change in ambient metal concentration (Nimis et al.,
2002), fulfil most of the criteria for suitable environmental bio-
monitoring, as shown by their use in various monitoring programs
(Cenci, 2001). Despite their long history as biomonitors, there has
been little attempt to develop theoretically based models to rigor-
ously relate metal concentrations in mosses to those in water.
Presently, the measurements of trace metal concentrations in
mosses exposed to polluted waters are often simply compared to
background metal concentrations to classify water systems as to
their relative degree of metal pollution. There is a need to put bio-
monitoring studies using mosses on a theoretical foundation by
quantifying the influence of various environmental variables on
metal accumulation by these plants.

Recently, models incorporating bioavailability of metals (and
thus their potential toxicity to aquatic organisms) into operational
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risk assessments have also been proposed to assess their potential
impact on biota. For example, generalizing the concept of the free
ion activity model (FIAM, (Morel and Hering, 1993)), Biotic Ligand
Models (BLMs) investigate how metal speciation and the compet-
ing cations (majors cations and/or pH) alter metal binding with
biological sites (De Schamphelaere and Janssen, 2002; Heijerick
et al., 2002; Niyogi and Wood, 2004; Borgmann et al., 2005). The
experience gained on other organisms (e.g. invertebrates and fish
tested in the frame of BLM development) suggests that cationic
concentration in water could have a significant influence on bioac-
cumulation in mosses (even if the endpoint investigated here,
based on bioaccumulated concentration, is different as the toxic
endpoints commonly used in the BLMs). The present study aims
at evaluating the competing effects of water cationic composition
(Ca, Mg, Na and pH) on the exchange kinetics of copper by an aqua-
tic moss (Fontinalis antipyretica). If such effects are actually veri-
fied, they could indeed be incorporated in the interpretation of
bryophytes contamination levels and in the definition of associated
WwQC.

The methodology adopted in this study was thus based on the
experimental and modelling analysis of the exchange kinetics of
copper (at environmental and usually non-toxic concentrations;
5 pg L~1) at water-bryophytes interface, in natural waters present-
ing various cationic compositions (Ca, Mg, Na, pH). The competing
effects of these major cations were characterized by the affinity
constants of the competing cations to the biological ligand (BL), de-
rived from the non-linear relationships between each cation con-
centration and the metal uptake rate constants. Through two
selected examples, we illustrate how the modelling approach de-
scribed in this paper could be applied for the (re)interpretation
of bryophytes measurements routinely collected in biomonitoring
programmes.

2. Materials and methods
2.1. Biological material sampling

Bryophytes (F. antipyretica) were sampled in January and March
2006, in the Sauldre River (north-eastern France), far from signifi-
cant anthropic pressure (third Strahler stream ordering). To limit
biological variability, only new green tips (2-3 cm) were kept; dark
green tips were discarded. The selected green tips were then placed
in clean plastic bags and stored in a cool room (4 °C) prior to the
experiments. Just before immersion in the exposure tanks, the tips
were rewashed three times in the mineral water used for the test.

2.2. Test solutions

Exposure solutions consisted of mineral water (Mont Calm®,
France, pH = 6.8, dissolved solids = 27.5 mg L™, dissolved organic
carbon <0.4 mg C L), with the following cationic characteristics:
(Ca**)=3.1mgL!; (Mg?")=064mgL'; (Na")=143mglL';
pH = 6.8. This mineral water was spiked with different volumes
of stock solutions of CaCl,, MgCl,, NaCl, HCl, and NaOH (Merck,
Darmstadt, Germany, trace metals <0.001%), to obtain five different
concentrations for each of the investigated cations: (Ca®*): 3.1, 9.9,
19.7, 41.1 and 153.1mgL!; (Mg?*): 0.64, 2.1, 5.1, 104 and
488 mgL~!; (Na*): 1.43, 3.2, 11.0, 21.6 and 103.5mgL""; pH:
8.4,7.7, 6.8, 5.9 and 4.8. To investigate how cationic composition
alters copper bioaccumulation, the concentration of a given cation
was varied, while keeping all other cationic concentrations con-
stant. Each exposure solution was spiked with a constant nominal
dissolved copper concentration (5 pg L~!). In order to limit the fix-
ation of copper on the walls, the tanks were emptied and refilled
with new solution before immersing the bryophytes.

2.3. Bioaccumulation experiments

The experimental procedure for the bioaccumulation biotests
were conducted in three successive steps:

(i) Pre-equilibration step

To pre-equilibrate biotic ligand sites and cations before copper
exposure, 10 g (fresh weight) of bryophytes tips were exposed for
48 hin a solution spiked with the cationic composition studied, but
deprived of copper contamination.

(ii) Accumulation step

After the pre-equilibration step, bryophytes (~10g fresh
weight) were removed (0.5 mm filtered), and placed in a 15-L stir-
red tank in the presence of copper (batch experiments without re-
newal of water). The kinetics of total dissolved copper
concentrations ([Cuw]) was followed for 72 h according to an expo-
nential base timing scale (n=15). Afterward, aliquots of bryo-
phytes (approx. 700 mg fresh weight per triplicate) were
sampled. Extra- and intracellular copper concentrations were mea-
sured (see next section).

(iii) Desorption step

Cu exposed bryophytes were sampled at the end of the accumu-
lation step and were resuspended (~9 g fresh weight) in a 3-L tank
containing a solution with the same cationic composition as for the
accumulation step, but deprived of copper contamination. The des-
orbed copper ([Cuw]) was kinetically followed for the 24-h desorp-
tion period (n = 6).

2.4. Intracellular and extracellular metal content of bryophytes

At the end of the accumulation step, a triplicate of bryophytes
(approximately 700 mg fresh weight) were washed for 60 min
with 50 mL of 1.0 mM EDTA (Na,-EDTA, Acros Organics, Geel, Bel-
gium) to remove the metals adsorbed to the cell wall (Vazquez
et al.,, 1999; Meylan et al., 2003; Fernandez et al., 2006). Copper
in the EDTA solution is attributed to the extracellular metal con-
tent. Cu in the EDTA solution was measured by Graphite Furnace
Atomic Absorption Spectrometry (GF-AAS - Varian, SpectrAA-
800, Varian). The washed bryophytes were dried at 60 °C for 72 h
and acid-mineralized (Merck, Darmstadt, Germany, 65% suprapur
nitric acid) for the measurement (by GF-AAS) of copper attributed
to the intracellular metal content of bryophytes.

2.5. Water analysis

Water samples for total dissolved copper analysis were col-
lected in triplicate, filtered with disposable PTFE syringe filters
(0.2 pm, VWR International, USA), and then acidified with analyti-
cal grade HNOs to pH < 2 prior to storage (4 °C). Water samples for
major cations (Ca, Mg and Na) were collected in triplicate for each
test at the beginning of each exposure period and measured by ICP-
AES.

2.6. Mass budgets

The mass budgets for copper were checked at the end of the
accumulation step (t=72 h) by comparing total bioaccumulated
copper (in pg of Cu) and total dissolved copper lost from bulk solu-
tion (in pg of Cu).
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2.7. Kinetic modelling

The key processes that control metal uptake and release by F.
antipyretica are generally described using a two-compartment
model with the first-order kinetics (Claveri et al., 1994; Croisetiere
et al., 2005) (Fig. 1).

According to the model’s first-order kinetics assumption, the
evolution of the copper concentrations in the three different frac-
tions (dissolved bioavailable in water Cuyy, extracellular CuBL;
and intracellular CuBL, copper) are modelled as follows:

dCuw] _ —ky - {BL1 }ree - [Cuw] 4 Movos 1 fcuBLy) (1)
dt 174
d{CuBL %
% = Mbryos K < {BL1 }ree - [Cw] — k1 - {CuBL, }
—ky - {BLy }gee - {CuBL} + k_5{CuBL,} (2)
% = k2 . {BLZ}free . {CUBL1} — k,z . {CUBLz} (3)

where k; (gmolg, s') and k, (gmolg, s~') are the adsorption and
internalization rate constants. k_; and k_, (s—') are the rate con-
stants for copper desorption and elimination processes; Mpyryos iS
the mass (in gpryos d.w.) of bryophytes suspended is the 15 I solution
(V); {BL1}free and {BL;}fee are the free extra- and intracellular site
concentrations (molg~!); [Cuw], {CuBL,} and {CuBL,} are, respec-
tively, the dissolved (pgL~!), the extracellular (ugg™' d.w.) and
the intracellular (ugg™' d.w.) copper concentrations. Please note
that the dissolved copper in water Cuyy is there considered to be
the bioavailable copper fraction since biotests were carried out in
mineral water (deprived of organic ligands).

The kinetic distribution of copper in the system will thus be
partly governed by the initial available free extra- and intracellular
site concentrations ({BL1}fee and {BL;}fee), Which will decrease as
the concentrations of competitive cations (such as Ca, Mg, Na, H;
see Fig. 1) increases. In addition, to conform with experimental
measurements and simplify Eq. (1)-(3), the conditional rate
constants k} and k) (in s™'), depending on the extra- and intracel-
lular site concentrations {BLi}fee and {BL,}fee), Were defined as
follows:

k/] = k1 x {BL1 }free (4)
k/2 =ka x {BLZ}free ()

Egs. (1)-(5) were used to derive specific and identifiable analytical
solutions (details of the mathematical developments describing the
changes in copper concentrations in water ([Cuw]) and in the bryo-
phytes ({CuBL;} and {CuBL,}) (analytical solutions are detailed in

Cell

Medium membrane

Organism

1. Adsorption/
Desorption

2. Internalization/
Elimination

ks,
—— Cu- BL,
k.

Cuw —kV Cu

c,sL

Ca2+’ MgZ+, Na+’ H+

Fig. 1. Conceptual model of physicochemical processes involved in the uptake/
release of Cu by aquatic bryophyte. Cu,,, Cu-BL, and Cu-BL, are the dissolved in the
water, extracellular and intracellular copper, respectively.

Supplementary materials), and can be found in (Ciffroy et al.,
2001)). Analytical solutions were used to fit experimental data
([Cuw], {CuBL,} and {CuBL,}) by calibrating the kinetic parameters
according to the procedure described hereafter.

The conditional adsorption rate constant k}, the desorption rate
constant k; and the ratio k}/k , were calculated using the bound-
ary conditions (initial conditions and steady state) of the experi-
mental accumulation step.

Based on our previous results (Ferreira et al., 2008), we assume
that at t ~ 0, exchanges are mainly dominated by the accumulation
from water to external binding sites {BL;}. Consequently, Eq. (1)
can be simplified by deleting the desorption term (%-
k_1-{CuBL,}).

Hence, the conditional adsorption rate constant k| is estimated
after a short exposure time (t =5 min) as follows:

d[CUW] 1

K =—
! dt " Cuwleso

(6)

t=5min
when a plateau is reached for [Cuw] at t =72 h, Eq. (1) becomes:

v % [Cuw]i_72n

k1=K, x B (7)

mbryos

where [Cuw]=72n and {CuBL };-7o, are the total dissolved copper (in
pgL1) and EDTA-washed copper (in pgg~' d.w.) on the bryophytes
measured at t=72 h.

Assuming equilibrium at t =72 h, Eq. (3) can also be simplified,
assuming a null value for the kinetic term d(ct‘i#. The K, /k_, ratio
can thus be calculated as follows:

K (CBla), ®
k5  {CuBLi},_7p

2.8. Methodology for determining constants of competing cations to
the biotic ligand K.,

According to the general concepts of metals and cations binding
to biological surfaces (Xue et al., 1988), the binding of metal and
cations [C;] to the free external binding sites {BL} fee Can be
characterized by a stability constant K¢ g, calculated as follows:

. {CIBLI}
K = e L 1o )

In addition, the maximal complexing capacity of the biotic ligand
{CCgL, } max €quals the sum of the concentrations of the free external
binding sites {BL;}fee, metal bound to the external binding sites
{CuBL,} and competitors bound to the external binding sites
S"{GBL;} . Under equilibrium conditions, it becomes:

{CCot, bmax = {BLi e + {CuBL1} +  {CiBL1} (10)

Moreover, at the low copper concentrations used for the experi-
ment, it can be assumed that metal bound to the external binding
sites is negligible compared to competitors bound to the external
binding sites ({CuBL;} < >_i{CBL:}). Hence, combining Eq. (9) and
(10), the free biotic ligand site concentration {BL;}ee can be ex-
pressed as follows:

1
{BL1}ree = {CChL, tmax % (m) (11)
Combining Eq. (11) and (4), we obtained:
;o 1
k] = k] X {CCBLl}max X <—_l n ZiKQBLl < [C,]) (12)
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The stability constant Kc,z, was thus hyperbolically related to k)
and could be estimated using Eq. (12) and minimizing the quadratic
error between measured and calculated k] values.

3. Results
3.1. Mass budgets

Copper budgets were checked at the end of the experiments
(t =72 h). There was no significant difference (ANOVA, p < 0.05) be-
tween the 72-h bioaccumulated fraction and the dissolved copper

losses in solution. This result confirms that adsorption on tanks is
negligible during the bryophytes exposure.

3.2. Kinetic accumulation of copper by bryophytes

The kinetic copper accumulation by bryophytes is indirectly
shown by the depletion of copper in solution expressed by the ratio

1.2
1.0 A
o
A 0.8 |
=
]
O, 06
~
3
g 0.4 4
0.2
0.0 T T T
0.01 0.1 1 10 100
Time (hours)
L 4 Ca3mgl'; Vv——— CalOmgL" ; m ——.—.- Ca20mgl';
O -——-Cad40mgL"; A Cal50mgL-;
1.2
1.0
o
J 08
IE:
S
O 06
~
3
2 0.4
0.2
0.0 T T T
0.01 0.1 1 10 100
Time (hours)
L 4 Na15mgL';y—— — Na3mgL'; @ ——.—.- Na 10 mgL-;
O —— —— Na20mgL" ;A = Na 100 mg L
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of Cu concentration at a given time to the initial Cu concentration
in solution, ([Cuw]/[Cuw]~o0) (Fig. 2). For each of the bioaccumula-
tion experiments, the [Cuw]/[Cuw]~o ratio rapidly drops and
reaches a quasi plateau indicating a steady state at the water-
organism interface at the end of the experiment (t=72). Steady
states at the water-organism interface are reached at differ-
ent times, depending on the concentrations of the competing cat-
ions in water (increases in cationic concentrations result in
delayed times to reach the steady state at the water-organism
interface).

The comparisons between the measured and calculated values
(analytical solutions derived from Eqs. (1)-(5) for the sorption
and release experiments are shown in Fig. 2. The correlation coef-
ficients between measured and calculated values are generally
higher than 0.92, indicating that the two-compartment model
properly describes the exchange kinetics of copper at the water-
aquatic mosses.

For each cation biotest, the conditional metal adsorption rate k]
determined from the experimental data of accumulation experi-

1.2
1.0 -
o
08
IE:
>
O, 061
~
=
3 0.4
0.2
0.0 ‘ : :
0.01 0.1 1 10 100
Time (hours)
* Mgo06mgL';V———Mg2mglL'; W ——.—.. Mg 5 mg L;
O -— —— Mg 10mgL"; A e Mg 50 mg L' ;
1.2
1.0 4
¢ 08
=
>
O 06
=
>
O, 04
0.2
0.0
0.01 0.1 1 10 100
Time (hours)
* pH8.4 ; V—— — pH7.7; - pH68
O -— —— pHb59; A e pH4.8;

Fig. 2. Kinetic Cu loss in solution ([Cuy]/[Cuw]i-0) in the various exposure media (with variable Ca, Mg, Na and pH concentrations) over 72 h of exposure. Note that the x-axis
is on a logarithmic scale. Symbols and lines represent experimental and modelled data (analytical solutions derived from Eq. (1)-(5).
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Table 1
Adsorption-desorption rate constants (kj,k’ ;) and internalization/elimination ratio
values (K, /k_>) as a function of the experimental conditions of each bioaccumulation
biotest.

Bioassay Ca®* Mg?* Na* pH A (s  %ka(s7") W
set (mgL™') (mgL™') (mgL™) k >
Ca 31 0.64 1.42 6.85 5.33E-04 1.31E-05 0.30
9.9 0.63 1.56 6.90 3.67E-04 1.02E-05 0.32
19.7 0.58 1.52 6.71 2.02E-04 9.52E-06 0.28
41.1 0.54 1.47 6.80 1.67E-04 1.14E-05 0.28
153.1 0.60 1.44 6.69 7.78E-05 6.62E-06 0.28
Mg 3.1 0.64 1.39 6.91 5.33E-04 1.42E-05 0.30
33 2.1 1.53 6.92 3.65E-04 1.61E-05 0.29
3.1 5.1 1.49 6.86 2.23E-04 9.06E-06 0.28
3.0 104 1.44 6.88 1.61E-04 9.62E-06 0.27
2.9 48.8 1.41 6.75 8.29E-05 6.29E-06 0.35
Na 3.0 0.61 143 6.79 5.33E-04 1.42E-05 0.30
3.2 0.60 3.21 6.78 4.33E-04 1.16E-05 0.29
3.0 0.55 11.0 6.94 445E-04 1.50E-05 0.33
2.9 0.51 21.6 6.88 4.79E-04 1.92E-05 0.28
2.8 0.57 103.5 6.80 5.02E-04 7.80E-05 0.29
pH 2.8 0.62 1.46 840 6.05E-04 1.35E-05 0.28
2.9 0.56 1.49 7.70 5.99E-04 2.08E-05 0.28
3.0 0.60 1.54 6.80 533E-04 1.34E-05 0.30
3.2 0.65 1.58 590 3.08E-04 1.29E-05 0.29
3.1 0.66 1.44 480 199E-04 1.99E-05 0.29

Bold values refer to the water quality parameter varied for each bioassay set (Ca,
Mg, Na, pH).

2 K}, k_; values and K,/k_, ratios determined from the experimental data of
accumulation experiments (Eqs. (6)-(8)).

ments (Eqs. (6)-(8)) decreased with increasing Ca®*, Mg®* and H*
(but not Na*) concentrations (Table 1). This observation supports
the concept of competitive binding of these cations on transport
sites at the organism-water interface.

Whatever the bioassay, the (k,/k_,) ratio (Eq. (8)), which de-
scribes the distribution of copper (intra/extra-cellular) at equilib-
rium (t=72h) within aquatic mosses, remains fairly constant
((K5/k_2)t=72n = 0.294 £ 0.02; n=17) (Table 1). This suggests that
the internalization process is not influenced by cationic variations
in the exposure medium.

3.3. Desorption experiments

Experimental and calculated copper concentrations during the
24-h desorption period are depicted in Fig. 3. Increases in cationic
concentrations result in higher released amounts of copper from
mosses in solution. This observation suggests that desorption
kinetics depends on Ca%*, Mg?* and H" (but not Na*) concentrations
in solution. The values calculated for the desorption step were de-
rived from Eq. (1)-(5), and these values are fairly well fitted with
the measured copper in solution (Fig. 3), even if some gaps (mostly
at low copper concentrations in solution) exist between calculated
and measured values at the beginning of the experiments. This re-
sults clearly indicate that release processes are well described by
the two-compartment model (see the next section below).

4. Discussion
4.1. Validation of the kinetic model

The data obtained during the desorption step (Fig. 3) are used
for the validation of the two-compartment kinetic model. This
dataset is compared to values which were calculated by using ki-
netic parameters previously calibrated from the accumulation
dataset only (kinetic parameters are presented in Table 1). Thus,
comparing the observed and calculated dissolved concentrations
for each biotest showed that desorption experiments are well pre-

dicted, errors being lower than a factor of 2 in 90% of the cases
(n=100); this confirms the predictive capacity of the kinetic model
developed in this study. However, for three calcium biotests, the
observed copper concentrations fall below predicted concentra-
tions, likely because of the low measured copper concentrations,
which were very close to the copper detection limit (0.2 pngL™1).

4.2. Effects of major cations on short-term Cu bioaccumulation kinetics

An increase of the calcium concentration from 3.1 to
153.1 mgL~' (0.077-3.8 mM) reduced the adsorption rate constant
K, with a factor 6.8 (Fig. 4a; measured k) varied from 5.33 x 10~*
to 7.78 x 107> s~ ). A similar effect is observed for magnesium,
i.e., a significant decrease (of a factor 6.4) in adsorption rate con-
stant ki (Fig. 4b; measured k; varied from 5.33 x 107 to
8.29 x 1073 s~1) was observed when magnesium concentration in
solution was increased from 0.64 to 48.8 mgL~! (0.026-2.0 mM).
These findings suggest that calcium and magnesium compete with
Cu for binding sites, indicating that these cations share the same
uptake sites with Cu at the cell-surface ligands.

However, no significant change in the adsorption rate constant
K, (Fig. 4c; measured k; varied from 5.33 x 10™*t04.33 x 107*s71)
was found when sodium in solution varied between 1.43 and
103.5mgL™! (0.062 and 4.5 mM). This result indicates that Cu
uptaken by aquatic mosses is not competitively inhibited by so-
dium ions in solution, suggesting that sodium and copper ions do
not share the same binding sites on cell membrane.

Fig. 4d shows that between pH 4.8 and 6.8, the adsorption rate
constant k} increased from 6.05 x 107> to 1.99 x 10~*s~! (factor
3.0). Increase of the pH to 8.4 do not affect significantly k|
(5.99 x 10~*s~! for pH 7.7 and 6.05 x 10~*s~! for pH 8.4). On
the basis on these results two distinct phases can be identified
(graphically represented in Fig. 4d) : (i) a first phase where increas-
ing pH (from 4.8 to 6.8) results in a continuous increase of the
number of deprotonated sites ({BL;}fee) Onto the cell membrane,
and thus in increase of the Cu adsorption rate constants by aquatic
mosses (k}) ; (ii) a second phase where increases in pH (from pH
7.7 to 8.4) do not result in significant increases of the deprotonated
sites, and thus in the observed adsorption rate constants K. These
observations clearly show that copper accumulation did not de-
pend on free copper concentration only, since the adsorption rate
constant (k) differed by more than a factor 6.8 when cationic com-
position were varied in environmentally relevant ranges.

4.3. Binding constants of competing cations to the biological surfaces

The affinity constants K¢z, (in ] mol 1) and the maximal uptake
rate constant (k; - {CCy, } max» 7-07 x 10~* s™")were calculated using
Eq.(12). Compared to the values of the affinity constants for calcium
(log Kcapr, = 3.47), magnesium  (logKygs, = 3.87)and  proton
(log Kupr, = 5.13), the value for sodium (log Kngs, = 0.01) indicates
that copper bioaccumulation on bryophytes is not affected by Na
concentrations in the exposure medium. The affinity constants value
obtained for proton (log Kys,, = 5.13), corresponding to the average
pKa value of bryophyte binding sites, confirms the assumption of a
total deprotonation at neutral pH, under which the H/Cu competi-
tion occurs. The stability constants (log K¢,s;, ) for Ca, Mg, and H ob-
tained for F. antipyretica are on the same order of magnitude as
those reported for fish gills (Santore et al., 2001; Niyogi et al.,
2004) or daphnids (De Schamphelaere and Janssen, 2002).

4.4. Incorporation of cationic composition of water in the
biomonitoring strategy

In order to illustrate how the modelling approach described in
this paper could be incorporated in the (re)interpretation of
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Fig. 3. Desorption kinetics of observed and calculated copper concentrations ([Cu,]) during the 24-h desorption period.

bryophytes contamination levels commonly collected in monitor-
ing networks, we selected two prospective situations. The first
one deals with the interpretation of contamination levels of trans-
planted mosses, while the second one concerns contamination lev-
els autochthonous bryophytes.

(i) Example 1: Influence of water cationic compositions for pre-
dicting copper bioaccumulation by transplanted mosses

In this example we evaluate the performance of the cationic-
dependant kinetic model to describe the bioaccumulation in
mosses transplanted in three contrasted water cationic composi-
tions (representative of three French rivers). In this example, we
suppose that bryophytes originating from a non-polluted area are
transplanted on three different French rivers (the Loire, the Seine
and the Moselle rivers, respectively). Average water cationic com-
positions of these rivers are reported in Table 2 (average values
were determined from data collected by our institute during sev-
eral in situ campaigns). In this predictive exercise, we considered
that each of the selected rivers was submitted to an accidental con-
tamination episode (96 h contamination phase with about 5 ugL™!
of bioavailable Cu in water ([Cuw]), Table 2). Evolutions in the bio-
accumulated concentrations of copper ({Cuy,}) for mosses exposed

to these three water cationic compositions (Moselle, Seine and
Loire) can be calculated using the previously developed cationic-
dependant kinetic model.

At the end of the 96h contamination period, a fourfold differ-
ence for bioaccumulated copper ({Ctm}i-96n ,» Table 2) can be ob-
served between the hard-water (the case of Moselle river) and
soft-water (Loire case) scenarios. As regard to water quality classes
(Table 2) used e.g. by French water management agencies to inter-
pret bryophytes measurements, different ‘pollution classes’ would
be drawn from bryophytes levels obtained on the Seine, Loire and
Moselle rivers respectively (while the accidental scenario is con-
sidered to be the same one): the bioaccumulated copper obtained
in the Loire river would correspond to the so-called ‘Heavy pollu-
tion’ class, while those observed at the Moselle river would corre-
spond to the ‘Safety range’ class. Using the present cationic-
dependant kinetic model, it is now feasible to predict the bioaccu-
mulation of copper in aquatic mosses across a wide range of water
quality conditions, and thus to derive site-specific WQC. For exam-
ple, the use of the present cationic-dependant model may greatly
improve the ability of regulators to (re)defined lower discharges
thresholds for the Loire river (as compared to the Seine and Mo-
selle rivers) in order to reach the recommended ‘Safety Range’
class.
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Fig. 4. Measured (V) and calculated ((--); Eq. (12)) adsorption rate constant of copper (k; ) by bryophytes as a function of the (a) Ca, (b) Mg, (c) Na concentrations, and (d) pH.

Table 2

Predicted kinetic constants and 96 h accumulated copper in mosses for three combinations of water cationic compositions (Loire, Seine and Moselle rivers cases) compared with

French Water Criterion (WQC).

River Input data Kinetic parameters Output data Interpretation
[Cuw] Ca Mg Na pH %] k4 ky k o {Cuum) =06n (ngg ! French Water Quality
(ngl™") (mgL™") (mgL™") (mgL~") (1) (h71) (b (b dw.) Criterion (WQC)
Loire 5 36 7 18 8.5 0.30 0.0576 0.0864 0.2952 239 200 < {Cu}r-06n < 400 ugg " d.w.
Heavy pollution [
Seine 5 136 6 7 83 0.15 0.0576  0.0864 0.2952 123 66 < {CUm}e=o6n < 200 pgg ' d.w.
Proven pollution ]
Moselle 5 250 23 198 8.0 0.07 0.0576 0.0864 0.2952 54 33 < {CUm}i=o6n < 66 pgg~! d.w.
Safety range [0
2 Conditional uptake rate constant calculated using Eq. (12).
(ii) Example 2: Evaluation of the bioavailable copper in water (Cutw], = k1 y {Cum}; (13)
from measurements on autochthonous mosses Wi Ky 1+ L1}
' k

In this example, we investigate the use of the present model to
quantify the theoretical bioavailable copper concentrations in
water that would lead to a common aquatic mosses contamination
in French river waters with a wide range of water cationic compo-
sitions. We assume that autochthonous mosses are at equilibrium
in chronically Cu-contaminated rivers “i". For each river “i”, charac-
terized by its own cationic concentrations (Ca;, Mg;, Na;, pH;), Egs.
(1)-(3) can be simplified using the equilibrium assumption to cal-
culate the bioavailable copper concentration in water [Cuy];:

In this schematic exercise, we considered that bryophytes were col-
lected in 80 different rivers (i = 1-80) and that copper bioaccumu-
lated concentration is 100 pgg~! for each of them. Average
cationic composition for these 80 rivers were obtained from na-
tional water agencies databases (data available at http://www.les-
agencesdeleau.fr). For each of 80 water cationic composition (Ca;
varying from 1.3 to 165 mgL~!, Mg; from 0.6 to 38 mgL~', Na; from
2.7 to 109 mgL~! and pH; from 6.8 to 9.6), we calculated (Eq. (12))
the corresponding adsorption rate constant k; (varying from
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2.5x 107" to 3.8 x 10~41g~" s~'). Each bioavailable copper [Cuw];
was calculated using the previously estimated site-specific adsorp-
tion rate constant k} ;. The dispersion of the calculated bioavailable
concentrations in water ([Cuy]; for each f the 80 rivers “i” is graph-
ically represented in Fig. 5. This results showed a 15-fold difference
among the 80 calculated bioavailable concentrations (calculated
[Cuw]; varying from 0.44 ugL~! to 6.7 pgL~"), while the bioaccumu-
lated copper concentration in mosses were assumed to be the same
one. These results suggests that cationic composition of water have
significant implication in the interpretation of autochthonous aqua-
tic mosses contamination levels. The use of the present cationic-
dependant model may greatly help national water management
agencies in the evaluation of site-specific bioavailable metal con-
taminations in rivers.

5. Conclusions

Our experimental and modelling results have shown that water
cationic composition have to be taken into account for predicting
the bioaccumulation of copper by aquatic mosses. Based on the
relationships between each major cation concentration and the
copper exchange kinetics on mosses, the binding constants (Kc,s.)
of each competing cations to the biological surfaces were derived.
We illustrate how a cation-dependent modelling approach could
improve the interpretation of bryophytes measurements routinely
collected in biomonitoring programmes. The experimental obser-
vations and the associated model developed in this paper may have
important implications for the protection and management of
freshwater biota in terms of national water quality guidelines.
Hence, in the framework of future national water quality guide-
lines revisions, a such flexible and mechanistic biomonitoring tool
(integrating the protective effects of competing cations) may
greatly improve the ability of regulators to derive site-specific Cu
(metal) guidelines for protecting aquatic biota, while limiting the
use of conservative assumptions.
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