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We consider the construction of (2t)-bent functions from two (2t -1)-near-bent functions in a special case. We deduce new families of bent-functions.

Introduction

F 2 is the finite field of order 2. A m-Boolean function (or Boolean function in m dimensions) is a map F from F m 2 to F 2 . Bent functions are the Boolean functions whose Fourier coefficients have constant magnitude and were introduced by Rothaus in [6]. It means that a m-Boolean function F is bent if all its Fourier coefficients are in {-2 m/2 , 2 m/2 }. Since Fourier coefficient are in Z then bent functions in m dimensions exist only when m is even.

Bent functions are of interest for Coding Theory, Cryptology and well-correlated binary sequences. For example, they have the maximum Hamming distance to the set of affine Boolean functions. It is easy to prove that the set B(m) of m-bent functions is invariant under the action of the product of the affine linear group of F m 2 with the group of translations of affine Boolean functions. The corresponding partition of B(m) under the action of this group defines an equivalence.

Two main infinite families of bent functions are known (see [START_REF] Wolfmann | Bent Functions and Coding Theory in Difference Sets, Sequences and their Correlation properties[END_REF]) but in general it is very difficult to decide if any bent function is equivalent to a member of these families.

Bent functions have been the topic of a lot of works but the complete classification of bent functions is still open. In order to improve the knowledge on bent functions, it is convenient to find new properties and constructions. This is the goal of this work. By definition, a m-Boolean function F is near-bent (sometimes called semi-bent [START_REF] Khoo | Stinson A new characterisation of semi-bent and bent functions on finite fields Des[END_REF]) if all its Fourier coefficients are in {-2 (m+1)/2 , 0, 2 (m+1)/2 } Near-bent functions exist only when m is odd.

It is known that the restrictions of a (2t)-bent function to any hyperplan and to the complement of this hyperplan (view as (2t-1)-Booleans functions) are near-bent. Properties of these near-bent functions are investigated in [START_REF] Wolfmann | Cyclic Code Aspects of Bent Functions in Finite Fields Theory and Applications[END_REF] in connexion with the theory of cyclic codes. In the present paper we consider the question of the construction of (2t)-bent functions from two (2t -1)-near-bent functions. A first approach of this problem appears in [START_REF] Leander | Construction of Bent Functions from Near-Bent Functions Journal of Combinatorial Theory[END_REF].

We restrict the problem to the special situation where the sum of the two (2t -1)-near-bent functions is an affine linear form of

F 2t-1 2 .
The study in this case was initiated by Leander and McGuire in [START_REF] Leander | Construction of Bent Functions from Near-Bent Functions Journal of Combinatorial Theory[END_REF] where they present several properties and constructions. One of their results is Theorem 14 of the present paper. In particular they obtain a non-weakly-normal bent function proving that this special point of view could produce new classes of bent functions. In this work we introduce new properties of the (2t -1)-near-bent functions involved in the construction of bent functions and we deduce new infinite families of bent functions.

This paper is a continuation and a generalisation of [START_REF]Wolfmann Special Bent and Near-Bent Functions in Advances in Mathematics of Communication[END_REF]. Lemma 5, Lemma 6 and Theorem 7 are already in [START_REF]Wolfmann Special Bent and Near-Bent Functions in Advances in Mathematics of Communication[END_REF] and are recalled for convenience, Theorem 14 is in [START_REF] Leander | Construction of Bent Functions from Near-Bent Functions Journal of Combinatorial Theory[END_REF] while all the other Theorem, Proposition, Corollary, Lemma and the entire subsection 3.5 are new.

Preliminaries

Classical definitions and results.

We gather here some definition and well-known results that we will use in the paper. Properties (P 1 ) to (P 5 ) are classical and follow immediately from the definitions or from straightforward calculations. The distribution given in (P 6 ) is a special cases of Proposition 4 in [START_REF] Canteaut | Decomposing Bent Functions[END_REF]. See [START_REF] Canteaut | On Cryptographic Properties of the Cosets of R(1,m[END_REF], [START_REF] Canteaut | Decomposing Bent Functions[END_REF], [START_REF] Dillon | Elementary Hadamard Difference Sets Ph[END_REF], [START_REF] Wolfmann | Bent Functions and Coding Theory in Difference Sets, Sequences and their Correlation properties[END_REF] for details.

Boolean functions.

F 2 m is the finite field of order 2 m . A m-Boolean function is a map F from F m 2 to F 2 . Its weight is the number of X in F m 2 such that F (X) = 1 and is denoted by w(F ). If e ∈ F m
2 then the Derivative of F with respect to e is the m-Boolean function D e F defined by: D e F (X) = F (X) + F (X + e)

The Fourier transform (or Walsh transform) F of F is the map from F m 2 into Z defined by:

F (v) = X∈F 2 m (-1) F (X)+<v,X>
where <, > denotes any inner product of

F 2 m over F 2 . F (v) is called the Fourier coefficient of v. Notation: T v is the Boolean function defined by T v (X) =< v, X >.
It comes immediately:

(P 1 ) : F (v) = 2 m -2w(F + T v ).
Remark: the set of F (v) when v runs through F 2 m is independent of the choice of the inner product <, >. The dual F of a (2t)-bent function F is the (2t)-Boolean function F defined by: F (v) = (-1) F (v) 2 t where F is the Fourier transform of F . It is easy to prove that F is bent and that the dual of F is F .

(P 4 ): Let F be the dual of a (2t)-bent function F . Then:

F (v) = 1 if and only if F (v) = -2 t .
2.1.3. Near-bent functions.

A (2t-1)-Boolean function is "near-bent" if all its Fourier coefficients are in {-2 t , 0, 2 t }.

In the litterature, near-bent functions are sometimes called semi-bent functions (see [START_REF] Khoo | Stinson A new characterisation of semi-bent and bent functions on finite fields Des[END_REF]).

(P 5 ) Let f be a (2t -1)-boolean function and let l be an affine linear form of F 2t-1 2 . f is a near-bent function if and only if f + l is a near-bent function.

(P 6 ): The distribution of the Fourier coefficients of a (2t -1)-near bent function f is well known (see Proposition 4 in [START_REF] Canteaut | Decomposing Bent Functions[END_REF]). f (v) = 2 t number of v:

2 2t-3 + (-1) f (0) 2 t-2 f (v) = 0 number of v: 2 2t-2 f (v) = -2 t number of v: 2 2t-3 -(-1) f (0) 2 t-2 .

2.2.

A two-variable representation.

Special description of F 2t

2 . We identify F 2t 2 with the finite field F 2 2t and F 2 2t with:

F 2 2t-1 × F 2 = {X = (u, ν) | u ∈ F 2 2t-1 , ν ∈ F 2 }.
If m = 2t-1 the inner product used to calculate the Fourier coefficients is defined by < a, x >= tr(ax) where tr is the trace function of F 2 2t-1 . Notation: For every a ∈ F 2 2t-1 the (2t -1)-Boolean function t a is defined by t a (x) = tr(ax).

If m = 2t, a special inner product adapted to the above special description of F 2t 2 will be defined in 2.2.3. 2.2.2. Special representation of (2t)-Boolean functions. Using the description of

F 2 2t as F 2 2t-1 ×F 2 then a (2t)-Boolean function F now is a map from F 2 2t-1 × F 2 to F 2 . ∀(u, ν) ∈ F 2 2t-1 × F 2 : F (u, ν) = 0 or 1
Let F be such a function. Define two (2t -1)-Boolean functions f 0 and f 1 by f 0 (u) = F (u, 0) and f 1 (u) = F (u, 1). Now let φ be the (2t)-Boolean function defined by: φ(x, y)

= (y + 1)f 0 (x) + yf 1 (x). If ν = 0 then φ(u, 0) = f 0 (u) = F (u, 0). If ν = 1 then φ(u, 1) = f 1 (u) = F (u, 1). Therefore, for all (u, ν) then F (u, ν) = φ(u, ν) whence φ = F . F (x, y) = (y + 1)f 0 (x) + yf 1 (x)
This is the two-variable representation of F . The (2t)-Boolean function F is completely defined by the two (2t -1)-Boolean functions f 0 and f 1 .

Notation: F is denoted by [f 0 , f 1 ] f 0 and f 1 are called the components of F .
From the definitions of f 0 and f 1 we have:

(P 7 ) : w(F ) = w(f 0 ) + w(f 1 )
2.2.3. Representation of (2t)-linear forms. The purpose of this part is to express (2t)-linear forms and the inner product <, > over F 2 2t used in the calculation of the Fourier coefficients in such a way which is consistent with the identification of

F 2 2t as F 2 2t-1 × F 2 .
With this identification it is easy to check that <, > defined by < (a, η), (x, ν) >= tr(ax)+ην is an inner product of F 2 2t (non-degenerate symmetric bilinear form). We use it to calculate the Fourier coefficients.

Definition 1. The inner product T v of F 2 2t such that T v (X) =< v, X > is now defined by T (a,η) (x, ν) = tr(ax) + ην.
Consequently, every affine linear form of F 2 2t is of the kind T (a,η) + ω with (a, η) ∈ F 2 2t and ω ∈ F 2 . We immediately obtain :

Proposition 2. (*) T (a,η) = [t a , t a + η]. Let F = [f 0 , f 1 ] be a (2t)-boolean function. (**) F + T (a,η) = [f 0 + t a , f 1 + t a + η].

Representation of bent functions.

The next proposition is a special version of a well known result which appears in several papers ( [START_REF] Canteaut | Decomposing Bent Functions[END_REF], [START_REF] Wolfmann | Bent Functions and Coding Theory in Difference Sets, Sequences and their Correlation properties[END_REF],...). A proof is given in [START_REF]Wolfmann Special Bent and Near-Bent Functions in Advances in Mathematics of Communication[END_REF]. 

Problem:

The previous proposition leads to the following problem: construction of (2t)-bent-functions by means of (2t -1)-near-bent functions f 0 and f 1 satisfying (b).

In order to study this point we have an additional information on f 0 and f 1 .

Proposition 4. If [f 0 , f 1 ] is bent then f 0 + f 1 is balanced (considered as a Boolean function on F 2 2t-1 ). Proof. D 0,1 (F )(u, ν) = F (u, ν) + F (u, ν + 1).
The two-variable representation of F is:

F (x, y) = (y + 1)f 0 (x) + yf 1 (x). Hence F (u, ν) = (ν + 1)f 0 (u) + νf 1 (u) F (u, ν + 1) = (ν + 1 + 1)f 0 (u) + (ν + 1)f 1 (u). Finally D 0,1 (F )(u, ν) = f 0 (u) + f 1 (u).
On the other hand, we know from (P 2 ) that D 0,1 (F ) is balanced which means that the number of (u, ν)

such that D 0,1 (F )(u, ν) = 1 is 2 2t-1 . Now, note that D (0,1) (F )(u, 1) = f 0 (u) + f 1 (u) = D (0,1) (F )(u, 0). Since for a given u such that f 0 (u) + f 1 (u) = 1 there are two (u, ν) such that D (0,1) (F )(u, ν) = 1 then the number of u such that f 0 (u) + f 1 (u) = 1 is 1 2 2 2t-1 = 2 2t-2
and this proves that f 0 + f 1 is balanced. Special case: Because of the above proposition, a possible approach to attack our problem is to search f 0 and f 1 such that f 0 + f 1 is balanced. For every ∈ F 2 the Boolean function tr + where tr is the trace function of F 2 2t-1 over of F 2 , is balanced and is therefore a good candidate for f 0 + f 1 . This leads us to focus in this work on the case f 1 + f 0 = tr + .

Results in this case are given by McGuire and Leander in [START_REF] Leander | Construction of Bent Functions from Near-Bent Functions Journal of Combinatorial Theory[END_REF].

Results

Previous results.

The three next results have already been published in [START_REF]Wolfmann Special Bent and Near-Bent Functions in Advances in Mathematics of Communication[END_REF] with their proofs. We need them for the rest of the paper.

Lemma 5. Let F = [f 0 , f 1 ] be a (2t)-Boolean function. Then: a) F (u, 0) = f0 (u) + f1 (u). b) F (u, 1) = f0 (u) -f1 (u).
Proof. see [START_REF]Wolfmann Special Bent and Near-Bent Functions in Advances in Mathematics of Communication[END_REF], Lemma 13. Lemma 6.

If f 0 and f 1 are the components of a bent function F . and ω ∈ F 2 then:

D 1 f 0 = ω if and only if D 1 f 1 = ω + 1.
Proof. see [START_REF]Wolfmann Special Bent and Near-Bent Functions in Advances in Mathematics of Communication[END_REF], Proposition 16.

The next theorem is a fundamental result.

Theorem 7. Let f 0 be a (2t -1)-near-bent function. If the derivative D 1 f 0 is a constant function then the (2t)-Boolean function F = [f 0 , f 0 + tr] is bent.
Proof. see [START_REF]Wolfmann Special Bent and Near-Bent Functions in Advances in Mathematics of Communication[END_REF], Theorem 1.

3.2. New results.

3.2.1.

Results on near-bent functions.

Definition 8. If f is a (2t -1)-near-bent function then Îf is the indicator of the set {x ∈ F 2 2t-1 | f (x) = 0}
where f is the Fourier transform of f . (In other words, Îf (x) = 1 if and only if f (x) = 0).

Lemma 9.

Let f be a (2t -1)-near-bent function and ∈ F 2 .

If D 1 f = then Îf = tr + Remark: According to the definition of Îf this lemma means that if D 1 f = then f (x) = 0 if and only if tr(x) + = 1.

Proof. D 1 f = means that f (x + 1) = f (x) + . The transform τ :

x → x + 1 is a permutation of F 2 2t-1 and then preserves the weight of every (2t -1)-Boolean function. Thus:

{x | f (x) + tr(ux) = 1} = {x | f (x + 1) + tr(u(x + 1)) = 1}. (E) {x | f (x) + tr(ux) = 1} = {x | f (x) + + tr(ux) + tr(u) = 1}.
If tr(u) + = 1 the right hand member of (E) is:

{x | f (x) + tr(ux) = 0} = 2 2t-1 -{x | f (x) + tr(ux) = 1} Hence (E) becomes: {x | f (x) + tr(ux) = 1} = 2 2t-1 -{x | f (x) + tr(ux) = 1} In other words w(f + t u ) = 2 2t-1 -w(f + t u ) and thus: If tr(u) + = 1 then w(f + t u ) = 2 2t-2 which is equivalent to f (u) = 0.
For every the number of u such that tr(u) + = 1 is 2 2t-2 and this is also the number of u such that f (u) = 0 (see (P 6 ) ). Then, immediately: f (u) = 0 if and only if tr(u) + = 1. This means Îf 0 = tr + 3.2.2. Results on bent functions. The next theorem is a key point of this work.

Theorem 10. Let F = [f 0 , f 1 ] be a (2t)-bent function and let F = [ f0 , f1 ] be its dual function. Then f0 + f1 = Îf 0 Proof. From the definitions of bent and near-bent functions, every a in F 2 2t-1 belongs to one of the following sets:

A 1 = {a ∈ F 2 2t-1 | f0 (a) = -2 t and f1 (a) = 0} A 2 = {a ∈ F 2 2t-1 | f0 (a) = 0 and f1 (a) = -2 t } A 3 = {a ∈ F 2 2t-1 | f0 (a) = 2 t and f1 (a) = 0} A 4 = {a ∈ F 2 2t-1 | f0 (a) = 0 and f1 (a) = 2 t }
The definition of the dual of F induces that (a, η) is in the support of F if and only if F (a, η) = -2 t . From Lemma 5: F (u, 0) = f0 (u) + f1 (u) and F (u, 1) = f0 (u) -f1 (u).

Therefore: F (a, 0) = -2 t if and only if a ∈ A 1 or a ∈ A 2 , F (a, 1) = -2 t if and only if a ∈ A 1 or a ∈ A 4 , We deduce that, (a, 0) is in the support of F if and only if a ∈ A 1 ∪ A 2 . and (a, 1) is in the support of F if and only if a ∈ A 1 ∪ A 4 . In other words the support of f0 is A 1 ∪ A 2 and the support of f1 is

A 1 ∪ A 4 . It follows that the support of f0 + f1 is A 2 ∪ A 4 which is nothing but the set {x ∈ F 2 2t-1 | f0 (x) = 0}. A bent function F = [f 0 , f 1 ] is self-dual if F = F where F is the dual of F . Corollary 11. If a (2t)-bent function F = [f 0 , f 1 ] is self-dual then f 1 = f 0 + Îf 0 .
Proof. By Theorem 10, f0 + f1 = Îf 0 . Since F is self-dual then f0 + f1 = f 0 + f 1 which gives the result.

The converse of Theorem 7 is not true. In other words, it is not true that if f 0 + f 1 = tr then D 1 f 0 is a constant function, as it will be seen with several examples. However, we have a pseudo-reciprocoal theorem. The next Theorem is an improvement of a Theorem of [START_REF]Wolfmann Special Bent and Near-Bent Functions in Advances in Mathematics of Communication[END_REF] Theorem 12. Let F = [f 0 , f 1 ] be a bent function and let F = [ f0 , f1 ] be its dual function. Let be in F 2 .

f 0 + f 1 = tr + if and only if D 1 f0 = .

Proof.

Step 1: assume

f 0 + f 1 = tr + with ∈ F 2 .
From (P 1 ): f0 (u) = 2 2t-1 -2w(f 0 + t u ). Thus:

(R) f0 (u + 1) = 2 2t-1 -2w(f 0 + t u+1 ). • If = 0: Since f 0 + f 1 = tr then: f1 (u) = 2 2t-1 -2w(f 0 + t 1 + t u ) = 2 2t-1 -2w(f 0 + t u+1 ).
By using (R) we have f1 (u) = f0 (u + 1). We deduce from lemma 5: F (u, 0) = f0 (u) + f0 (u + 1) and F (u + 1, 0) = f0 (u + 1) + f0 (u) whence F (u, 0) = F (u + 1, 0). According to (P 4 ): f0 (u) = f0 (u + 1)) and this means D 1 f0 = 0.

• If = 1. Since f 0 + f 1 = tr + 1 then: f1 (u) = 2 2t-1 -2w(f 0 + t 1 + t u + 1) = 2 2t-1 -2w(f 0 + t u+1 + 1). Observe that w(f 0 + t u+1 + 1) = 2 2t-1 -w(f 0 + t u+1 ). This implies: f1 (u) = 2 2t-1 -2[2 2t-1 -w(f 0 + t u+1 )] = -2 2t-1 + 2w(f 0 + t u+1 ).
With (R) it follows f1 (u) = -f0 (u + 1). From lemma 5: F (u, 0) = f0 (u) -f0 (u + 1) whence F (u + 1, 0) = f0 (u + 1) -f0 (u) and finally F (u, 0) = -F (u + 1, 0). This means that F (u, 0) and F (u + 1, 0) are not equal to 2 t in the same time. From (P 4 ): f0 (u) = f0 (u + 1)) which yields D 1 f0 = 1.

Conclusion: if

f 0 + f 1 = tr + then D 1 f0 = .
Step 2: Conversely, assume D 1 f0 = . Lemma 9 shows that Î f0 = tr + . Hence by Theorem 10:

f 0 + f 1 = tr + . Corollary 13. If a bent function F = [f 0 , f 1 ] is self-dual then f 1 = f 0 + tr + if and only if D 1 f 0 = . Proof. This a direct consequence of Theorem 12 since if F is self-dual then f0 + f1 = f 0 + f 1 .
Another result on Îf is given in [START_REF] Leander | Construction of Bent Functions from Near-Bent Functions Journal of Combinatorial Theory[END_REF].

Theorem 14. (McGuire and Leander)

Let f be a near-bent function.

D 1 ( Îf ) = 1 if and only if [f, f + tr] is a bent-function.
Proof. see [START_REF] Leander | Construction of Bent Functions from Near-Bent Functions Journal of Combinatorial Theory[END_REF].

Corollary 15.

Let F = [f 0 , f 1 ] be a bent function and let F = [ f0 , f1 ] be its dual.

D 1 (f 0 + f 1 ) = 1 if and only if [ f0 , f0 + tr] is a bent function.
Proof. Theorem 10 says that Îf 0 = f0 + f1 and Theorem 14 proves that D 1 ( f0 + f1 ) = 1 if and only if [f 0 , f 0 + tr] is bent. The expected result is obtained by interchanging the roles of F and F .

Example: (obtained by computing ) t = 4, f 0 = tr(x 29 + x 27 + x 23 + x 21 + x 5 + x), f 1 = tr(x 29 + x 27 + x 23 + x 21 + x 9 )

f 0 + f 1 = tr(x 9 + x 5 + x) then D 1 (f 0 + f 1 ) = 1.
The dual of [f 0 , f 1 ] is [tr(x 13 + x 7 ), tr(x 19 + x 11 + x 7 )] then [tr(x 13 + x 7 ), tr(x 13 + x 7 + x)] is bent. The next theorem is the generalisation of a result of [START_REF]Wolfmann Special Bent and Near-Bent Functions in Advances in Mathematics of Communication[END_REF].

Theorem 17. Define two conditions on a (2t)-Boolean function G = [g 0 , g 1 ]: (T ) : g 0 + g 1 = tr + ξ with ξ ∈ F 2 and (C) : D 1 g 0 = µ with µ ∈ F 2
Let F be a bent function. If F meets condition (T ) with ξ = then:

A) The pseudo-duals F0 and F1 are bent functions.

F0 meets (T ) with ξ = 0 and (C) with µ = .

F1 meets (T ) with ξ = 0 and (C) with µ = + 1. Remark: We deduce from the previous result that if D 1 f 0 is not a constant function then F0 and F are distinct.

The following examples are obtained with computer assist.

Example 1: t = 4, D 1 f 0 = 0. F : f 0 (x) = tr(x + x 3 + x 7 + x 11 + x 19 + x 21 ), . f 1 (x) = f 0 (x) + tr(x) F : f0 (x) = tr(x 7 + x 11 + x 19 + x 21 ) f1 (x) = f0 (x) + tr(x) F0 = F and F0 = F F1 = F + [tr, tr].
Example 2: t = 4, D 1 f 0 = 0, 1.

F : f 0 (x) = tr(x 7 + x 13 ) . f 1 (x) = f 0 (x) + tr(x) F : f0 (x) = tr(x 5 + x 7 + x 9 + x 13 + x 19 + x 21 ) f1 (x) = f0 (x) + tr(x + x 5 + x 9 ) F0 : f (0) 0 (x) = f0 (x), f (0) 1 (x) = f0 (x) + tr(x) F1 : f (1) 0 (x) = f1 (x), f (1) 1 (x 
) = f1 (x) + tr(x) F0 : f (0) 0 (x) = tr(x + x 7 + x 9 + x 13 + x 19 + x 21 ), If f 0 meets one of the two following cases and if F = [f 0 , f 0 + tr] then F, F , F0 , F1 , F0 , F1 are bent functions and they satisfy condition (T ).

f (0) 1 (x) = f (0) 0 (x) + tr(x) F1 : f (1) 0 (x) = tr(x + x 3 + x 7 + x 13 + x 19 + x 21 ) f (1) 1 (x) = f ( 
(1) Kasami-Welch case f 0 is a (2t -1)-Boolean function such that:

f 0 (x) = tr(x 4 s -2 s +1
) with 2t -1 ≡ 0 mod 3, 3s ≡ ±1 mod (2t -1), s < t.

(2) Quadratic case f 0 is a (2t -1)-near-bent function such that: f 0 (x) = t-1 j=1 c j tr(x 2 j +1 ) with c j ∈ F 2 .

Proof. In order to apply Theorem 17, we have to check in every case that F is bent and meets (T ) with ξ = 0.

• In case (1), the derivative D 1 f 0 is not a constant function but it was proved (McGuire, Leander, [START_REF] Leander | Construction of Bent Functions from Near-Bent Functions Journal of Combinatorial Theory[END_REF]) that [f 0 , f 0 + tr] is bent.

• In case [START_REF] Canteaut | Decomposing Bent Functions[END_REF] it is easy to prove that D 1 f 0 is a constant function and then [f 0 , f 0 + tr] is bent.

Remark: Several examples of near-bent functions in case (2) are given in [START_REF] Khoo | Stinson A new characterisation of semi-bent and bent functions on finite fields Des[END_REF].

Adding new functions.

Let F = [f 0 , f 1 ] be bent with f 0 + f 1 = tr.

Question: find g such that [f 0 + g, f 1 + g] is bent.

Remark : In this case, f 1 + g = f 0 + g + tr.

Recall that if u ∈ F 2 2t-1 then t u is the (2t -1)-function defined by t u (x) = tr(ux).

Theorem 20.

Let v be in

F 2 2t-1 .
If one of the following conditions is satisfied:

(i) f 0 is a (2t -1)-near-bent function such that the derivative D 1 f 0 is a constant function (ii) F = [f 0 , f 1 ] is a bent function such that f 0 + f 1 = tr. then the Boolean function F † = [f † 0 , f † 1 ] with f † 0 = f 0 + t 1 t v and f † 1 = f † 0 + tr is bent.
In order to prove Theorem 20 we need the two following lemmas. The second one is due to Canteaut and Charpin ( [START_REF] Canteaut | Decomposing Bent Functions[END_REF], Theorem 8).

Recall that the inner product <, > which is used for the calculation of the Fourier coefficients is now defined by: T (a,η) (x, ν) =< (a, η), (x, ν) >= tr(ax) + ην.

Lemma 21.

(L 1 ): The indicator of (u, 0), (v, 0) ⊥ is:

[t u t v , t u t v ] + [t u + t v + 1, t u + t v + 1]. (L 2 ): If G = [g 0 , g 1 ] then: D (b,0) D (a,0) G = [D b D a g 0 , D b D a g 1 ].
(L 3 ): If the derivative D 1 g is a constant function then for every u:

D 1 D u g = D u+1 D u g = 0
Proof. Proof of (L 1 ): Let I be the indicator (u, 0), (v, 0) ⊥ . (x, ν) is othogonal to (u, 0) if and only if < (u, 0), (x, ν) >= tr(ux) = 0. In other words the indicator of (u, 0) ⊥ is t u +1. Similarly, the indicator of (v, 0) ⊥ is t v + 1. This means that I(x, ν) = 1 if and only if: (tr(ux) + 1)(tr(vx) + 1) = 1. This result is independent of ν and 

f 0 (u) = I(u, 0) = f 1 (u) = I(u, 1) = (t u + 1)(t v + 1) that is I = [(t u +1)(t v +1), (t u +1)(t v +1)]. Since (t u +1)(t v +1) = t u t v +t u +t v +1 then I = [t u t v , t u t v ] + [t u + t v + 1, t u + t v + 1]. Proof of (L 2 ): G(x, y) = (y + 1)g 0 (x) + yg 1 (x). D (a,0) G(x, y) = (y + 1)g 0 (x + a) + yg 1 (x + a) + (y + 1)g 0 (x) + yg 1 (x). = (y + 1)[g 0 (x + a) + g 0 (x)] + y[g 1 (x + a) + g 1 (x)] = (y + 1)D a g 0 (x) + yD a g 1 (x) Then D (a,0) G = [D a g 0 , D a g 1 ]. By replacing G by D (a,0) G and a by b: D (b,0) D (a,0) G = [D b D a g 0 , D b D a g 1 ]. Proof of (L 3 ): From D u g(x) = g(x + u) + g(x): D 1 D u g(x) = g(x + 1 + u) + g(x + 1) + g(x + u) + g(x), D u+1 D u g(x) = g(x + 1 + u) + g(x + 1) + g(x + u) + g(x) then D 1 D u g = D u+1 D u g. Note from the above calculation that D 1 D u g(x) = D 1 g(x+u)+D 1 g(x). Since D 1 g is a constant function then D 1 D u g = 0.
E = [t 1 t v , t 1 t v ] + [t 1 + t v + 1, t 1 + t v + 1].
Hence, in view of Lemma 22:

F = F + [t 1 t v , t 1 t v ] + [t 1 + t v + 1, t 1 + t v + 1] is bent. Since L = [t 1 + t v + 1, t 1 + t v + 1
] is an affine linear form then: F = F + L = [f 0 , f 1 ] with f 0 = f 0 + t 1 t v and f 1 = f 1 + t 1 t v also is bent.

Remark: Instead of t 1 t v is it possible to add some other products of two forms. This give rise to bent functions equivalent to those of the kind [f 0 , f 1 ] by means of the addition of a linear form. Example:

F † † = [f † † 0 , f † † 1 ]
with f † † 0 = f 0 + t u t u+1 and f † † 1 = f † † 0 + tr. It is easy to check that t u t u+1 = t 1 t u + t u . Therefore: F † † = [f 0 +t 1 t u +t u , f 0 +t 1 t u +t u +tr] = [f 0 +t 1 t u , f 0 +t 1 t u +tr]+[t u , t u ] Corollary 23. If (i) or (ii) of Theorem 20 is satified then f † 0 = f 0 + t 1 t v is near-bent. Proof. Since F † = [f † 0 , f † 1 ] is bent then according to Proposition 3, (a): f † 0 and f † 1 are near-bent.

Conclusion

We have introduced a way to construct new bent functions starting from a near-bent functions f such that D 1 f is a constant function or from a bent function such that the sum of the two components is a Boolean function of degree 1. An open question now is to describe explicitely the near-bent functions of the first kind, for example by means of the trace function. Another question is to generalise the study to the case where the degree of the sum of the two components is greater than 1.

Proposition 3 .

 3 F is a bent function if and only if: (a) f 0 and f 1 are near-bent. (b) ∀a ∈ F 2 2t-1 | f0 (a) | + | f1 (a) |= 2 t Remark: (b) means that one of | f0 (a) | and | f1 (a) | is equal to 2 t and the other one is equal to 0.

3. 3 .

 3 Pseudo duality. The results of the previous theorems lead to introduce a new definition. Definition 16. Let G = [g 0 , g 1 ] be a (2t)-bent function and let G = [g 0 , g1 ] be its dual function. The pseudo-duals of G are the two (2t)-Boolean functions: Ḡ0 = [g 0 , g0 + tr] and Ḡ1 = [g 1 , g1 + tr].

2 )

 2 If D 1 f 0 = 0 then 1) shows that F0 = F whence f0 + f1 = tr. Thus F1 = [ f1 , f1 + tr] = [ f0 + tr, f0 + tr + tr] = [ f0 + tr, f0 ] = [ f0 , f0 + tr] + [tr, tr]. Finally F1 = F0 + [tr, tr] = F + [tr, tr].

3 . 4 .

 34 1) 0 (x) + tr(x + 1) New infinite families of bent functions. Proposition 19.

  Lemma 22. ([2],Theorem 8) Let F be a (2t)-bent function. Let A and B two distinct non-zero elements of F 2 2t and E = A, B ⊥ . Let Φ E be the indicator of E. Then the function F + Φ E is bent if and only if the dual function F satisfies D B D A F = 0. Proof. of Theorem 20. If v = 0 or v = 1 the result is trivial. If v = 0 and v = 1: From Theorem 7, in case (i) the Boolean function [f 0 , f 0 + tr] is bent. Consequently, in both cases (i) and (ii) we have to consider the bent function F = [f 0 , f 0 + tr]. Let F = [ f0 , f1 ] be the dual function of F . Theorem 12 proves that D 1 f0 = 0 and D 1 f1 = 1. Therefore, from (L 3 ): D 1 D v f0 = D 1 D v f1 = 0. It follows from (L 2 ) that D (1,0) D (v,0) F = [0, 0]. Now, using the notations of Lemma 22 with A = (1, 0), B = (v, 0), v = 0, v = 1 then from (L 1 ): Φ

B) The dual F0 of F0 meets (T ) with ξ = and (C) with µ = 0. C) The dual F1 of F1 meets (T ) with ξ = + 1 and (C) with µ = 1.

Proof.

Notations:

1 ] Proof of A): Since f 0 + f 1 = tr + then, from Theorem 12 and Lemma 6: ( ) D 1 f0 = and D 1 f1 = + 1. By the definition F0 = [ f0 , f0 + tr]. That is F0 meets (T ) with ξ = 0. Furthermore, we deduce from Theorem 7 that F0 is a bent function and meets (C) with µ = . Similarly, again from Theorem 12 and from Theorem 7, F1 is a bent function and meets (T ) with ξ = 0 and (C) with µ = + 1.

Proof of B) and C):

From the definition of the duals: Starting from a bent function F = [f 0 , f 1 ] such that f 0 + f 1 = tr + , Theorem 17 provides new bent functions. The question now is: are F, F , F0 , F1 , F0 , F1 distinct functions or not ? A first answer is given by the next proposition.