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ABSTRACT

In this paper, we study the blind separation of mixtures
of propagating waves (delayed sources) encountered for ex-
ample in underwater telephone (UWT) systems . We suggest
a new second-order statistics method using as many observa-
tions as sources. First, we show that each of the N delayed
sources can be developed as a particular linear combination
of the different temporal-derivatives of the N observations.
Under some assumptions, an instantaneous rectangular sepa-
rating matrix is then identified by the joint diagonalization of
a set of covariance matrices estimated from the observations
and its derivatives.
The algorithm used takes into account the particular structure
of the spectral mixing matrix encountered.
A numerical simulation is provided in a 3-sources/3- observa-
tions case for propagating audio signals.

1. INTRODUCTION

Consider a set of N propagating waves sj(t) in an echo-free
and noise-free medium. These are recorded on a set of M
identical sensors. Let xj(t) denote the contribution of the
source sj(t) on a sensor arbitrary indexed by 1, i.e. xj(t) is
a filtered version of the source sj(t). Assuming that the set
of sensors is sufficiently compact, then the contribution of the
source sj(t) recorded on a sensor i is the same one as that
recorded on the first sensor, except for an attenuation factor
and a propagation delay. The observation yi(t) recorded on
the sensor i, is a linear combination of the delayed contribu-

tions xj(t):

y1(t) =
N
∑

j=1

xj(t),

yi(t) =
N
∑

j=1

cijxj(t− τij), i ∈ [2, . . . ,M ],

(1)

where cij is the relative attenuation coefficient of source j on
sensor i, and τij a relative propagation delay of source j on
sensor i.

The different contributions are assumed to be band-limited,
differently colored, statistically independent and zero-mean.
Thereafter in the paper, the contributions will be called sources.

The problem is to provide an estimation of the N different
sources xj(t) from the observations yi(t).
A first way to solve the problem using truncated Taylor se-
ries of each delayed source xj(t− τij) has been successfully
treated in [1]-[5]. It consists of the estimate of an instanta-
neous square mixing matrix MM×M between the observa-
tions and the different derivatives of the sources:

[y1, y2, . . .]
T
=M [x1, x2, . . . , ẋ1, ẋ2, . . .]

T
.

For low delays, second-order statistics are sufficient to extract
the different contributions from the observations (see [2], [4],
[6]). For higher delays, a combination of two-order and high-
order statistics methods is proposed in [3] to achieve the sep-
aration.
The main limitation of these methods is the high necessary
number of observations (up to several times the number of
sources).

We propose here a N−sources N−sensors original approach
based on the direct estimation of an instantaneous rectangular



separating matrix S between the different derivatives of the
observations and filtered sources:
[

xh
1 , x

h
2 , . . . x

h
N ,

]T
= S [y1, ẏ1, . . . , y2, ẏ2, . . . , yN , ẏN , . . .]

T
,

where xh
j is the source xj filtered by an invertible known filter

h.

It is important to note that the two approaches are not equiva-
lent: the matrixM is not a simple pseudoinverse of S.

The paper is organized as follows: in the next section we ex-
plain how to construct the separating matrix S from the prop-
agation model described by the system of equations (1). Then
the third section explains the second-order statistics method
implemented to estimate this separating matrix. The estima-
tion uses a new version of the joint-diagonalization algorithm
proposed by S.Dégerine in [7]. A description of this algo-
rithm has to appear in english, a preprint can already be read
in [8]. A numerical simulation in the last section illustrates
the effectiveness of our approach.

2. EXPRESSION OF THE SEPARATING MATRIX

In the frequency domain, the system (1) becomes

Y1(ν) =

N
∑

j=1

Xj(ν),

Yi(ν) =

N
∑

j=1

cije
−2πντijXj(ν), i ∈ [2, . . . , N ].

(2)

Xj(ν) and Yi(ν) are respectively the Fourier Transforms (FT)
of the jth source and of the ith observation.

The system (2) can be rewritten in matrix notation as:

Y(ν) =Mf (ν)X(ν), (3)

where

Y(ν) = [Y1(ν), . . . , YN (ν)]T ,X(ν) = [X1(ν), . . . , XN (ν)]T .

The N ×N spectral mixing matrixMf (ν) is defined as:

Mf (ν) =











1 . . . 1
c21e

−2πντ21 . . . c2Ne−2πντ2N

...
. . .

...
cn1e

−2πντN1 . . . cNNe−2πντNN











. (4)

We assume thatMf (ν) is regular for any frequency.
The inverse matrix ofMf (ν) is

Mf (ν)−1 =
1

detMf (ν)
(adjMf (ν))T ,

where adj Mf (ν) and det Mf (ν) are respectively is the ad-
joint matrix and the determinant of the matrixMf (ν).

From equation (3), one has:

detMf (ν)X(ν) = (adjMf (ν))TY(ν). (5)

According to the particular structure of the spectral mixing
matrix Mf (ν), its determinant (denoted by Hd(ν)) is a sum
of weighted complex exponentials:

Hd(ν) = detMf (ν) =
∑

i

βi exp(−2πντdi
),

where the weights βi are particular products of coefficients
cij , and τdi

are particular sums of delays τij .

Let H(ν) denote the transposed adjoint of M(ν). Each en-
tries Hkl(ν) ofH(ν) can also be expressed as a sum of weighted
exponentials:

Hkl(ν) = (adjMf (ν))Tkl =
∑

i

αkli exp(−2πντkli),

where the weights αkli are also particular products of coeffi-
cients cij , and τkli are particular sums of delays τij .

Back to the temporal representation, the system (5) becomes:

{hd ∗ xk}(t) =

N
∑

l=1

{hkl ∗ yl}(t),

where hkl(t) = FT
−1(Hkl(ν)), hd(t) = FT

−1(Hd(ν)) and
where {h. ∗ x.}(t) =

∫

h.(t− τ)x.(τ)dτ denotes the convo-
lution of h.(t) and x.(t).

Each filtered source {hd ∗ xk}(t) is then a finite sum of de-
layed observations:

{hd ∗ xk}(t) =
∑

l,i

αkli yl(t− τkli). (6)

Assuming that the τkli are “small” for all indices, yl(t−τkli)
can be approximated by its truncated up to P-order Taylor se-
ries expansion. Each filtered source can be then approximated
by a linear combination of the observations and its deriva-
tives:

{hd ∗ xk}(t) ≈
∑

l,i

αkli

P
∑

p=0

(−τkli)
p

p!
y
(p)
l (t).

For k = 1, . . . , N the system is rewritten as:

xh(t) ≈ Sỹ(t), (7)

where xh(t) = [xh
1 (t), . . . , x

h
N (t)]T is the filtered sources

vector, with xh
k(t) = {hd ∗ xk}(t),



ỹ(t) = [y1, ẏ1, . . . , y
(P )
1 , y2, . . . , y

(P )
2 , . . . , y

(P )
N ]T is the ob-

servations and their derivatives vector. S is the N×(NP +N)

separating matrix.

The analytical expression of each entry of S with respect to
the parameters cij and τij is heavy but does not present theo-
retical difficulties. This expression is detailed in the Appendix
A for the 2-sources/2-sensors case.

The joint estimation of the parameters cij ,τij and of the sepa-
rating matrix S forms the basis of the iterative algorithm pro-
posed in the following section.

3. PRESENTATION OF THE ALGORITHM

From (7) and because the sources xh
k(t) are mutually uncorre-

lated, it follows that S has to diagonalize the set of covariance
matrices obtained at different lagsRỹỹ(τk) = E{ỹ(t)ỹT (t+
τk)}:

SRỹỹ(τk)S
T = Λ(τk), ∀τk

Λ(τk) = E{xh(t)xh
T
(t+τk)} being a diagonal matrix what-

ever the lag τk.

S. Dégerine propose in [7],[8] a new algorithm (called Least
Square on B or LSB) for approximate non-orthogonal joint
diagonalization of a set of matrices. In its original form, this
algorithm iteratively searches an optimal joint diagonalizer S̃
of a set of K matrices to the mean square sense. The second-
order criterion to be optimized is then

C(S̃) =
∑

k

Off(S̃Rỹỹ(τk)S̃
T ), (8)

where Off(.) is the sum of the square non diagonal elements
of the considered matrix. To perform the mean square opti-
mization, S. Dégerine uses a relaxation on the lines of S̃ con-
ducting to solve N eigenvalue problems for each iteration.

Here, the expected diagonalizer S being non square, the opti-
mization (8) does not conduct to an unique solution for S̃. The
main idea is then to force the algorithm to hold the theoreti-
cal structure of the separation matrix at each iteration. This
theoretical expression depends on the parameters cij and τij .
At each step of relaxation, we estimate the parameters cij and
τij from their formal expression wrt the entries of the current
estimated S̃. The next step is processed using an new S̃ built
on these estimated parameters.
An illustration of such theoretical expressions can be found in
Appendices for the 2-sources case. For the N -sources case,
we implemented formal calculus subroutine in order to pro-
vide automatically the formal expressions we need.
The final algorithm is summed up as follows:

Numerical Algorithm

1) From the observations y(t), build the observation
vector ỹ(t) at the order P .

2) Compute K covariance matrixRỹỹ(τk).

3) Intitialize S̃(0) with arbitrary values.

4) Proceed to an iteration k with LSB algorithm.

5) From S̃(k) obtained at step 4), estimate the attenuation
coefficients ckij and the propagation delays τkij .

6) From ckij and τkij , compute a new matrix S̃(k + 1).

7) Repeat steps 4), 5) and 6) until the evolution of the
estimated matrix S̃ becomes sufficiently weak.

4. RESULTS

We present now a numerical simulation in the 3-sources/3-
observations case. The sources are 24s long music extracts.
The sampling frequency is Fs = 22.05kHz.

The matrix C of relative attenuations is:

C =





1.0000 1.0000 1.0000
2.0000 1.3000 1.2000
3.0000 1.6000 2.2000



 .

The matrixD of relative propagation delays is:

D =





0 0 0
30.00µs 18.00µs 5.00µs
25.00µs 12.50µs 10.00µs



 .

For the 3 observations, we take a Taylor series expansion up
to 3-order (P = 3). 151 covariance matrices Rỹỹ(τk) are
used (K = 151), with τk = k/Fs, k ∈ {−75, 75}.

Fig. 1 (a) shows the evolution of the optimization criterion
C(S̃) at each iteration number i and part (b) presents the Frobe-
nius norm of the matrix S̃(k + 1)− S̃(k)
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Fig. 1. Convergence

After convergence (8 iteration steps), we obtain the fol-
lowing estimations for the relative attenuations and for the
relative propagation delays:

C̃ =





1.0000 1.0000 1.0000
1.9995 1.3047 1.1967
2.9998 1.6053 2.1929



 ,

D̃ =





0 0 0
31.64µs 18.87µs 5.03µs
26.56µs 13.13µs 9.81µs



 .

Taking the matrices C̃ and D̃ into account, the filter Hd(ν)
can be identified and its effect reversed after separation. We
obtain the following source estimations (Fig. 2) that have to
be compared to the original ones (Fig. 3).
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Fig. 2. Estimated sources
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Fig. 3. Original sources

The mean square errors (MSE) between the estimated sources
and the original ones and the corresponding Signal to Interfer-
ence Ratio (SIR) are presented in the Table 1.

source #1 source #2 source #3
MSE 0.0141 0.0155 0.0164
SIR 41 dB 44 dB 36 dB

Table 1. Performances

5. CONCLUSION

This paper present a novel iterative method for blind source
separation from delayed mixtures. The delayed mixtures are
approached by instantaneous mixtures of the observation deriva-
tives. This approach uses only second-order statistics and
needs no more mixtures than sources. The algorithm is based
on the joint diagonalization of a set of spatial covariance ma-
trices but the non square separating matrix is constrained to
hold a theoretical structure at each iteration. A numerical sim-
ulation shows the efficiency of the approach.

APPENDIX A
FROM Mf (ν) TO S IN THE 2-OBSERVATIONS CASE.

Now, we have the following spectral mixing matrix

Mf (ν) =

[

1 1
c21e

−2πντ21 c22e
−2πντ22

]

. (9)

In this case (6) leads to the 2 following filtered sources:

xh
1 (t) = c22y1(t− τ22)− y2(t),

xh
2 (t) = −c21y1(t− τ21) + y2(t),

where xh
k(t) = xk(t− τ22)− xk(t− τ21), k ∈ [1, 2].



With xh(t) = [xh
1 , x

h
2 ]

T , and ỹ(t) = [y1, ẏ1, ÿ1, . . . , y
(P )
1 , y2]

T ,
the (2× P + 2) unmixing matrix of equation (7) becomes:

S =

[

c22 −c22τ22 . . . c22
(−τ22)

P

P ! −1

−c21 c22τ21 . . . −c21
(−τ21)

P

P ! 1

]

.

APPENDIX B
FROM S TO cij , τij IN THE 2-OBSERVATIONS CASE.

Here, we have the following separating matrix

S =

[

s11 s12 . . . s1P s1P+1

s21 s22 . . . s2P s2P+1

]

,

one has the (2× 2) spectral separating matrix

Sf (ν) =

[

sf11(ν) sf12(ν)

sf21(ν) sf22(ν)

]

,

where the entries of Sf (ν) are polynomials in ν:

sf11(ν) =
∑P

k=1(2jπν)
ks1k,

sf12(ν) = s1P+1,

sf21(ν) =
∑P

k=1(2jπν)
ks2k,

sf22(ν) = s2P+1.

The inverse matrix of Sf (ν) is also a matrix of polynomials:

[

Sf (ν)
]−1

=
1

det Sf (ν)

[

p11(ν) p12(ν)
p21(ν) p22(ν)

]

.

An approximation of the spectral mixing matrix Mf (ν) is
obtained normalizing each column of the previous matrix by
p1k(ν)

Mf (ν) ≈

[

1 1
p21(ν)/p11(ν) p22(ν)/p12(ν)

]

.

The entries of the second line of this matrix can be developed
in power series expansion in ν:

p21(ν)/p11(ν) = q0 + q1ν +O2(ν),

p22(ν)/p12(ν) = r0 + r1ν +O2(ν).

Identifying these expansions with the Taylor-series expansion
of the entries ofMf (ν) (see 9) we find:

c21 = q0,

τ21 = −
1

j2π

q1

q0
,

c22 = r0,

τ22 = −
1

j2π

r1

r0
.
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