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KERDOCK-LIKE BENT FUNCTIONS

J.WOLFMANN

Abstract. We introduce bent functions similar to bent functions
whose binary representative vectors are members of the famous
Kerdock code.

1. Introduction

1.1. Elementary definitions.
F2 is the finite field of order 2.
A m-boolean function is a map from Fm2 into F2.
Weight: w(F ) = ]{v ∈ Fm2 | F (v) = 1}.
Derivative: e ∈ Fm2 (DeF )(X) = F (X) + F (X + e).
Fourier coefficients:
F̂ (v) =

∑
X∈Fm

2
(−1)F (X)+<v,X> where <,> inner product of Fm2 .

The set {F̂ (v) | v ∈ F2m} is independant of the choice of <,>.

Definitions:
F is bent if: ∀ v ∈ Fm2 : F̂ (v) is in {−2m/2, 2m/2}.
Exist only when m is even.

F is near-benf if: ∀ v ∈ F2m : F̂ (v) is in {−2(m+1)/2, 0, 2(m+1)/2}.
Exist only when m is odd.

Bent functions were introduced by Rothaus in [6] .They are interesting
for Coding Theory, Cryptology and Sequences and were the topic of a
lot of works. See for instance [2], [5] Chap. 14, [7], [1].
For further use we need the following Proposition.

Proposition 1. The distribution of the Fourier coefficients of a
(2t− 1)-near bent function f is:

f̂(v) = 2t number of v: 22t−3 + (−1)f(0)2t−2

f̂(v) = 0 number of v: 22t−2

f̂(v) = −2t number of v: 22t−3 − (−1)f(0)2t−2.

Proof. See Proposition 4 in [1]). �

1.2. Special representations of boolean functions.
1) Using finite fields:
Fm2 identified with the field F2m .
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In this case the inner product <,> of F2m is defined by:
< a, x >= tr(ax) where tr is the trace of F2m over F2.

2) Representative vector (truth table)
Indexing F2m with any order e0, e1, ...e2m−1 the
representative vector of a m-boolean function F is the binary vector
(F (ei)

2m−1
i=0 ).

This vector depends on the choice of the order of F2m .

3) A two-variable representation.
This is the representation chosen by Kerdock to introduce his famous
code.
We identify F22t with the product:

F22t−1 × F2 = {X = (u, ν) | u ∈ F22t−1 , ν ∈ F2}.

If F is a (2t)-boolean function then define two (2t−1)-boolean functions
f0, f1, such that f0(u) = F (u, 0) and f1(u) = F (u, 1).

The two-variable representation (TVR) of F is defined by the 2-variable
polynomial: φF (x, y) = (y + 1)f0(x) + yf1(x)

This is a representation of F in the following sense. Since:
φF (u, 0) = f0(u) = F (u, 0), φF (u, 1) = f1(u) = F (u, 1).

then if X = (u, ν), with u = 0 or u = 1: F (X) = φF (u, ν).

Notation: F = [f0, f1]

Let α be a primitive root of F
2k−1

. As order of F22t we choose:

F22t : (0, 0), (α0, 0) . . . (αi, 0) . . . (α
n/2−2

, 0) | (0, 1), (α0, 1) . . . (αi, 1) . . . (α
n/2−2

, 1)
The representative vector of F = [f0, f1] is:

(f0(0) . . . . . . f0(α
i) . . . . . . f0(α

n/2−2

) f1(0) . . . . . . f1(α
i) . . . . . . f1(α

n/2−2

))

1.3. From Near-bent to Bent.
We now characterize the f0, f1 when F = [f0, f1] is bent.

Proposition 2. (well known)
A (2t)-boolean function F = [f0, f1] is a bent if and only if:

(a) f0 and f1 are near-bent.

(b) ∀u ∈ F22t−1 | f̂0(u) | + | f̂1(u) |= 2t

Proof. A proof is given in [9],Proposition 14. �

Remark: (b) means that one of | f̂0(a) | and | f̂1(a) | is equal to 2t

and the other one is equal to 0.
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1.4. The Kerdock code. :
Notation:

Q(x) =
∑t−1

j=1 tr
(
x2

j+1
)
.

If e ∈ F2m : te(x) = tr(ex), Qe(x) = Q(ex).

Definition 3.
The Kerdock code of length 22t is the set of the representative vectors
of the 2t-boolean functions

F = [Qu, Qu + tu] + affine-linear form

with u ∈ F22t−1.

Example: The representative vector of F = [Qu, Qu + tu] is:

m = (f0(0) . . . . . . f0(α
i) . . . . . . f0(α

n/2−2

) f1(0) . . . . . . f1(α
i) . . . . . . f1(α

n/2−2

))

with f0(x) = Qu(x) and f1(x) = (Qu + tu)(x)

Theorem 4. (Kerdock)
With the above notations:

If u 6= 0 then:
F = [Qu, Qu + tu] + affine-linear form is a Bent Function.

Proof. See [3] or [5] chapter 15. �

Remark:

From the elementary properties of bent functions, F = [Qu, Qu + tu] +
affine-linear form is bent if and only if [Qu, Qu + tu] is bent. Hence we
restrict our research to [Qu, Qu + tu].

Definition: For the sequel of the paper [Qu, Qu+tu] is called a Kerdock
bent function.

The Kerdock code K2t is a binary non-linear code with several inter-
esting properties. For instance:
1) [Qu, Qu + tu] is a bent functions

2) [Qu, Qu + tu] +[Qv, Qv + tv] is a bent function.

A problem:
The question of this paper is to replace tu in [Qu, Qu + tu] by another
2t− 1-boolean function, for example tr, to get another bent function.

1.5. Main tools.

Definition 5.
If f is a (2t− 1)-near-bent function then Îf is the indicator of the set

{x ∈ F22t−1 | f̂(x) = 0} where f̂ is the Fourier transform of f .

(In other words, Îf (x) = 1 if and only if f̂(x) = 0).

The two Theorems below are the main tools of the present work.
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Theorem 6. (McGuire and Leander)
Let f be a (2t− 1)-near-bent function and let v be in F22t−1.

Dv(Îf ) = 1 if and only if [f, f + tv] is a bent-function.

Proof. See [4], Theorem 3. �

Theorem 7. (W)
Let f be a (2t− 1)-near-bent function.
Let ω be in F22t−1 and let ε be in F2.
If Dωf = ε then Îf = tω + ε.

Remark: According to the definition of Îf this lemma means that if

Dωf = ε then f̂(x) = 0 if and only if tω(x) = 1 + ε.

Proof. f̂(u) =
∑

x∈F22t−1
(−1)f(x)+tr(ux) = 22t−1 − 2w(f + tr(ux).

f̂(u) = 0 if and only if w(f + tu) = 22t−2.

Dωf = ε means that f(x+ ω) = f(x) + ε.
The transform τ : x → x + ω is a permutation of F

22t−1 and then
preserves the weight of every (2t− 1)-Boolean function. Thus:

]{x | f(x) + tr(ux) = 1} = ]{x | f(x+ ω) + tr(u(x+ ω)) = 1}.

(E) ]{x | f(x) + tr(ux) = 1} = ]{x | f(x) + ε+ tr(ux) + tr(uω) = 1}.

Now assume tr(uω) + ε = 1. The right hand member of (E) is:
]{x | f(x) + tr(ux) = 0} = 22t−1 − ]{x | f(x) + tr(ux) = 1}

Hence (E) becomes:

]{x | f(x) + tr(ux) = 1} = 22t−1 − ]{x | f(x) + tr(ux) = 1}
In other words w(f + tu) = 22t−1 − w(f + tu) and thus:
Conclusion:

If tr(uω) + ε = 1 then w(f + tu) = 22t−2 which is equivalent

to f̂(u) = 0.
For every ε the number of u such that tr(uω) + ε = 1 is 22t−2. This

is also the number of u such that f̂(u) = 0 (see Proposition 1). Then,

immediately: f̂(u) = 0 if and only if tr(uω) + ε = 1.

This means Îf = tω + ε. �

2. results

The goal is to find all the r such that [Qu, Qu + tr] is bent or such
that [Qu +Qv, Qu +Qv + tr] is bent.
Strategy:

For f = Qu or f = Qu + Qu, in order to apply Theorem 5(McGuire

and Leander) we have to find Îf and Dr(Îf ).
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2.1. The case. [Qu, Qu + tr].

Theorem 8.
If f = Qu then Îf = ε+ tu−1 with ε ∈ F2.

Proof.
Qu(x) =

∑t−1
j=1 tr

(
(ux)2

j+1
)
.

If fj(x) = (ux)2
j+1 then Du−1fj(x) = (ux)2

j+1 + [u(x+ u−1)]2
j+1

= ux+ u2
j
x2

j
+ 1.

tr(fj(x)) = tr(x) + tr(u2
j
x2

j
) + tr(1) = tr(1) = 1

Du−1Qu(x) =
∑t−1

j=1Du−1fj(x) =
∑t−1

j=1 1 = t− 1 = ε ∈ F2.

According to the previous theorem: ÎQu = tu−1 + ε. �

Theorem 9. Let u and r be in F22t−1.
[Qu, Qu + tr] is bent if and only if tr(u−1r) = 1.

Proof.
Dr(ÎQu)(x) = tr(u−1x) + ε+ tr(u−1(x+ r)) + ε

= tr(u−1x) + tr(u−1x) + tr(u−1r)
= tr(u−1r).

Then, from McGuire and Leander:
[Qu, Qu + tr] is bent if and only if tr(u−1r) = 1. �

2.2. The case. [Qu +Qv, Qu +Qv + tr]
Under the assumption on u and v then [Qu +Qv, Qu +Qv + tu + tv] is
a bent function. See Theorem 4, 5)
Hence f(x) = Qu +Qv is near-bent (proposition 3).

Now we search ω ∈ F22t−1 such that Dωf = ε with ε ∈ F2.

Dωf = DωQu +DωQv.

Qu(x) =
∑t−1

j=1 tr[fu,j(x)] with fu,j(x) = (ux)2
j+1.

Since Dω,
∑
, tr are additive functions then:

DωQu =
∑t−1

j=1 tr[Dωfu,j].

Dωfu,j(x) = u2
j+1x2

j+1 + u2
j+1(x+ ω)2

j+1.

(x+ ω)2
j+1 = (x+ ω)2

j
(x+ ω) = (x2

j
+ ω2j)(x+ ω).

= x2
j+1 + ω2jx+ ωx2

j
+ ω2j+1.

Dωfu,j(x) = u2
j+1(ω2jx+ ωx2

j
+ ω2j+1).

DωQu(x) =
∑t−1

j=1 tr[u
2j+1(ω2jx+ ωx2

j
+ ω2j+1)].

=
∑t−1

j=1 tr[u(uω)2
j
x]+

∑t−1
j=1 tr[u

2j+1ωx2
j
)]+
∑t−1

j=1 tr[u
2j+1ω2j+1)].

With m = 2t− 1 and since xm = x and um = u:

f̂(u) =
∑

x∈F22t−1
(−1)f(x)+tr(ux) = 22t−1−2w(f+tr(ux).

∑t−1
j=1 tr[u

2j+1ωx2
j
)] =∑t−1

j=1 tr[(u
2j+1ωx2

j
)2

m−j
] =

∑t−1
j=1 tr[u(uω)2

m−j
x].
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and thus:
DωQu(x) =

∑t−1
j=1 tr[u(uω)2

j
x]+

∑t−1
j=1 tr[u(uω)2

m−j
x]+

∑t−1
j=1 tr[u

2j+1ω2j+1)].

When j runs from 1 to t− 1 then m− j runs from 2t− 2 to t.
Hence: DωQu =

∑t−1
j=1 tr[Dωfu,j].

DωQu(x) = tr[u
∑2t−2

j=1 (uω)2
j
]x+

∑t−1
j=1 tr[u

2j+1ω2j+1)].

By replacing u by v we find a similar result and finally:

Dωf(x) = tr
(
[u
∑2t−2

j=1 (uω)2
j

+ v
∑2t−2

j=1 (vω)2
j
]x
)

+ ε with ε ∈ F2.

f̂(u) =
∑

x∈F22t−1
(−1)f(x)+tr(ux) = 22t−1−2w(f+tr(ux). It follows that

Dωf is a constant function if and only if

(∗) u
∑2t−2

j=1 (uω)2
j

+ v
∑2t−2

j=1 (vω)2
j

= 0.

Remark that
∑2t−2

j=1 (uω)2
j

= uω + tr(uω) and∑2t−2
j=1 (vω)2

j
= vω + tr(vω). Then (∗) becomes:

(∗) (u2 + v2)ω + utr(uω) + vtr(vω) = 0.

Case 1: tr(uω) = tr(vω) = 0.
we find the trivial solution ω = 0.
Case 2: tr(uω) = tr(vω) = 1.
ω = (u+ v)−1 and tr(uω) = tr[u(u+ v)−1], tr(vω) = tr[v(u+ v)−1].

This leads to tr(uω) + tr(vω) = tr[(u + v)(u + v)−1] = tr(1) = 1if
tr(u−1r) = 1.
which is imposible because tr(uω) = tr(vω).

Case 3: tr(uω) = 1, tr(vω) = 0,
DωQu =

∑t−1
j=1 tr[Dωfu,j]. ω = u(u2 + v2)−1

Case 4: tr(uω) = 0, tr(vω) = 1.
ω = v(u2 + v2)−1.

In case 3, tr(uω) = tr(u2(u2 + v2)−1) = tr[(u(u+ v)−1)2].
= tr[u(u+ v)−1]. Similarly in case 4:
tr(vω) = tr[v(u+ v)−1]. Then tr[u(u+ v)−1] = tr[v(u+ v)−1] is impos-
sible since
tr(u−1r) = 1. tr[u(u+ v)−1] + tr[v(u+ v)−1] = tr((u+ v)(u+ v)−1) =
tr(1) = 1. Conclusion:

Proposition 10. f = Qu +Qv.
If ω is a non-zero element such that Dωf = ε with ε ∈ F2 then:

ω = u(u2 + v2)−1 if tr[u(u+ v)−1] = 1.

ω = v(u2 + v2)−1 if tr[v(u+ v)−1] = 1.

We are now in position to find all e ∈ F22t−1 such that [f, f + te] is a
bent function and consider the case e = r + s
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Theorem 11.
Let u 6= 0, tr(u−1r) = 1, v 6= 0, tr(v−1s) = 1, u 6= v, r 6= s.
Define ω by:

ω = u(u2 + v2)−1 if tr(u(u+ v)−1) = 1.
ω = v(u2 + v2)−1 if tr(v(u+ v)−1) = 1.

If tr(ω(r + s)) = 1 then:

[Qu, tr] + [Qv, ts]

is a bent function.

Proof.
Applying Theorem 7, since Dωf = ε then Îf = tω+ε. Now, if e ∈ F22t−1

then DeÎf (x) = Îf (x) + Îf (x + e) = tr(ωx + tr(ω(x + e) = tr(ωx) +

tr(ωx) + tr(ωe) = tr(ωe). Hence DeÎf (x) = 1 if and only if tr(ωe) = 1.
From Theorem 5, [f, f + te] is a bent function if and only if tr(ωe) = 1.
Now if f = Qu + Qv then [f, f + tr+s] = [Qu, Qu + r] + [Qv, Qv + s] is
a bent function if and only if tr(ω(r + s)) = 1. �

3. Another construction.

Theorem 12.
Let γ be in F22t−1 , tr(u−1r) = 1 then:
[Qu + t1tγ, Qu + tr + t1tγ] is a bent function.

Proof.
This is a special case of Theorem 20 of [10] with f0 = Qu and
f1 = Qu + tr �

Examples:
[Qu + t1tγ, Qu + tr + t1tγ] with tr(u−1r) = 1.

[Qu +Qv + t1tγ, Qu +Qv + tr+s + t1tγ] with conditions of Theorem 11
on u, v, r, s.

4. Conclusions

By using a slight modification of Kerdock bent functions we have in-
troduced new bent functions.

The number of new bent functions [Qu, Qu + tr] (Theorem 9) is greater
than the number of Kerdock bent functions [Qu, Qu + tu],.
The number of new bent functions [Qu + t1tγ, Qu + tr + t1tγ],
u 6= 0, tr(u−1r) = 1, γ 6= 0 (Theorem 12) is greater than the number of
Kerdock bent functions [Qu, Qu + tr] .
It is easy to check that:
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Bent Functions Number

[Qu, Qu + tu], u 6= 0 (22t−1 − 1)
[Qu, Qu + tr] with tr(u−1r) = 1 22t−2(22t−1 − 1)
[Qu + t1tγ, Qu + tr + t1tγ] 24t−3(22t−1 − 1)

[Qu, Qu + tu] +[Qv, Qv + tv] (22t−1 − 1)2

[Qu, Qu + tr] +[Qv, Qv + ts] A(22t−1 − 1)2

with A = ]{(r, s) | tr(u−1r) = 1, tr(u−1s) = 1, tr(ω(r + s) = 1}.
(Notations of Theorem 11.)
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