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FROM NEAR-BENT TO BENT: A SPECIAL CASE

J.WOLFMANN

Abstract. We consider the construction of (2t)-bent functions
from two (2t− 1)-near-bent functions in a special case. We deduce
new families of bent-functions.

1. Introduction

F2 is the finite field of order 2. A m-Boolean function (or Boolean
function inm dimensions) is a map F from Fm2 to F2. Bent functions are
the Boolean functions whose Fourier coefficients have constant magni-
tude and were introduced by Rothaus in [6]. It means that a m-Boolean
function F is bent if all its Fourier coefficients are in {−2m/2, 2m/2}.
Since Fourier coefficient are in Z then bent functions in m dimensions
exist only when m is even.

Bent functions are of interest for Coding Theory, Cryptology and
well-correlated binary sequences. For example, they have the maximum
Hamming distance to the set of affine Boolean functions.
It is easy to prove that the set B(m) of m-bent functions is invariant
under the action of the product of the affine linear group of Fm2 with the
group of translations of affine Boolean functions. The corresponding
partition of B(m) under the action of this group defines an equivalence.

Two main infinite families of bent functions are known (see [7]) but
in general it is very difficult to decide if any bent function is equivalent
to a member of these families.

Bent functions have been the topic of a lot of works but the complete
classification of bent functions is still open.
In order to improve the knowledge on bent functions, it is convenient
to find new properties and constructions. This is the goal of this work.
By definition, a m-Boolean function F is near-bent (sometimes called
semi-bent [4]) if all its Fourier coefficients are in {−2(m+1)/2, 0, 2(m+1)/2}
Near-bent functions exist only when m is odd.

It is known that the restrictions of a (2t)-bent function to any hyper-
plan and to the complement of this hyperplan (view as (2t−1)-Booleans
functions) are near-bent. Properties of these near-bent functions are
investigated in [8] in connexion with the theory of cyclic codes.
In the present paper we consider the question of the construction of
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2 J.WOLFMANN

(2t)-bent functions from two (2t − 1)-near-bent functions. A first ap-
proach of this problem appears in [5].

We restrict the problem to the special situation where the sum of
the two (2t − 1)-near-bent functions is an affine linear form of F2t−1

2 .
The study in this case was initiated by Leander and McGuire in [5]
where they present several properties and constructions. One of their
results is Theorem 14 of the present paper. In particular they obtain
a non-weakly-normal bent function proving that this special point of
view could produce new classes of bent functions.
In this work we introduce new properties of the (2t − 1)-near-bent
functions involved in the construction of bent functions and we deduce
new infinite families of bent functions.

This paper is a continuation and a generalisation of [9]. Lemma 5,
Lemma 6 and Theorem 7 are already in [9] and are recalled for conve-
nience, Theorem 14 is in [5] while all the other Theorem, Proposition,
Corollary, Lemma and the entire subsection 3.5 are new.

2. Preliminaries

2.1. Classical definitions and results.
We gather here some definition and well-known results that we will use
in the paper. Properties (P1) to (P5) are classical and follow immedi-
ately from the definitions or from straightforward calculations.
The distribution given in (P6) is a special cases of Proposition 4 in [2].
See [1],[2],[3],[7] for details.

2.1.1. Boolean functions.
F2m is the finite field of order 2m.
A m-Boolean function is a map F from Fm2 to F2.
Its weight is the number of X in Fm2 such that F (X) = 1 and is
denoted by w(F ).

If e ∈ Fm2 then the Derivative of F with respect to e is the m-Boolean
function DeF defined by: DeF (X) = F (X) + F (X + e)

The Fourier transform (or Walsh transform) F̂ of F is the map from
Fm2 into Z defined by:

F̂ (v) =
∑

X∈F2m

(−1)F (X)+<v,X>

where <,> denotes any inner product of F2m over F2.
F̂ (v) is called the Fourier coefficient of v.
Notation: Tv is the Boolean function defined by Tv(X) =< v,X >.
It comes immediately:

(P1) : F̂ (v) = 2m − 2w(F + Tv).

Remark: the set of F̂ (v) when v runs through F2m is independent of
the choice of the inner product <,>.
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2.1.2. Bent functions.
A (2t)-Boolean function is “bent” if all its Fourier coefficients are
in {−2t, 2t} A well-known characterisation of a bent function is the

following.
(P2): A (2t)-Boolean function F is bent if and only if for every e ∈ F2t

2

the derivative DeF is balanced:
]{X | DeF (X) = 1} = ]{X | DeF (X) = 0}.

In other words F is bent if and only if the weight of DeF is 22t−1 for
every e.

(P3) Let F be a (2t)-boolean function and let L be an affine linear form
of F2t

2 .
F is a bent function if and only if F + L is a bent function.

The dual F̃ of a (2t)-bent function F is the (2t)-Boolean function F̃

defined by: F̂ (v) = (−1)F̃ (v)2t where F̂ is the Fourier transform of F .
It is easy to prove that F̃ is bent and that the dual of F̃ is F .

(P4): Let F̃ be the dual of a (2t)-bent function F . Then:

F̃ (v) = 1 if and only if F̂ (v) = −2t.

2.1.3. Near-bent functions.
A (2t−1)-Boolean function is “near-bent” if all its Fourier coefficients
are in {−2t, 0, 2t}.

In the litterature, near-bent functions are sometimes called semi-bent
functions (see [4]).

(P5) Let f be a (2t − 1)-boolean function and let l be an affine linear
form of F2t−1

2 .
f is a near-bent function if and only if f + l is a near-bent function.

(P6): The distribution of the Fourier coefficients of a (2t−1)-near bent
function f is well known (see Proposition 4 in [2]).

f̂(v) = 2t number of v: 22t−3 + (−1)f(0)2t−2

f̂(v) = 0 number of v: 22t−2

f̂(v) = −2t number of v: 22t−3 − (−1)f(0)2t−2.

2.2. A two-variable representation.

2.2.1. Special description of F2t
2 .

We identify F2t
2 with the finite field F22t and F22t with:

F22t−1 × F2 = {X = (u, ν) | u ∈ F22t−1 , ν ∈ F2}.

If m = 2t−1 the inner product used to calculate the Fourier coefficients
is defined by < a, x >= tr(ax) where tr is the trace function of F22t−1 .
Notation: For every a ∈ F22t−1 the (2t − 1)-Boolean function ta is
defined by ta(x) = tr(ax).
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If m = 2t, a special inner product adapted to the above special de-
scription of F2t

2 will be defined in 2.2.3.

2.2.2. Special representation of (2t)-Boolean functions.
Using the description of F22t as F22t−1×F2 then a (2t)- Boolean function
F now is a map from F22t−1 × F2 to F2.

∀(u, ν) ∈ F22t−1 × F2 : F (u, ν) = 0 or 1

Let F be such a function. Define two (2t−1)-Boolean functions f0 and
f1 by f0(u) = F (u, 0) and f1(u) = F (u, 1).
Now let φ be the (2t)-Boolean function defined by:
φ(x, y) = (y + 1)f0(x) + yf1(x).
If ν = 0 then φ(u, 0) = f0(u) = F (u, 0).
If ν = 1 then φ(u, 1) = f1(u) = F (u, 1).
Therefore, for all (u, ν) then F (u, ν) = φ(u, ν) whence φ = F .

F (x, y) = (y + 1)f0(x) + yf1(x)

This is the two-variable representation of F .
The (2t)-Boolean function F is completely defined by the two
(2t− 1)-Boolean functions f0 and f1.

Notation:
F is denoted by [f0, f1]
f0 and f1 are called the components of F .

From the definitions of f0 and f1 we have:

(P7) : w(F ) = w(f0) + w(f1)

2.2.3. Representation of (2t)-linear forms.
The purpose of this part is to express (2t)-linear forms and the inner
product <,> over F22t used in the calculation of the Fourier coeffi-
cients in such a way which is consistent with the identification of F22t

as F22t−1 × F2.
With this identification it is easy to check that <,> defined by
< (a, η), (x, ν) >= tr(ax)+ην is an inner product of F22t (non-degenerate
symmetric bilinear form). We use it to calculate the Fourier coefficients.

Definition 1.
The inner product Tv of F22t such that Tv(X) =< v,X > is now defined
by

T(a,η)(x, ν) = tr(ax) + ην.

Consequently, every affine linear form of F22t is of the kind T(a,η) +ω
with (a, η) ∈ F22t and ω ∈ F2. We immediately obtain :

Proposition 2.
(*) T(a,η) = [ta, ta + η].

Let F = [f0, f1] be a (2t)-boolean function.
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(**) F + T(a,η) = [f0 + ta, f1 + ta + η].

2.3. Representation of bent functions.
The next proposition is a special version of a well known result which
appears in several papers ([2],[7],...). A proof is given in [9].

Proposition 3.
F is a bent function if and only if:

(a) f0 and f1 are near-bent.

(b) ∀a ∈ F22t−1 | f̂0(a) | + | f̂1(a) |= 2t

Remark: (b) means that one of | f̂0(a) | and | f̂1(a) | is equal to 2t and
the other one is equal to 0.

Problem:

The previous proposition leads to the following problem: construction
of (2t)-bent-functions by means of (2t− 1)-near-bent functions f0 and
f1 satisfying (b).
In order to study this point we have an additional information on f0
and f1.

Proposition 4.
If [f0, f1] is bent then f0 + f1 is balanced (considered as a Boolean
function on F22t−1).

Proof.
D0,1(F )(u, ν) = F (u, ν) + F (u, ν + 1).
The two-variable representation of F is:
F (x, y) = (y + 1)f0(x) + yf1(x). Hence

F (u, ν) = (ν + 1)f0(u) + νf1(u)
F (u, ν + 1) = (ν + 1 + 1)f0(u) + (ν + 1)f1(u).

Finally D0,1(F )(u, ν) = f0(u) + f1(u).
On the other hand, we know from (P2) that D0,1(F ) is balanced which
means that the number of (u, ν) such that D0,1(F )(u, ν) = 1 is 22t−1.
Now, note that D(0,1)(F )(u, 1) = f0(u) + f1(u) = D(0,1)(F )(u, 0). Since
for a given u such that f0(u) + f1(u) = 1 there are two (u, ν) such that
D(0,1)(F )(u, ν) = 1 then the number of u such that f0(u) + f1(u) = 1
is 1

2
22t−1 = 22t−2 and this proves that f0 + f1 is balanced. �

Special case:
Because of the above proposition, a possible approach to attack our
problem is to search f0 and f1 such that f0 + f1 is balanced.
For every ε ∈ F2 the Boolean function tr+ ε where tr is the trace func-
tion of F22t−1 over of F2, is balanced and is therefore a good candidate
for f0 + f1.

This leads us to focus in this work on the case f1 + f0 = tr + ε.

Results in this case are given by McGuire and Leander in [5].
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3. Results

3.1. Previous results.
The three next results have already been published in [9] with their
proofs. We need them for the rest of the paper.

Lemma 5.
Let F = [f0, f1] be a (2t)-Boolean function. Then:

a) F̂ (u, 0) = f̂0(u) + f̂1(u).

b) F̂ (u, 1) = f̂0(u)− f̂1(u).

Proof. see [9], Lemma 13. �

Lemma 6.
If f0 and f1 are the components of a bent function F . and ω ∈ F2 then:
D1f0 = ω if and only if D1f1 = ω + 1.

Proof. see [9], Proposition 16. �

The next theorem is a fundamental result.

Theorem 7.
Let f0 be a (2t − 1)-near-bent function. If the derivative D1f0 is a
constant function then the (2t)-Boolean function F = [f0, f0 + tr] is
bent.

Proof. see [9], Theorem 1. �

3.2. New results.

3.2.1. Results on near-bent functions.

Definition 8.
If f is a (2t− 1)-near-bent function then Îf is the indicator of the set

{x ∈ F22t−1 | f̂(x) = 0} where f̂ is the Fourier transform of f .

(In other words, Îf (x) = 1 if and only if f̂(x) = 0).

Lemma 9.
Let f be a (2t− 1)-near-bent function and ε ∈ F2.

If D1f = ε then Îf = tr + ε

Remark: According to the definition of Îf this lemma means that if

D1f = ε then f̂(x) = 0 if and only if tr(x) + ε = 1.

Proof. D1f = ε means that f(x + 1) = f(x) + ε. The transform τ :
x→ x + 1 is a permutation of F

22t−1 and then preserves the weight of
every (2t− 1)-Boolean function. Thus:

]{x | f(x) + tr(ux) = 1} = ]{x | f(x+ 1) + tr(u(x+ 1)) = 1}.
(E) ]{x | f(x) + tr(ux) = 1} = ]{x | f(x) + ε+ tr(ux) + tr(u) = 1}.

If tr(u) + ε = 1 the right hand member of (E) is:
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]{x | f(x) + tr(ux) = 0} = 22t−1 − ]{x | f(x) + tr(ux) = 1}
Hence (E) becomes:
]{x | f(x) + tr(ux) = 1} = 22t−1 − ]{x | f(x) + tr(ux) = 1}

In other words w(f + tu) = 22t−1 − w(f + tu) and thus:
If tr(u) + ε = 1 then w(f + tu) = 22t−2 which is equivalent to

f̂(u) = 0.
For every ε the number of u such that tr(u) + ε = 1 is 22t−2 and this is

also the number of u such that f̂(u) = 0 (see (P6) ). Then, immediately:

f̂(u) = 0 if and only if tr(u) + ε = 1. This means Îf0 = tr + ε �

3.2.2. Results on bent functions.
The next theorem is a key point of this work.

Theorem 10.
Let F = [f0, f1] be a (2t)-bent function and let F̃ = [f̃0, f̃1] be its dual

function. Then f̃0 + f̃1 = Îf0

Proof.
From the definitions of bent and near-bent functions, every a in F22t−1

belongs to one of the following sets:

A1 = {a ∈ F22t−1 | f̂0(a) = −2t and f̂1(a) = 0}
A2 = {a ∈ F22t−1 | f̂0(a) = 0 and f̂1(a) = −2t}
A3 = {a ∈ F22t−1 | f̂0(a) = 2t and f̂1(a) = 0}
A4 = {a ∈ F22t−1 | f̂0(a) = 0 and f̂1(a) = 2t}

The definition of the dual of F induces that (a, η) is in the support of

F̃ if and only if F̂ (a, η) = −2t.
From Lemma 5:
F̂ (u, 0) = f̂0(u) + f̂1(u) and F̂ (u, 1) = f̂0(u)− f̂1(u).

Therefore:
F̂ (a, 0) = −2t if and only if a ∈ A1 or a ∈ A2,

F̂ (a, 1) = −2t if and only if a ∈ A1 or a ∈ A4,

We deduce that, (a, 0) is in the support of F̃ if and only if a ∈ A1∪A2.
and (a, 1) is in the support of F̃ if and only if a ∈ A1 ∪ A4.

In other words the support of f̃0 is A1 ∪ A2 and the support of f̃1 is
A1 ∪ A4.
It follows that the support of f̃0 + f̃1 is A2 ∪ A4 which is nothing but
the set {x ∈ F22t−1 | f̂0(x) = 0}. �

A bent function F = [f0, f1] is self-dual if F = F̃ where F̃ is the
dual of F .

Corollary 11.
If a (2t)-bent function F = [f0, f1] is self-dual then f1 = f0 + Îf0 .
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Proof.
By Theorem 10, f̃0 + f̃1 = Îf0 . Since F is self-dual then

f̃0 + f̃1 = f0 + f1 which gives the result. �

The converse of Theorem 7 is not true. In other words, it is not
true that if f0 + f1 = tr then D1f0 is a constant function, as it will
be seen with several examples. However, we have a pseudo-reciprocoal
theorem. The next Theorem is an improvement of a Theorem of [9]

Theorem 12.
Let F = [f0, f1] be a bent function and let F̃ = [f̃0, f̃1] be its dual
function. Let ε be in F2.

f0 + f1 = tr + ε if and only if D1f̃0 = ε.

Proof.
Step 1: assume f0 + f1 = tr + ε with ε ∈ F2.

From (P1): f̂0(u) = 22t−1 − 2w(f0 + tu). Thus:

(R) f̂0(u+ 1) = 22t−1 − 2w(f0 + tu+1).
• If ε = 0:
Since f0 + f1 = tr then:
f̂1(u) = 22t−1 − 2w(f0 + t1 + tu) = 22t−1 − 2w(f0 + tu+1).

By using (R) we have f̂1(u) = f̂0(u+ 1).
We deduce from lemma 5:
F̂ (u, 0) = f̂0(u) + f̂0(u+ 1) and F̂ (u+ 1, 0) = f̂0(u+ 1) + f̂0(u)

whence F̂ (u, 0) = F̂ (u+ 1, 0).

According to (P4): f̃0(u) = f̃0(u+ 1)) and this means D1f̃0 = 0.

• If ε = 1.
Since f0 + f1 = tr + 1 then:
f̂1(u) = 22t−1 − 2w(f0 + t1 + tu + 1) = 22t−1 − 2w(f0 + tu+1 + 1).
Observe that w(f0 + tu+1 + 1) = 22t−1 − w(f0 + tu+1).
This implies:
f̂1(u) = 22t−1 − 2[22t−1 − w(f0 + tu+1)] = −22t−1 + 2w(f0 + tu+1).

With (R) it follows f̂1(u) = −f̂0(u+ 1).

From lemma 5: F̂ (u, 0) = f̂0(u)− f̂0(u+ 1) whence

F̂ (u+ 1, 0) = f̂0(u+ 1)− f̂0(u) and finally F̂ (u, 0) = −F̂ (u+ 1, 0).

This means that F̂ (u, 0) and F̂ (u+1, 0) are not equal to 2t in the same

time. From (P4): f̃0(u) 6= f̃0(u+ 1)) which yields D1f̃0 = 1.

Conclusion: if f0 + f1 = tr + ε then D1f̃0 = ε.

Step 2: Conversely, assume D1f̃0 = ε.

Lemma 9 shows that Îf̃0
= tr + ε. Hence by Theorem 10:

f0 + f1 = tr + ε. �
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Corollary 13.
If a bent function F = [f0, f1] is self-dual then f1 = f0 + tr + ε if and
only if D1f0 = ε.

Proof.
This a direct consequence of Theorem 12 since if F is self-dual then
f̃0 + f̃1 = f0 + f1. �

Another result on Îf is given in [5].

Theorem 14. (McGuire and Leander)
Let f be a near-bent function.
D1(Îf ) = 1 if and only if [f, f + tr] is a bent-function.

Proof. see [5]. �

Corollary 15.
Let F = [f0, f1] be a bent function and let F̃ = [f̃0, f̃1] be its dual.

D1(f0 + f1) = 1 if and only if [f̃0, f̃0 + tr] is a bent function.

Proof.
Theorem 10 says that Îf0 = f̃0 + f̃1 and Theorem 14 proves that

D1(f̃0 + f̃1) = 1 if and only if [f0, f0 + tr] is bent. The expected result
is obtained by interchanging the roles of F and F̃ . �

Example: (obtained by computing )
t = 4,
f0 = tr(x29 +x27 +x23 +x21 +x5 +x), f1 = tr(x29 +x27 +x23 +x21 +x9)
f0 + f1 = tr(x9 + x5 + x) then D1(f0 + f1) = 1.

The dual of [f0, f1] is [tr(x13 + x7), tr(x19 + x11 + x7)]
then [tr(x13 + x7), tr(x13 + x7 + x)] is bent.

3.3. Pseudo duality.
The results of the previous theorems lead to introduce a new definition.

Definition 16.
Let G = [g0, g1] be a (2t)-bent function and let G̃ = [g̃0, g̃1] be its dual
function. The pseudo-duals of G are the two (2t)-Boolean functions:
Ḡ0 = [g̃0, g̃0 + tr] and Ḡ1 = [g̃1, g̃1 + tr].

The next theorem is the generalisation of a result of [9].

Theorem 17.
Define two conditions on a (2t)-Boolean function G = [g0, g1]:
(T ) : g0 + g1 = tr + ξ with ξ ∈ F2 and (C) : D1g0 = µ with µ ∈ F2

Let F be a bent function. If F meets condition (T ) with ξ = ε then:

A) The pseudo-duals F̄0 and F̄1 are bent functions.
F̄0 meets (T ) with ξ = 0 and (C) with µ = ε.
F̄1 meets (T ) with ξ = 0 and (C) with µ = ε+ 1.
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B) The dual ˜̄F0 of F̄0 meets (T ) with ξ = ε and (C) with µ = 0.

C) The dual ˜̄F1 of F̄1 meets (T ) with ξ = ε+ 1 and (C) with µ = 1.

Proof.
Notations:

F = [f0,f1], dual of F : F̃ = [f̃0, f̃1],

Pseudo-dual F̄0 = [f̄
(0)
0 , f̄

(0)
1 ]. Pseudo-dual F̄1 = [f̄

(1)
0 , f̄

(1)
1 ].

Dual of F̄0:
˜̄F0 = [ ˜̄f

(0)
0 , ˜̄f

(0)
1 ]. Dual of F̄1:

˜̄F1 = [ ˜̄f
(1)
0 , ˜̄f

(1)
1 ]

Proof of A):
Since f0 + f1 = tr + ε then, from Theorem 12 and Lemma 6:
(?) D1f̃0 = ε and D1f̃1 = ε+ 1.

By the definition F̄0 = [f̃0, f̃0 + tr]. That is F̄0 meets (T ) with ξ = 0.
Furthermore, we deduce from Theorem 7 that F̄0 is a bent function
and meets (C) with µ = ε. Similarly, again from Theorem 12 and from
Theorem 7, F̄1 is a bent function and meets (T ) with ξ = 0 and (C)
with µ = ε+ 1.

Proof of B) and C):
From the definition of the duals:
(??) f̄

(0)
0 = f̃0, f̄

(1)
0 = f̃1 and f̄

(0)
0 + f̄

(0)
1 = tr, f̄

(1)
0 + f̄

(1)
1 = tr.

Now with (?): D1f̄
(0)
0 = D1f̃0 = ε and D1f̄

(1)
0 = D1f̃1 = ε+ 1.

Now, by Theorem 12:
˜̄f
(0)
0 + ˜̄f

(0)
1 = tr + ε and ˜̄f

(1)
0 + ˜̄f

(1)
1 = tr + ε+ 1

Hence ˜̄F0 meets (T ) with ξ = ε and ˜̄F1 meets (T ) with ξ = ε+1. From

(?) and again by Theorem 12: D1
˜̄f
(0)
0 = 0 and D1

˜̄f
(1)
0 = 1 and thus ˜̄F0

meet (C) with µ = 0 and ˜̄F1 meet (C) with µ = 1.

�

Starting from a bent function F = [f0, f1] such that f0 + f1 = tr+ ε,
Theorem 17 provides new bent functions. The question now is:

are F, F̃ , F̄0, F̄1,
˜̄F0,

˜̄F1 distinct functions or not ?
A first answer is given by the next proposition.

Proposition 18.
Let F = [f0, f1] be a bent function and let F̃ = [f̃0, f̃1] be its dual
function. If f0 + f1 = tr then:
1) F̄0 = F̃ if and only if D1f0 = 0.
2) If D1f0 = 0 then F̄1 = F̃ + [tr, tr].

Proof.

1) From the definition of F̄0: f̄
(0)
0 + f̄

(0)
1 = tr. If F̄0 = F̃ then

f̃0 + f̃1 = f̄
(0)
0 + f̄

(0)
1 = tr and Theorem 12 says that D1f0 = 0.

Now if D1f0 = 0 then Theorem 7 proves that f̃0 + f̃1 = tr which means
F̄0 = F̃ .
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2) If D1f0 = 0 then 1) shows that F̄0 = F̃ whence f̃0 + f̃1 = tr.

Thus F̄1 = [f̃1, f̃1 + tr] = [f̃0 + tr, f̃0 + tr + tr] = [f̃0 + tr, f̃0]

= [f̃0, f̃0 + tr] + [tr, tr].
Finally F̄1 = F̄0 + [tr, tr] = F̃ + [tr, tr]. �

Remark: We deduce from the previous result that if D1f0 is not a
constant function then F̄0 and F̃ are distinct.

The following examples are obtained with computer assist.

Example 1: t = 4, D1f0 = 0.

F : f0(x) = tr(x+ x3 + x7 + x11 + x19 + x21), .
f1(x) = f0(x) + tr(x)

F̃ : f̃0(x) = tr(x7 + x11 + x19 + x21)

f̃1(x) = f̃0(x) + tr(x)

F̄0 = F̃ and ˜̄F0 = F F̄1 = F̃ + [tr, tr].

Example 2: t = 4, D1f0 6= 0, 1.

F : f0(x) = tr(x7 + x13) .
f1(x) = f0(x) + tr(x)

F̃ : f̃0(x) = tr(x5 + x7 + x9 + x13 + x19 + x21)

f̃1(x) = f̃0(x) + tr(x+ x5 + x9)

F̄0 : f̄
(0)
0 (x) = f̃0(x), f̄

(0)
1 (x) = f̃0(x) + tr(x)

F̄1 : f̄
(1)
0 (x) = f̃1(x), f̄

(1)
1 (x) = f̃1(x) + tr(x)

˜̄F0 : ˜̄f
(0)
0 (x) = tr(x+ x7 + x9 + x13 + x19 + x21),

˜̄f
(0)
1 (x) = ˜̄f

(0)
0 (x) + tr(x)

˜̄F1 : ˜̄f
(1)
0 (x) = tr(x+ x3 + x7 + x13 + x19 + x21)

˜̄f
(1)
1 (x) = ˜̄f

(1)
0 (x) + tr(x+ 1)

3.4. New infinite families of bent functions.

Proposition 19.
If f0 meets one of the two following cases and if F = [f0 , f0 + tr] then

F, F̃ , F̄0, F̄1,
˜̄F0,

˜̄F1 are bent functions and they satisfy condition (T ).

(1) Kasami-Welch case
f0 is a (2t− 1)-Boolean function such that:

f0(x) = tr(x4
s−2s+1) with 2t− 1 6≡ 0 mod 3,

3s ≡ ±1 mod (2t− 1), s < t.

(2) Quadratic case

f0 is a (2t− 1)-near-bent function such that:

f0(x) =
∑t−1

j=1 cjtr(x
2j+1) with cj ∈ F2.
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Proof. In order to apply Theorem 17, we have to check in every case
that F is bent and meets (T ) with ξ = 0.
• In case (1), the derivative D1f0 is not a constant function but it was
proved (McGuire, Leander, [5]) that [f0 , f0 + tr] is bent.
• In case (2) it is easy to prove that D1f0 is a constant function and
then [f0 , f0 + tr] is bent. �

Remark: Several examples of near-bent functions in case (2) are given
in [4].

3.5. Adding new functions.
Let F = [f0 , f1 ] be bent with f0 + f1 = tr.

Question: find g such that [f0 + g, f1 + g] is bent.

Remark : In this case, f1 + g = f0 + g + tr.
Recall that if u ∈ F22t−1 then tu is the (2t − 1)-function defined by
tu(x) = tr(ux).

Theorem 20.
Let v be in F22t−1.
If one of the following conditions is satisfied:

(i) f0 is a (2t− 1)-near-bent function such that the derivative D1f0
is a constant function

(ii) F = [f0, f1] is a bent function such that f0 + f1 = tr.

then the Boolean function F † = [f †0 , f
†
1 ] with f †0 = f0 + t1tv

and f †1 = f †0 + tr is bent.

In order to prove Theorem 20 we need the two following lemmas. The
second one is due to Canteaut and Charpin ([2], Theorem 8).

Recall that the inner product <,> which is used for the calculation of
the Fourier coefficients is now defined by:
T(a,η)(x, ν) =< (a, η), (x, ν) >= tr(ax) + ην.

Lemma 21.
(L1): The indicator of 〈(u, 0), (v, 0)〉⊥ is:

[tutv, tutv] + [tu + tv + 1, tu + tv + 1].

(L2): If G = [g0, g1] then:

D(b,0)D(a,0)G = [DbDag0, DbDag1].

(L3): If the derivative D1g is a constant function then for every u:

D1Dug = Du+1Dug = 0

Proof.
Proof of (L1):
Let I be the indicator 〈(u, 0), (v, 0)〉⊥.
(x, ν) is othogonal to (u, 0) if and only if < (u, 0), (x, ν) >= tr(ux) = 0.
In other words the indicator of 〈(u, 0)〉⊥ is tu+1. Similarly, the indicator
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of 〈(v, 0)〉⊥ is tv + 1. This means that I(x, ν) = 1 if and only if:
(tr(ux) + 1)(tr(vx) + 1) = 1. This result is independent of ν and
f0(u) = I(u, 0) = f1(u) = I(u, 1) = (tu + 1)(tv + 1) that is
I = [(tu+1)(tv+1), (tu+1)(tv+1)]. Since (tu+1)(tv+1) = tutv+tu+tv+1
then I = [tutv, tutv] + [tu + tv + 1, tu + tv + 1].

Proof of (L2):
G(x, y) = (y + 1)g0(x) + yg1(x).
D(a,0)G(x, y) = (y + 1)g0(x+ a) + yg1(x+ a) + (y + 1)g0(x) + yg1(x).
= (y + 1)[g0(x+ a) + g0(x)] + y[g1(x+ a) + g1(x)]
= (y + 1)Dag0(x) + yDag1(x)
Then D(a,0)G = [Dag0, Dag1]. By replacing G by D(a,0)G and a by b:
D(b,0)D(a,0)G = [DbDag0, DbDag1].

Proof of (L3):
From Dug(x) = g(x+ u) + g(x):
D1Dug(x) = g(x+ 1 + u) + g(x+ 1) + g(x+ u) + g(x),
Du+1Dug(x) = g(x+ 1 + u) + g(x+ 1) + g(x+ u) + g(x)
then D1Dug = Du+1Dug.
Note from the above calculation that D1Dug(x) = D1g(x+u)+D1g(x).
Since D1g is a constant function then D1Dug = 0. �

Lemma 22. ([2],Theorem 8)
Let F be a (2t)-bent function. Let A and B two distinct non-zero
elements of F22t and E = 〈A,B〉⊥. Let ΦE be the indicator of E. Then
the function F + ΦE is bent if and only if the dual function F̃ satisfies
DBDAF̃ = 0.

Proof. of Theorem 20.
If v = 0 or v = 1 the result is trivial.
If v 6= 0 and v 6= 1:
From Theorem 7, in case (i) the Boolean function [f0, f0 + tr] is bent.
Consequently, in both cases (i) and (ii) we have to consider the bent
function F = [f0, f0 + tr].

Let F̃ = [f̃0, f̃1] be the dual function of F .

Theorem 12 proves that D1f̃0 = 0 and D1f̃1 = 1. Therefore, from (L3):

D1Dvf̃0 = D1Dvf̃1 = 0.
It follows from (L2) that D(1,0)D(v,0)F̃ = [0, 0].
Now, using the notations of Lemma 22 with A = (1, 0), B = (v, 0),
v 6= 0, v 6= 1 then from (L1): ΦE = [t1tv, t1tv] + [t1 + tv + 1, t1 + tv + 1].
Hence, in view of Lemma 22:
F ] = F + [t1tv, t1tv] + [t1 + tv + 1, t1 + tv + 1] is bent.
Since L = [t1 + tv + 1, t1 + tv + 1] is an affine linear form then:

F \ = F ] + L = [f \0, f
\
1] with f \0 = f0 + t1tv and f \1 = f1 + t1tv also is

bent. �

Remark:
Instead of t1tv is it possible to add some other products of two linear
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forms. This give rise to bent functions equivalent to those of the kind
[f \0, f

\
1] by means of the addition of a linear form.

Example:
F †† = [f ††0 , f

††
1 ] with f ††0 = f0 + tutu+1 and f ††1 = f ††0 + tr.

It is easy to check that tutu+1 = t1tu + tu. Therefore:
F †† = [f0+t1tu+tu, f0+t1tu+tu+tr] = [f0+t1tu, f0+t1tu+tr]+[tu, tu]

Corollary 23.
If (i) or (ii) of Theorem 20 is satified then f †0 = f0 + t1tv is near-bent.

Proof.
Since F † = [f †0 , f

†
1 ] is bent then according to Proposition 3, (a):

f †0 and f †1 are near-bent. �

4. Conclusion

We have introduced a way to construct new bent functions starting
from a near-bent functions f such that D1f is a constant function or
from a bent function such that the sum of the two components is a
Boolean function of degree 1. An open question now is to describe
explicitely the near-bent functions of the first kind, for example by
means of the trace function. Another question is to generalise the
study to the case where the degree of the sum of the two components
is greater than 1.
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