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Optimization of light structures: the vanishing mass conjecture.

G. BOUCHITTE

Abstract: We consider the shape optimization problem which consists in placing a given mass

m of elastic material in a design region so that the compliance is minimal. Having in mind optimal

light structures, our purpose is to show that the problem of finding the stiffest shape configuration

simplifies as the total mass m tends to zero: we propose an explicit relaxed formulation where

the compliance appears after rescaling as a convex functional of the relative density of mass. This

allows us to write necessary and sufficient optimality conditions for light structures following the

Monge-Kantorovich approach developed recently in [5].

1. Introduction

Since the beginning of the mathematical theory of elasticity it was possible to consider
from a rigorous point of view the problem of finding the structure that, for a given system
f of loads, gives the best resistance in terms of minimal compliance. In other words, an
elastic structure is optimal if the corresponding displacement u is such that the total work∫
f ·u dx is minimal. However, even if the setting of the problem does not require particular

mathematical tools, only in the last two decades there has been a deep understanding of
shape optimization problems from a mathematical point of view. This was mainly due to the
dramatic improvement in the field impressed by the powerful theories of homogenization
and Γ-convergence which have been developed meanwhile.

What became clear soon was that in a large number of situations the optimal shape
does not exist, and the existence of an optimal solution must be intended only in a relaxed
sense. The form of the relaxed optimization problem was first studied (see [22,23]) in the
so called scalar case where the physical problem only involves state variables with value
in IR, like the problem of optimal mixtures of two given conductors. In this case the
relaxed solutions have been completely studied, and identified as symmetric matrices with
bounded and measurable coefficients, whose eigenvalues satisfy some suitable bounds. A
similar result was also obtained in the elasticity problem (see for instance [16]) for optimal
mixtures of two homogeneous and isotropic materials. In almost all cases which have been
considered, the optimal relaxed solution is not isotropic and this was interpreted by saying
that an optimal shape does not exist and minimizing sequences are composed by laminates.
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We want to emphasize that the case of optimal elastic structures, or also simply the study
of optimal shapes of a given conductor, seems to have an additional difficulty with respect
to the problem of optimal mixtures. Indeed, the first correspond to the case of optimal
mixtures when one of the two materials (or conductors) has the elasticity constants (or the
conductivity coefficient) equal to zero. In this case, due to a lack of uniform ellipticity, it is
known that among all possible relaxed problems, obtained as limits of sequences of elliptic
problems on classical domains, there are some that are not of local type, and it is not clear
if these nonlocal relaxed solutions could be optimal. This interesting direction of research
has been developed recently in the scalar case in [2] and [20] showing deep connections
with the theory of Dirichlet forms, and more recently in the case of elasticity in [14].

Here we are interested in a apparently more difficult problem which consists in finding
the asymptotic of the previous shape optimization problem when the total volume tends
to zero. In other words we are trying to give a mathematical fundation for what we call
optimal light structures. In [1] it has been proposed to solve this problem by following
three steps: 1) describe optimal mixtures of two elastic materials (homogenization) 2) Pass
to the limit when the rigidity constants of the weak material tend to zero, 3) Pass to the
limit as the ratio of void goes to 1 (high porosity limit).

However I got the impression that this approach is very heavy and, as far as I know, in
view of the difficulties explained above no real mathematical justification has been given
until now for what concerns steps 2 and 3. In addition the occurrence of concentration
on lower dimensional structures expected in many cases by engineers and manufacturers
pushes a priori for searching optimality out of the class of microstructures.

The aim of this paper is to propose a new direct approach leading to a very simple
formula for the limit compliance where the light structure is described in term of the
density distribution of material. This density is a possibly concentrated non negative
measure and the corresponding energy functional turns out to be convex. As a consequence
we may use the framework I recently developed in collaboration with G.Buttazzo and P.
Seppecher [4, 5, 10] which allows us to see the optimal measure as the multiplier of a linear
programming problem and also to write necessary and sufficient optimality conditions
(Monge-Kantorovich system).

The plan of the paper is the following. In Section 2 we present the rescaled shape
optimization problem associated with a small total mass ε. It is written as the minimization
of a functional cε(µ) defined on probability measures. Then we state the form of the Γ-
limit of the sequence {cε} as ε→ 0. The model of Michell truss like structures is recovered
as a particular case in dimension 2. In section 3, we introduce a framework suitable for
dealing with lower dimensional structures in IRn. We derive a relaxed compliance for
structures whose dimension is prescribed to be less than or equal to k < n. Applying this
result for k = n− 1 allows us to prove the upperbound inequality for the Γ-limit of {cε}.
In the last section, the lower bound inequality is presented as a consequence of what we
call the vanishing mass conjecture. Some geometrical arguments are given to support this
conjecture.

2. Setting of the problem and the vanishing mass model.
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Notations. In what follows Ω is a bounded Lipschitz connected open subset of IRn , Σ
is a compact subset of Ω and F is an element of M(Ω; IRn), the class of all IRn-valued
measures on Ω with finite total variation.

The class of smooth displacements we consider is the Schwartz space D := D(IRn; IRn)
of C∞ functions with compact support; similarly, the notation D′(IRn; IRn) stands for the
space of vector valued distributions and, for a given nonnegative measure µ, L2

µ(IRn; IRd)
denotes the space of p-integrable functions. The symbol · stands for the Euclidean scalar

product between two vectors in IRn or between two matrices in IRn2

.

The elastic structure is placed in Ω and occupies a region (an open subset) ω ⊂ Ω of
prescribed volume m. It is clamped on the part of ω in contact with Σ and it has to support
the given load F . The (possibly infinite) compliance associated with this configuration is
given by

(2.1) c(ω, F,Σ) := − inf

{∫
ω

j(e(u))dx− < F, u > : u ∈ D, u = 0 on Σ

}
,

where j : IRn2

sym 7→ [0,+∞) is a quadratic form characterizing the elastic properties of the

material and e(u) denotes the symmetrized tensor of deformations i.e. e(u)ij = 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
). In the 3D case a model example is given by the isotropic elasticity with Lamé

coefficients α, β (3α+ 2β > 0):

(2.2) j(z) =
1

2
α|trz|2 + β|z|2 .

A classical situation is when Σ is a part of the boundary of Ω and F is of the kind

< F, u >=

∫
Ω

fudx+

∫
∂Ω\Σ

gu dHn−1 being f ∈ L2(Ω; IR3) , g ∈ L2(∂Ω \ Σ; IR3).

In this case and if the data f, g are compatible (their supports need to be contained in
ω), the infimum in (2.1) is finite and minimizers can be searched in the Sobolev space
W 1,2(ω; IRn). Let us stress the fact that much more general situations will be considered
in our framework since we intend further to consider concentrated loads (for example Dirac
delta) as well as sets ω whose measure becomes very small.

Our interest is to pass to the limit as m→ 0 in the following variational problem

(2.3) inf{c(ω) ; |ω| = m} .

As the data Σ, F are kept fixed all along the paper we will write c(ω, F,Σ) = c(ω).

Rescaled Problem. We set the total mass m to be a small parameter ε tending to 0.
It is easy to check that the infimum in (2.3) scales as 1

ε as ε → 0. Indeed by making the
change of variables v = εu in the integral, we obtain the identity:

ε c(ω) = cε(µ) , µ(x) =
1

ε
1ω(x) ,
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where 1ω denotes the characteristic function of ω and cε is the functional on M+(Ω)
defined by:

(2.4) cε(µ) :=


− inf

{∫
j(e(u)dµ− < F, u >: u ∈ D, u = 0 on Σ

}
if µ = µ(x) dx , µ(x) ∈

{
0,

1

ε

}
(+∞ otherwise) .

The total mass constraint becomes
∫

Ω
dµ = 1 so that (2.3) can be restated for m = ε and

after rescaling as the minimization of cε(µ) over all probability measures on µ on Ω. It is
clear that the latter infimum decreases if we relax the constraint on the density of µ which
appears in (2.4). More precisely, we have

(2.5) inf{cε(µ) :

∫
Ω

dµ = 1} ≥ inf{c(µ) :

∫
Ω

dµ = 1} ,

where c(µ) is defined for every µ ∈M+(Ω) by

(2.6) c(µ) := − inf

{∫
j(e(u)dµ− < F, u >: u ∈ D, u = 0 on Σ

}
.

We notice that the functional c(µ) defined above has the form already used in [5] to
modelize mass optimization problems. It is a convex lower semicontinous functional on
measures. Unfortunately, as we will see later, a gap in (2.5) will occur in general except
particular situations where the original mechanical problem can be reduced to a scalar
setting.

Now the natural procedure in order to pass to the limit as ε→ 0 in the left hand side of
(2.5) consists in computing the Γ-limit of cε with respect to the weak (star) convergence
of measures on the compact Ω. Let us introduce the following integrand:

(2.7) j̄(z) := sup
{
z · ξ − j∗(ξ) : ξ ∈ IRn2

sym , det ξ = 0
}
,

where j∗ denotes the Fenchel transform of ξ∗ (i.e. j∗(ξ) = sup{z · ξ − j(z) : z ∈ IRn2

sym}).
By Lemma 3.1 in section 3, it turns out that j̄ is convex continuous and satisfies

j̄(z) ≤ j(z) for all z , (j̄)∗(ξ) = j∗(ξ) whenever rank(ξ) < n .

Our claim is two fold: first we say that the Γ limit of the sequence {cε} exists and is
a convex functional; then we claim that this limit can be represented like in (2.6) but
substituting j with the new integrand j̄. Precisely we conjecture the following result:

Theorem 2.1. (Conjecture ) The Γ-limit of cε with respect to the weak convergence of
measures on Ω is the functional E(µ) defined on M+(Ω) by

(2.8) E(µ) := − inf

{∫
j̄(e(u)dµ− < F, u >: u ∈ D, u = 0 on Σ

}
.
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To prove this theorem, we need to show that:
a) For every sequence {µε} such that µε⇀µ, there holds liminf

ε
cε(µε) ≥ E(µ).

b) For every measure µ ∈ M+(Ω), there exists a sequence {µε} such that µε⇀µ and
limsup

ε
cε(µε) ≤ E(µ).

The proof of b) will be sketched in section 3 where structures of lower dimension are
considered. The proof of a) will be straightforward in the case where µ is concentrated on
lower dimensional manifolds. The general case will be seen as a consequence of geometrical
properties related with sets of vanishing measure ( in section 4, we call it vanishing mass
conjecture).

Let us now compute j̄ for particular functions j given in the form (2.2).
a) Assume α = 0, β = 1

2 and n = 3. Then, we can exploit formula (2.7) writing the
symmetric tensor ξ in the form ξ = τ1e ⊗ e + τ2e

⊥ ⊗ e⊥, where e is a unit vector and
τ1, τ2, 0 are the eigenvalues of ξ. We obtain

j̄(z) = sup

{
τ1(ze · e) + τ2(ze⊥ · e⊥)− 1

2
(τ2

1 + τ2
2 ) : |e| = 1, τ1, τ2 ∈ IR

}
= sup

{
1

2

(
(ze · e)2 + (ze⊥ · e⊥)2

)
: |e| = 1

}
=

1

2
(λ1(z)2 + λ2(z)2) ,

where |λ1(z)| ≥ |λ2(z)| ≥ |λ3(z)| are the eigenvalues of the tensor z.

The computation of (j̄)∗ is rather complicated and of course can be generalized for any
pair of Lamé coefficients α, β. In fact we recover this way the formulae obtained in [1]
where explicit form of the relaxed stress potential are given (these formulae turn out to be
in agreement with our (j̄)∗).

b) The case n = 2 is simpler. Setting γ = α+2β
4β(α+β) , we have that j∗(ξ) = 1

2γτ
2 holds for

any rank one tensor of the kind ξ = τe⊗e where |e| = 1. Then denoting by |λ1(z)| ≥ |λ2(z)|
the eigenvalues of z ∈ IR4

sym and by τ1(ξ), τ2(ξ) the eigenvalues of ξ we find easily

(2.9) j̄(z) =
1

2γ
|λ1(z)|2 , (j̄)∗(ξ) =

1

2
γ (|τ1(ξ)|+ |τ2(ξ)|)2.

We notice that in both examples the new potential j̄ is not quadratic any more. However
it remains always convex and homogeneous of degree 2. Accordingly we are able to treat
the minimization of the compliance relative to j̄ using many tools developed in [5]. This is
summarized in the following corollary. It is convenient to introduce the following convex

continuous positively 1-homogeneous integrands on IRn2

sym:

ρ(z) := inf{t > 0 : j̄(
z

t
) ≤ 1

2
} , ρ0(ξ) := sup{ξ · z : j̄(z) ≤ 1

2
} .

As j̄ is 2-homogeneous, we have j̄(z) = 1
2 ρ(z)2 and j̄∗(ξ) = 1

2 (ρ0(ξ))2 An important
quantity associated with the data Ω, F,Σ is given by:

(2.10) I(F,Ω,Σ) := sup{< F, u > : ρ(e(u)) ≤ 1 , u ∈ U∞(Ω; IRn), u = 0 onΣ} ,
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where U∞(Ω; IRn) denotes the space of functions u ∈ L∞(Ω; IRn) such that e(u) ∈
L∞(IRn; IRn2

sym). In [5] (see also [6]) it is proved that the latter supremum is achieved.
Notice that in general functions in U∞ are not Lipschitz due to the lack of Korn’s inequal-
ity in W 1,∞.

Corollary 2.2. Let {ωε} a sequence of domains such that

c(ωε) ≤ inf{c(ω) : |ω| = ε}+O(ε) (c.f. (2.3)) .

Then the sequence µε =
1ωεdx
ε converges weakly (up to a subsequence) to a probability

measure µ on Ω. The following assertions hold:

i) µ solves the minimum problem:

(2.11) inf

{
E(µ) : sptµ ⊂ Ω,

∫
dµ = 1

}
( F given by (2.8)) .

ii) We have:

min (2.11) =

(
I(F,Ω,Σ)

)2
2

.

ii) The following equality holds:

(2.12) I(F,Ω,Σ) = min

{∫
ρ0(λ) : λ ∈M(IRn; IRn2

sym) , −div λ = F on IRn \ Σ

}
.

Moreover if a vector measure λ is optimal for (2.12), then µ = I(F,Ω,Σ) ρ0(λ) is a mini-
mizer of problem (2.11).

Remark 2.3. The measure λ appearing in (2.12) is the stress field associated with the
equilibrium of the optimal structure. This stress can be written in the form λ = σµ where
the density σ satisfies ρ0(σ) is constant along the optimal structure represented by the
measure µ. This fact is the mathematical counterpart of some fact which is well known
to engineers. Recall here that the notation ρ0(λ) denotes the non negative measure of
density ρ0(σ) with repect to µ. By the 1-homogeneity of ρ0 this measure is independent
of the decomposition λ = σµ (see [17]). In the case n = 2, owing to (2.9) we obtain
ρ0(ξ) =

√
γ(|τ1(ξ)|+ |τ2(ξ)|) and the infimum problem (2.12) becomes nothing else but the

celebrated Michell’s problem [21].

Remark 2.4. The optimal solution µ of (2.11) can be characterized by a system of
optimality conditions (Monge-Kantorovich system, see [5] ) which involves a notion of µ-
tangential derivative. It turns out that in general the solution µ is not unique and is very
sensitive to the form of the integrand j̄ or equivalently to the form of the convex set of

matrices {z ∈ IRn2

sym : ρ(z) ≤ 1}. In fact using the optimality conditions, it has been proved
in [5, example 5.1] that for some 2D configurations, the minimum (2.11) can be strictly
greater than the one obtained keeping the initial elastic potential j(z) = |z|2 instead of
j̄(z) = λ1(z)2. Moreover the topology of the solution changes drastically: the numerical
solution for j found in [18] gives a two dimensional positive density (no holes) whereas for
j̄ (Michell’s problem) a lot of solutions made with junction of bars can be found.
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Remark 2.5. The same problem can be handled from the beginning in the scalar case
(heat equation), meaning that in (2.1), u : IRn → IR , j : IRn → IR and F ∈ M(Ω; IR).
In this case, the situation becomes much simpler: Theorem 2.1 holds with E(µ) ≡ c(µ).
In other words j̄ = j and the gap appearing in (2.5) goes to zero as ε → 0. It turns out
that in this case as ε→ 0, minimizing structures either concentrate on lower dimensional
manifolds or spread in many thin layers which are parallel to the direction of the gradient
of some optimal u related to problem (2.10). Let us finally notice that in the case Σ = Ø
and

∫
F = 0, the supremum in (2.10) is nothing else but the Monge -Kantorovich norm

distance between the positive and negative parts of F .

3. Compliance of lower dimensional structures.

These lower dimensional structure can be justified from two sides:
- they can be seen as limits of n-dimensional structures supported on sets of vanishing

measure (this is the essence of the classical fattening approach);
- the designer can be interested in finding stiff structures made exclusively with beams

(1D structures) or with plates (2D structures) or also with a blend of 1D-2D structures
(excluding volumic parts). In other words, the competitors µ in the minimization problem
with respect to c(µ) given in (2.11) have to be searched in the subclass of measures sup-
ported by subsets of dimension k with k = 1 or k = 2 or k ≤ 2. Of course this additional
constraint will increase the value of the infimum.

We introduce for every value of the integer k (k ∈ [1, n]) the following functional on
M(Ω):

(3.1) ck(µ) :=

{
c(µ) if dimTµ(x) = k µ-a.e.
+∞ otherwise

where dimTµ(x) represents the dimensional of the tangent space to µ at x. This notion
will be made precise later.

We introduce also the following convex integrand on IRn2

sym:

(3.2) jk(z) := sup
{
z · z′ − j∗(ξ) : ξ ∈ IRn2

sym , rank ξ ≤ k
}
.

The properties of the jk’s are summarized in the following lemma

Lemma 3.1.
i) For every k, jk is convex, homogeneous of degree two and we have

0 = j0 ≤ j1 ≤ . . . ≤ jn−1 ≤ jn = j and jn−1 = j̄ .

ii) The Fenchel conjugate of jk is given by

(3.3) j∗k(ξ) = inf

{∫
j∗dν : spt ν ⊂ Gk, [ν] = ξ

}
,



Optimization of light structures: the vanishing mass conjecture

where the infimum is taken on probability measures on IRn2

sym, [ν] is the barycenter of ν
and Gk denotes the tensors of rank not greater that k.

iii) We have j∗k(ξ) = j∗(ξ) whenever ξ ∈ Gk.

Proof. i) is trivial and iii) is a consequence of ii) noticing that ν = δξ is admissible when
ξ belongs to Gk. Let us denote now by gk(ξ) the infimum which appears in the right

hand side of (3.3). Clearly gk is convex and since any symmetric tensor ξ ∈ IRn2

sym can
be decomposed in a convex combination of at most n rank one tensors, it is finite and
continuous. Therefore proving the equality j∗k = gk is equivalent to showing that g∗k = jk.

For every z ∈ IRn2

sym, we have

g∗k(z) = sup
ξ,ν

{
z · ξ −

∫
j∗dν : [ν| = ξ, spt ν ⊂ Gk

}
= sup

ν

{∫ (
z · s− j∗(s)

)
dν : spt ν ⊂ Gk

}
≤ jk(z) .

,

where the last inequality becomes an equality if we choose competitors ν of the kind ν = δξ
where ξ runs over Gk.

The main result of this section is the following:

Theorem 3.2. Let ck denote the lower semicontinous envelope of ck. Then there holds
for every measure µ ∈M+(Ω):

(3.4) ck(µ) = − inf

{∫
jk(e(u)dµ− < F, u >: u ∈ D, u = 0 on Σ

}
.

Remark 3.3. We stress that the domain of ck extends to all the space M+(Ω). This
means that the dimensional constraint is not closed; however the approximation of higher
dimension structures (say of dimension l) involves some additional energy which corre-
sponds to the gap between the integrands jk and jl (see lemma 3.1). Roughly speaking a
structure obtained by using micro-structures made of beams might look like a 3D elastic
structure. However its compliance cannot be predicted by using the original model of 3D
elasticity.

Remark 3.4. The relaxation procedure for ck does not change if we replace the equality
constraint dimTµ(x) = k µ-a.e. by the inequality constraint constraint dimTµ(x) ≤ k.
The lower semicontinuous envelope of this new functional ck will be still given by the right
hand side of (3.4). On the other hand, the identity j̄ = jn−1 (see assertion i) of Lemma
3.1) implies that we have, for every µ:

(3.5) E(µ) = cn−1(µ) .
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Corollary 3.5. For every probability measure µ on Ω, there exists a sequence of subsets
Aε ⊂ Ω such that µε⇀µ and limsup cε(µε) ≤ E(µ) .

Proof. (sketch) Take µ of the kind µ = θHn−1 S where S is a smooth n− 1-dimensional
manifold and θ is a continuous and positive weight on S. Then using a standard fattening
method, it is possible to construct a sequence of sets Aε such that |Aε| = ε, µε :=

1Aε

ε ⇀µ
and such that limsup

ε
cε(µε) = limsup

ε
c(µε) ≤ c(µ). Therefore the Γ-limsup of cε (denote it

E+) which is weakly lower semicontinous satisfies for every such n−1 dimensional measure
µ the inequality

E+(µ) ≤ c(µ) = cn−1(µ) .

The previous inequality is then extended to all n − 1 dimensional measures yielding the
inequality E+ ≤ cn−1. The conclusion follows by passing to the lower semicontinuous
envelopes taking into account (3.5) .

The end of this section is devoted to a sketch of the proof of Theorem 3.2 (a complete
version will be found soon in [3]). Before we need to give a precise meaning to the notion
of k dimensional structure and for that we make use of the concept of tangent space Tµ(x)
to a measure introduced in [10] which makes sense for any positive Borel measure µ on
IRn. The underlying idea is to identify every subset S of IRn having Hausdorff dimension
k with the overlying measure Hk, possibly weighted by a positive density θ; more in
general, a multijunction made by the union of sets Si with different dimensions ki may be
described through a positive measure µ of the kind

∑
i θiHki Si. We refer to the papers

[4,7,8, 9,10,11,12,13] where this framework has been developed with many applications in
elasticity, shape optimization and homogenization.
Here we only sketch the features which are useful for the understanding of some arguments
developed later.
Tangent space . It is a µ- measurable multifunction Tµ(x) from IRn into the linear
subspaces of IRn. The shortest way to define it (perhaps not the more intuitive one) is the
following: consider the operator B : (L2

µ)n 7→ L2
µ defined by

D(B) :=
{
σ ∈ (L2

µ)n : ∃C > 0 such that
∣∣∣∫ σ · ∇u dµ∣∣∣ ≤ C‖u‖2,µ ∀u ∈ D}

Bσ = v ⇐⇒ − div(σµ) = vµ .

Then it can be proved that the closure of D(B) coincide with the set of selections of a
unique (up to the µ a.e. equivalence class) of a multifunction. This multifunction denoted
Tµ(x) (our tangent space) is characterized by the following equality

(3.6) D(B) =
{
σ ∈ L2

µ(IRn; IRn) : σ(x) ∈ Tµ(x) µa.e.
}
.

In what follows Pµ(x) (possibly identified to an element of IRn2

sym) will denote the orthogonal
projector on Tµ(x).

Tangential gradient . A more intuitive path to reach the definition of Tµ(x) is motivated
by the following problem: given a sequence {uh} ⊂ D such that (uh,∇uh)→ (u, χ) in L2

µ,
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what can we say of the relation between u and χ ? In other words, we are looking for a
characterization of the closure of the set

G := {u,∇u) : u ∈ D(IRn)} .

It turns out that we have

(3.7) (u, χ) ∈ G ⇐⇒ u ∈ H1
µ and ∃ξ ∈ L2

µ(IRn;T⊥µ ) : χ = ∇µu+ ξ .

Here ∇µu (µ-tangential gradient) is defined for smooth u by setting ∇µu(x) = Pµ(∇u(x))
and is extended in a unique way (as a closable operator) to all functions of the Sobolev
space H1

µ. This space H1
µ is the completion of smooth function with respect to the Hilbert

norm ‖u‖ := (
∫

(u2 + |∇µu|2)dµ)
1
2

Tangential strain . The same scheme can be used substituting ∇u by the strain e(u) of
a vector function u ∈ D(IRn; IRn) (see [5,13]. We now consider:

G :=
{

(u, e(u)) ∈ (L2
µ)n × L2

µ(IRn; IRn2

sym) : u ∈ D(IRn; IRn)
}
.

The analogous of statement (3.7) reads as

(3.8) (u, χ) ∈ G ⇐⇒ u ∈ D1,2
µ and ∃ξ ∈ L2

µ(IRn;M⊥µ ) : χ = eµ(u) + ξ .

Here Mµ(x) is a multifunction from IRn to vector subspaces of IRn2

sym which can be defined

using the analogous of operator B defined in (3.6) where now σ ∈ L2
µ(IRn; IRn2

sym). In [12],
it is shown that under very mild regularity assumptions on µ (regularity by blow-up), the
relation between Mµ and Tµ is explicit:

(3.9) Mµ(x) =
{
Pµ(x)ξPµ(x) : ξ ∈ IRn2

sym

}
.

Denoting by Qµ(x) the orthogonal projector on Mµ(x), the tangential strain is defined for
C1 functions by eµ(x) = [Qµ(x)](e(u)(x)) extended by continuity to D1,2

µ the completion
of the space of smooth deformations with respect to the L2

µ-energy.

Stress formulation for the compliance It is a matter of classical convex analysis to
show that c(µ) given by (2.11) can also be written as

(3.10) c(µ) = min

{∫
j∗(σ) dµ : σ ∈ L2

µ(IRn; IRn2

sym) , −div(σµ) = F on IRn \ Σ

}
.

We stress the fact that the competitors σ in (3.10) belong to D(B) and therefore satisfies
σ(x) ∈Mµ(x), µ a .e. In particular if µ is associated with a k-dimensional structure, then
we have rank σ(x) ≤ k µ a .e

We notice also that a similar representation formula for ck(µ),E(µ) are obtained by
simply substituting j∗ respectively with j∗k and (j̄)∗ in (3.10).
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Proof of Theorem 3.2 (sketch):
i) Lowerbound: Denote by Ek(µ) the right hand side of (3.4). It is a convex l.s.c.

functional and we have

Ek(µ) = min

{∫
j∗k(σ) dµ : σ ∈ L2

µ(IRn; IRn2

sym) , −div(σµ) = F on IRn \ Σ

}
.

Assume that dim(Tµ(x)) ≤ k. Then arguing as above, the competitors σ have rank ≤ k
and therefore j∗k(σ) = j∗(σ). Owing to (3.10), we deduce that, for such measures µ, there
holds Ek(µ) = c(µ) = ck(µ). Thus the inequality ck ≥ Ek holds over all M+(Ω). Passing
to the lower semicontinuous envelopes, we deduce that ck ≥ Ek.

ii) Upperbound: We restrict here to the case where µ is the Lebesgue measure. For any
Y -periodic measure ν of dimension ≤ k (here Y is the possibly rotated unit cube in IRn

and we normalize ν so that ν(Y ) = 1), we consider µε := ν(xε ) which clearly converges
to µ. The limit of c(µε) can be predicted from the theory of homogenization for thin
structures which has been developed in several directions (see [15] and also [8,12,11]). The
upperbound inequality for ck can be deduced by optimizing other such periodic measures
ν using in particular the homogenized stress potential representation obtained in [12]
together with an argument of localization which allows to commute infimum and integral.

4. Lowerbound inequality and the vanishing mass conjecture.

To complete the proof of Theorem 2.1, we need to show that for every sequence of sets
{Aε} such that |Aε| = ε, the following implication holds:

(4.1) µε :=
1Aε

ε
⇀µ ⇒ liminf

ε
cε(µε) ≥ E(µ) .

Note that in general c(µ) ≤ E(µ) (see (3.4) whereas the lower semicontinuity of c(µ)
implies only the inequality liminf

ε
cε(µε) = liminf

ε
c(µε) ≥ c(µ) .

In fact the inequality (4.1) is straightforward in the case where µ has no n-dimensional
part. More precisely, we have

Lemma 4.1. Let µ ∈M+(Ω) such that dimTµ(x) < n , µ a.e. Then

Γ− lim
ε
cε(µ) = E(µ) .

Proof. According to the observation made above, we are done if we show that such
measures satisfy E(µ) = c(µ). We argue on the stress formulations of c(µ) and E(µ) (see
(3.10), simply noticing that all admissible stress fields σ in the minimum problem (3.10)
satisfy σ ∈ Mµ(x) and therefore rankσ(x) ≤ dim(Tµ(x)) ≤ n − 1 µ a.e. Thus by Lemma
3.1, we have (j̄)∗(σ) = j∗n−1(σ) = j∗(σ) yielding the equality E(µ) = c(µ).
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The approach we suggest for attacking the general case consists, like in previous lemma,
in considering the dual formulations. Let σε be the optimal stress related to µε ; it satisfies

cε(µε) =

∫
j∗(σε)dµε , −div σε µε = F on IRn \ Σ .

Assuming that cε(µε) is uniformly bounded (otherwise (4.1) is trivial), by the growth
condition on j we have that

(4.2) sup
ε

∫
|σε|2 dµε < +∞ .

From (4.2) it follows that possibly passing to subsequences, there exists a suitable σ ∈
L2
µ(IRn; IRn2

sym) such that σε µε⇀σµ and −div σ µ = f on IRn \ Σ. Then showing (2.1)
reduces to establish that

(4.3) liminf
ε

∫
j∗(σε) dµε ≥

∫
(j̄)∗(σ) dµ .

Clearly we need more information on the oscillatory behaviour of matrix fields σε and
we therefore consider a family of Young measures associated with the triple {σε, µε, µ}. It
can be shown (see [9, Prop 4.3]) that there exists a suitable family of probability measures

νx on IRn2

sym (defined µ a.e.x ) such that:

(4.4) Ψ(σε)µε ⇀

(∫
Ψ(ξ)νx(dξ)

)
µ for all Ψ ∈ C0(IRn2

sym) .

Testing (4.4) in the particular case Ψ(ξ) = ξ gives the equality σ = |νx] between the weak
limit σ introduced above and the barycenter of νx. Now our task is to provide arguments
for establishing the following inequality for every element ν of the Young family {νx}
generated by {σε} (we omit further the index x) :

(4.5)

∫
j∗(ξ) dν ≥ (j̄)∗([ν]) .

Together with (4.4), (4.5) implies the lower bound inequality (4.3).

A natural guess for proving (4.5) is to conjecture that ν is supported on the subset of
tensors with rank < n, yielding that j∗(ξ) = (j̄)∗(ξ) holds ν a.e. This property suggests

that if the sets Aε oscillate at a small scale (so that for example
1Aε

ε converges weakly to the
Lebesgue measure), then they need to concentrate at the same scale on lower dimensional
manifolds. The reason for this is that Aε becomes thinner and thinner whereas, due to the
divergence condition, the unit exterior normal nε(x) satisfies σεnε(x) = 0 on ∂Aε \ sptF .

Unfortunately this picture is not the good one as we can see on the following example
in IR2 suggested by P. Seppecher [24]: Take Ω = Y := (−1/2, 1/2)2 and rε chosen so
that πr2

ε = ε. Denote by χε the Y -periodization of the characteristic function of the ball

{|y| < rε}. Then χ(xε ) determines a subset Aε of Ω such that |Aε| ∼ ε and µε =
1Aε

ε dx⇀µ
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being µ the Lebesgue measure on Ω. Now it is easy to construct a Y - periodic function
ϕε ∈ L∞(Y ; IR4

sym) such that div ϕε = 0, ϕε(y) = 0 if |y| ≥ 2 rε and ϕε(y) = I2 if |y| ≤ rε
here I2 denotes the identity matrix). Then the sequence σε = ϕε(

x
ε ) is divergence free

and satisfies (4.2). However the Young family {νx} defined through (4.4) turns out to be
independent on x and has a Dirac mass concentrated on the matrix I2.

However we notice that in the previous example the weak limit of σεµε is zero so that
(4.5) still holds. In fact the property (4.5) is far from requiring that the support of ν
contains only degenerate tensors. For example, (4.5) is satisfied if ν can be decomposed as a
convex combination of probability measures ν = tν0+(1−t)ν1 where spt(ν0) ⊂ {det ξ = 0}
and det([ν1]) = 0. This can be easily checked recalling that j∗ and j̄∗ agree on determinant
free tensors and by making use of Jensen’s inequality.

Basically what we call “vanishing mass conjecture” consists in saying that the property

(4.5) is satisfied for every convex function j on IRn2

sym and for all Young measures generated
by sequences {σε} considered above. In particular we claim that the validity of (4.1) or
(4.5) is not related to the fact that j is quadratic (although it could be helpful to use tools
like compensated compactness or H-measures). To conclude let us give an intrinsic way
to express (4.5) independently of j which has been suggested by P.Seppecher [24]:

Conjecture: The probability ν can be decomposed as follows: there exists a probability
measure ν0 on {det ξ = 0} and for ν0 almost all ξ, there exists a probability measure λξ

on IRn2

sym such that [λξ] = ξ and for all Ψ ∈ C0(IRn2

sym):

(4.6)

∫
Ψdν =

∫ (∫
Ψ(y)λξ(dy)

)
ν0(dξ) .

As before it is easy to check that (4.6) implies (4.5). Indeed by using two times Jensen’s
inequality and the fact that j∗ = (j̄)∗ ν0 a.e., we obtain:∫

j∗(ξ) dν ≥
∫ (∫

j∗(y)λξ(dy)

)
ν0(dξ) ≥

∫
j∗(ξ) ν0(dξ)

≥
∫

(j̄)∗(ξ) ν0(dξ) ≥ (j̄)∗([ν]) .
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[4] G. Bouchitté, G. Buttazzo, P. Seppecher: Energies with respect to a measure and ap-
plications to low dimensional structures. Calc. Var., 5 (1997), 37–54.
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[10] G. Bouchitté, G. Buttazzo, P. Seppecher:Shape optimization solutions via Monge-
Kantorovich equation. C. R. Acad. Sci. Paris, 324-I (1997), 1185–1191.
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