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Abstract

In the framework of Γ-convergence and periodic homogenization of highly contrasted materials, we study
cylindrical structures made of one material and voids. Interest in high contrast homogenization is growing
rapidly but assumptions are generally made in order to remain in the framework of classical elasticity. On the
contrary, we obtain homogenized energies taking into account second gradient (i.e. strain gradient) effects. We
first show that we can reduce the study of the considered structures to discrete systems corresponding to frame
lattices. Our study of such lattices differs from the literature in the fact that we must take into account the
different orders of magnitude of the extensional and flexural stiffnesses. This allows us to consider structures
which would have been floppy when considering only extensional stiffness and completely rigid when considering
flexural stiffnesses of the same order of magnitude than the extensional ones. At our knowledge, this paper
provides the first rigorous homogenization result with a complete second gradient limit energy.

1 Introduction

In [14] it has been proved that highly contrasted heterogeneous elastic materials may lead, through an homoge-
nization process, to materials with very new properties. In particular the order of differentiation of the equilibrium
equations may be much higher for the homogenized material than they were for the heterogeneous one. However
very few explicit examples have been given in which such a phenomenon appears. In [31], [9], [12] the homogenized
material becomes a second gradient one : the elastic energy depends on the second gradient of the displacement
instead of the first one only. However all these results fall under the framework of couple stress theory, [36], [37],
[27], [28] : the dependence with respect to the second gradient of the displacement is limited to dependence on the
gradient of the skew part of the gradient of the displacement only. To our knowledge complete second gradient
media have been obtained, up to now, only through homogenization of discrete systems based on pantographic
structures [5], [35], [5].

Second gradient materials are, among other generalized continuum models widely used [18], [17], [25], [19]. Their
very rich behavior allows for instance to regularize and thus to study precisely the parts of materials where the
deformation tends to concentrate, [38], [20] (inter-phases, [29], [13], [21], [34], porous media, [33], fractures, [2],
[3], damage and plasticity, [39], [32], . . . ). However the second gradient properties are scarcely measured directly,
[7], [8], [22] nor rigorously interpreted from a microscopic point of view. Mechanicians have no tool for conceiving
second gradient materials with chosen properties.

The aim of this paper is to provide such a tool. It is is not question here to solve all highly contrasted periodic
homogenization problems but to describe a set of situations sufficiently large for making clear how appear second
gradient effect through the homogenization process.

We consider structures made of a periodic arrangement of welded thin walls (see for instance figure 1) : they
are cylinders the basis of which is a thickened periodic planar graph. We study, in the framework of Γ-convergence,
the homogenization of these structures and rigorously determine the second gradient effects. To that aim we make
some modeling assumptions which, of course, can be questioned when applied to the real structure of figure 1:

• First we assume that the structure is made of a homogeneous linear elastic material. We thus implicitly forbid
the possibility of any micro buckling effect.
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Figure 1: A cylindrical 3D elastic structure based on a thickened periodic planar graph.

• We also consider that the structure is solicited in the plane of the graph and assume that we are in the
conditions of plane strain elasticity. This assumption, valid only when the height of the structure is large
enough, allows us to reduce the problem to a bi-dimensional one : a linear elastic problem set in a thickened
periodic planar graph; more precisely, in the intersection of this thickened graph and a bounded domain
Ω ⊂ R

2.

• As our goal is to determine the effective properties of the material, we have to suppose that the size ℓ of the
period of the graph is small compared to the characteristic size L of the domain Ω. This is the standard
asymptotic homogenization assumption.

ǫ = ℓ/L << 1

• We consider that the thickness e of the walls the structure is made of (i.e. the thickness of the graph) is small
compared with ℓ. Hence the 2D elastic problem we consider contains two small dimensionless parameters
which we let tend to zero :

δ = e/ℓ << 1

This assumption is essential : otherwise the standard homogenization results would be valid and the effective
properties of the material would be those of a classical (may be non isotropic) elastic material. This assumption
will also have a practical effect on our mathematical arguments : as it implies that the edges are slender
rectangles, we can, using the theory of slender elastic structures, reduce our problem to the study of a discrete
system.

• The two limits ǫ → 0 and δ → 0 do not commute and we have to specify the way they simultaneously go to
zero : we assume that

δ = βǫ

with β > 0 fixed. Indeed, this case is critical : the cases δ = ǫα with α > 1 or α < 1 can be deduced from our
results by letting in a further step β tend to zero or to infinity.

• Finally we have to specify the order of magnitude of the rigidity of the material our structure is made of.
We emphasize that speaking of the order of magnitude of the stiffness of the material takes sense only if we
compare it to some force. In other words, making an assumption over the elastic rigidity is equivalent to
making an assumption over the order of magnitude of the applied external forces. As the total volume of
our structure tends to zero with δ, it is clear that we need a strong rigidity of the material if we desire to
resist to forces of order one. Different assumptions can be made which correspond to different experiments.
This is not surprising : the reader accustomed for instance to the 3D-2D or 3D-1D reduction of models for
plates or beams, knows that changing the assumptions upon the order of magnitude of the elasticity stiffness
of the material changes drastically the limit model. If the structure cannot resist to some applied forces (like
a membrane cannot resist to transverse forces), it may resist to them after a suitable scaling of the material
properties (like the membrane model is replaced by the Kirchhoff-Love plate model). Simultaneously some
mobility may disappear (like the Kirchhoff-Love plate becomes inextensible).

In this paper we are interested in the case where the Lamé coefficients (µ, λ) of the material tend to infinity
like δ−1ǫ−2 :

µ =
µ0

βǫ3
, λ =

λ0
βǫ3

(1)
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• For sake of simplicity we assume free boundary conditions along the whole boundary of Ω. The discussion
about the different boundary conditions which can be assumed and the way they pass to the limit would make
this paper too long. As usual when dealing with Neumann-type boundary conditions, we have to assume that
the external forces applied to the structure are balanced and we ensure unicity of equilibrium solution by
imposing zero mean rigid motion.

The paper is organized as follows. In Section 2, we first describe precisely the geometry we are interested in by
introducing in a sparce way the graphs on which our 3D structures are based. Assuming a plane strain state we
state the elastic problem in a 2D domain which corresponds to a thickened graph. Then, in Section 3, we prove that
this elastic problem has the same Γ-limit as an equivalent discrete problem set on the nodes of the graph. Both
extensional and flexional stiffnesses must be taken into account even if the flexional rigidity is much lower than the
extensional one. This part is rather technical and the proofs which are more or less standard are postponed to the
Appendix.

In Section 4 we attack the problem of finding the Γ-limit of the discrete energy. We study the problem from
the variational point of view adapting to our case the tools of Γ-convergence, [15], [10] and double-scale limit, [30],
[4] which have shown their efficiency for treating many different problems of homogenization. The topology we use
is rather weak but it is sufficient to ensure at least, that the equilibrium of the structure under the action forces
applied at the nodes of the structure will be well described by the equilibrium of the limit model. We first focus on
the pure extensional energy and prove that, for any motion with finite energy, the strain must remain in a particular
subspace : uniform such strains must be possible without extending any link of the graph. Then we can compute
the energy for non uniform such strains : one part of the energy is due to the flexional rigidity of the links, the
other one is due to the non uniformity of the strain and the extensional stiffnesses of the links. Our result differ
from the ones given in Ref. [23] or Ref. [24] where the studied discrete system is very similar to our. The point is
that, generally, the order of magnitude of the different types of interaction are supposed not to interfere with the
homogenization asymtotic process (see Remark 7.5 of Ref. [23], Remark (2.7) of Ref. [26] or Ref. [11]).

In this paper we do not exhaust all interesting questions about our structures : it has been shown in [35] that the
types of actions (external forces, external distributions, boundary distributions,. . . ) which can be applied to second
gradient materials were much richer than the boundary conditions and external forces considered here. However
the case we study is sufficient to enlight the way second gradient effects can arise through the homogenization
procedure.

2 Initial problem, description of the geometry

2.1 The graph

The geometry we consider is based on a periodic planar graph. Such a graph is determined by

• a prototype cell Y containing a finite number K of nodes the position of which is denoted ys, s ∈ {1, . . . ,K};

• two independent periodicity vectors t1, t2. Introducing, for I = (i, j) ∈ N
2, the points yI,s := ys + it1 + jt2,

the set of nodes of the graph is

G̊ :=
{

yI,s : I ∈ N
2, s ∈ {1, . . . ,K}

}

We use yI := 1
K

∑K
s=1 yI,s as a reference point in the cell I. As the graph will be re-scaled, we can assume

without loss of generality that t1 × t2 = 1 (i.e. the area |Y| = 1);

• five K × K matrices ap taking value in R
+ defining the edges of the graph : an edge links nodes yI,s and

yI+p,s′ as soon as ap,s,s′ > 0. Here p belongs to the set1

P := {(0, 0), (1, 0), (0, 1), (1, 1), (1,−1)}.

We denote p := p1t1 + p2t2 ∈ {0, t1, t2, t1 + t2, t1 − t2} the corresponding vector so that yI+p,s = yI,s +p. We
introduce the set of multi-indices corresponding to all edges :

A := {(p, s, s′) : p ∈ P , 1 ≤ s ≤ K, 1 ≤ s′ ≤ K, ap,s,s′ > 0}.
1Note that, owing to periodicity, only half of the neighbors of a cell have been considered. Note also that there is no loss of generality

(as soon as we assume the range of interactions is finite) in assuming that a cell is interacting only with its closest neighbors. Indeed
we can always choose a prototype cell large enough for this assumption to become true.
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To resume the graph reads

G :=
⋃

I∈N2

⋃

(p,s,s′)∈A
[yI,s, yI+p,s′ ]

Restrictive assumptions : Not all interaction matrices are admissible :

• There is no crossing or overlapping of different edges : for any (p, s, s′) and (p̃, s̃, s̃′) in A,

[yI,s, yI+p,s′ ] ∩ [yĨ,s̃, yĨ+p̃,s̃′ ] 6⊂ {yI,s, yI+p,s′} ⇒ (Ĩ , s̃, p̃) = (I, s, p).

This assumption results from the cylindrical shapes we are studying but is not fundamental. One could design
multilayered structures, allowing crossing of interactions. The reduction to a discrete problem would then
have to be adapted to this case.

• We are not interested by lattices which are made of several disconnected lattices. So we assume that the
edges connect all the nodes of the structures. More precisely we assume that, for any p ∈ P and any
(s, s′) ∈ {1, . . . ,K}2, there exist finite sequences (s1, . . . , sr+1) in {1, . . . ,K}, (p1, . . . , pr) in P , (ǫ1, . . . , ǫr) in
{−1, 1} such that s1 = s, sr+1 = s′,

∑r
i=1 ǫipi = p,

ǫi > 0 ⇒ (pi, si, si+1) ∈ A and ǫi < 0 ⇒ (pi, si+1, si) ∈ A.

Let us denote PR the set {(i, j), max(|i|, |j|) ≤ R}. The previous condition implies the existence of some
integer R such that, for any I, J ∈ PR, (s, s

′) ∈ {1, . . . ,K}2 and any square summable quantity ϕ,

(∀I ′ ∈ I + P2R, ∀(p, t, t′) ∈ A, ϕI′+p,t′ − ϕI′,t = 0) =⇒ (ϕI+J,s′ − ϕI,s = 0).

This implies that the quantity
∑

(I′,p,t,t′)∈P2R×A ap,t,t′(ϕI′+p,t′ − ϕI′,t)
2 controls (ϕI+J,s′ − ϕI,s)

2 and we get

the existence of a constant C such that for any J ∈ PR and (s, s′) ∈ {1, . . . ,K}2,
∑

I∈N2

(ϕI+J,s′ − ϕI,s)
2 ≤ C

∑

(I,p,t,t′)∈N2×A
ap,t,t′(ϕI+p,t′ − ϕI,t)

2 (2)

• The previous connectedness assumption is necessary but not sufficient for the structure to be able to resist
to reasonable external forces. Before formulating the new assumption, let us introduce some supplementary
notation. For any edge [yI,s, yI+p,s′ ] of the considered graph, we denote

ℓp,s,s′ := ‖yI+p,s′ − yI,s‖, τp,s,s′ := (yI+p,s′ − yI,s)/ℓp,s,s′

its length2 and direction and τ⊥p,s,s′ which completes τp,s,s′ in a direct orthonormal basis. For any vector field

vector field UI,s defined on N
2×{0, . . . ,K}, we consider the associated extension and rotation defined on each

edge of the graph by

(ρU )I,p,s,s′ := (UI+p,s′ − UI,s) · τp,s,s′ ,

(αU )I,p,s,s′ :=
1

lp,s,s′
(UI+p,s′ − UI,s) · τ⊥p,s,s′

We say that an edge (p, s, t) ∈ A is controlled in the direction J ∈ PR by extension if there exists a constant
C such that, for any vector field U ,

∑

I∈N2

(

(αU )I+J,p,s,t − (αU )I,p,s,t
)2 ≤ C

∑

(I′,p′,s′,t′)∈N2×A
ap′,s′,t′

(

(ρU )I′,p′,s′,t′

)2

(3)

We assume that there exists in the graph at least two edges (p, s, s′) and (q, t, t′) which are controlled in inde-
pendent directions J and J ′. In section 4.1 we will show that this assumption together with the connectedness
assumption ensures the relative compactness of sequences with finite energy.

Some examples of graphs satisfying these assumptions are given in figures 3 and 4 while the structures of figure 2
are not stiff enough either because they are not connected (fig 2b) or they do not satisfy the last assumption above.

2We also denote ℓm the minimal value of all lengths ℓp,s,s′ : ℓm := min{ℓp,s,s′ : (p, s, s′) ∈ A}.
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εt2

εt1

εt2

εt1

Figure 2: Structures for which relative compactness is not ensured.

εt2

εt1

εt2

εt1

Figure 3: Admissible structures.

εt2

εt1

Figure 4: Another admissible structure : the pantographic one.

2.2 The 2D elastic problem

We assume without loss of generality that L = 1 (choice of the unit length). Therefore our assumptions resume in

ℓ = ε, e = βε2, µ =
µ0

βǫ3
, λ =

λ0
βǫ3

.

Let Ω be a bounded convex domain in R
2 which, for sake of simplicity, is assumed to be of measure 1. Let Iε

be the set of rescaled cells which lie sufficiently inside the domain :

Iε :=
{

I; ∀s yI,s ∈ Ω and d(εyI,s, ∂Ω) >
√
ε
}

(where d stands for the Euclidian distance) and Gε the union of the edges which link the nodes of these cells.

Gε :=
⋃

{

[εyI,s, εyI+p,s′ ] : (I, p, s, s′) ∈ Iε ×A
}
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The number Nε of such cells is equivalent to ε−2 and we will denote in the sequel the mean value of any quantity
ϕ defined on Iε as

∑

I

ϕI :=
1

Nε

∑

I∈Iε

ϕI ∼ ε2
∑

I∈Iε

ϕI

The planar elastic problem is set in the thickened graph:

Ωε :=
{

x ∈ Ω; d(x,Gε) < βε2
}

, (4)

where the thickened nodes BI,s

BI,s := {x; d(x, yI,s) < βε2}
play an essential role.

The elastic energy Eε is defined, for any displacement field u ∈ L2(Ωε,R2) with zero mean rigid motion, by

Eε(u) :=







1

βε3

∫

Ωε

(

µ0‖e(u)‖2 +
λ0
2
tr(e(u))2

)

dx if u ∈ H1(Gε,R
2),

+∞ otherwise.
(5)

Here e(u) denotes the symmetric part of the gradient of u (e(u) = (∇u + ∇tu)/2 is the linearized strain tensor),
tr(e(u)) denotes the trace of the matrix e(u). To Lamé coefficients which satisfy µ0 > 0 and λ0 + µ0 > 0, we
associate Young modulus

Y =
Y0
βε3

where Y0 :=
4µ0(µ0 + λ0)

2µ0 + λ0

and Poisson ratio

ν :=
λ

2µ+ λ
= ν0 :=

λ0
2µ0 + λ0

.

The reader may have noticed that the values of the positive coefficients ap,s,s′ > 0 of the interaction matrices
were, up to now, irrelevant (as soon as they remain positive). We now fix them by setting

ap,s,s′ =
2Y0
ℓp,s,s′

. (6)

2.3 Convergence

In order to study the homogenization of the considered structures, we need to specify the way we pass to the limit
of a sequence of fields (uε) with finite energy Eε(u

ε) < +∞. Indeed each term is defined on a different domain Ωε.
To that aim, we first introduce the operator u → ū, which to any field u ∈ L2(Ωε; R

2) associates the family ū of
mean values defined for I ∈ Iε and s ∈ {1, . . . ,K} by

ūI,s := −
∫

BI,s

u(x) dx :=
1

|BI,s|

∫

BI,s

u(x) dx. (7)

Note that this operator which maps L2(Ωε; R
2) onto the set Vε of functions defined on Iε × {1, . . . ,K} actually

depends on ε, even if the notation does not recall it.
Then we define the convergence of a sequence of families of vectors Zε ∈ Vε : We say that (Zε) converges to the

measurable function z, and we write Zε⇀z, when the following weak* convergence of measures holds true :

∑

I

1

K

K
∑

s=1

Zε
I,sδεyI,s

∗
⇀ z(x) dx (8)

where δy stands for the Dirac measure at point y. Finally we say that the sequence of functions (uε) (where
uε ∈ L2(Ωε; R

2)) converges to u when ūε⇀u. As no confusion can arise, we simply write uε⇀u.
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Remark 1. The convergence (8) means that, for all ϕ ∈ C0(Ω),

∑

I

K−1
K
∑

s=1

Zε
I,sϕ(εyI,s) →

∫

Ω

z(x)ϕ(x) dx (9)

When applying this notion of convergence to sequences (Zε) such that
∑

I
‖Zε

I,s‖2 is bounded, we are thus assured

that a subsequence converges to some z ∈ L2(Ω). In view of (9), we note that we can replace in (8) the Dirac
measure δεyI,s

by δεyI
or even δεyI+p

. Indeed ϕ(εyI+p, s
′)− ϕ(εyI,s, s) = O(ε).

Remark 2. The convergence of measures (8) imply that, for any convex function Φ,

lim inf
ε

∑

I

1

K

K
∑

s=1

Φ(Zε
I,s) ≥

∫

Ω

Φ(z(x)) dx. (10)

Indeed it is enough to use the fact that Φ is the supremum of a countable set of affine functions.

Remark 3. The choice of this convergence limits the application of our homogenization result to forces applied at
the “nodes” of the structure. More precisely to forces fields f ε of the type

f ε(x) =
1

Kπβ2ε4

∑

I∈I

K
∑

s=1

f(yI,s)1BI,s
(x)

where f is a continuous field. Actually our result can apply to more general forces. Indeed, using Korn inequality on
each rectangular edge of the structure, it is possible to show that the convergence uε⇀u we just defined is equivalent

to the weak* convergence of |Ω|
|Ωε|uε1Ωε to u. Hence forces applied on the whole structure (like weight) are also

admissible.

3 Reduction to a discrete problem

We prove in this section that the considered structure can be studied as a discrete one. To any function (U, θ)
defined on the nodes of the graph (U being vector valued while θ is scalar), we associate the energies

Eε(U) :=
∑

(I,p,s,s′)∈Iε×A

aps,s′

2

(

UI+p,s′ − UI,s

ε
· τp,s,s′

)2

(11)

Fε(U, θ) := ε2
∑

(I,p,s,s′)∈Iε×A

aps,s′β
2

6

(

3
(

θI+p,s′ + θI,s −
2

ℓp,s,s′

UI+p,s′ − UI,s

ε
· τ⊥p,s,s′)

)2

+ (θI+p,s′ − θI,s)
2
)

. (12)

The sum Eε+Fε corresponds to the elastic energy of a system of nodes linked by extensional and flexional bars.
This section is devoted to the proof of the following theorem which states that the Γ-limit of the initial sequence of
2D elastic energies is identical to the limit of the sequence of these discrete energies.

Theorem 1. The sequences (Eε) and (Eε + Fε) share the same Γ-limit E . Indeed, for any measurable function u,
we have

(i) inf
uε

{lim inf
ε→0

Eε(u
ε) : uε⇀u} ≥ inf

Uε,θε
{lim inf

ε→0
(Eε(U

ε) + Fε(U
ε, θε)); Uε⇀u}

(ii) inf
uε

{lim sup
ε→0

Eε(u
ε) : uε⇀u} ≤ inf

Uε,θε
{lim sup

ε→0
(Eε(U

ε) + Fε(U
ε, θε))); Uε⇀u}

We first recall some results concerning the elastic behavior of a thin rectangle which are well known in an
asymptotic form but that we need here to state more precisely in order to be able to apply them to the whole
structure. Their proofs are postponed to the Appendix.
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3.1 Estimations for an elastic rectangle

We use the orthonormal basis (e1, e2) in R
2 and consider the rectangle ω := [−ℓ/2, ℓ/2]× [−e,+e] (with e < ℓ/4).

To any function u ∈ H1(ω) we associate

U(x1) :=
1

2e

∫ e

−e

u(x1, x2) dx2, θ(x1) := − 3

2e3

∫ e

−e

u1(x1, x2)x2 dx2,

v(x1) :=
3

4e3

∫ e

−e

(u2(x1, x2)− U2(x1))(e
2 − x22) dx2.

and

W :=
1

πe2

∫

B(0,e)

u(x1, x2) dx1dx2, φ :=
1

πe2

∫

B(0,e)

∂1u2 − ∂2u1
2

(x1, x2) dx1dx2.

Lemma 1. There exists a constant C independent of e such that, for any u ∈ H1(B(0, e),R2)

‖U(0)−W‖2 ≤ C

∫

B(0,e)

‖e(u)‖2dx, ‖θ(0)− φ‖2 ≤ Ce−2

∫

B(0,e)

‖e(u)‖2dx,

‖v(0)‖2 ≤ C

∫

B(0,e)

‖e(u)‖2dx.

Proof. By rescaling we can reduce to the case e = 1. Let us assume by contradiction that there exists a sequence un

such that
∫

B(0,e)
‖e(un)‖2dx tends to zero while one of the quantities ‖Un(0)−Wn‖2, ‖vn(0)‖2 and ‖θn(0)− φn‖2

do not tend to zero. Adding if needed a rigid motion to un, we can assume Wn = 0 and φn = 0. From Korn
and Poincaré-Wirtingen inequalities we know that ‖un‖H1(B(0,e),R2) tends to zero. A trace theorem ensures that

un tends to zero in H1/2({0}× [−e, e],R2) and thus in L2({0} × [−e, e],R2). In consequence, contrarily to what we
have assumed, Un(0), vn(0) and θn(0) tend to zero.

Now, let 0 ≤ k < 1 < k′ < ℓ/(2e). In ω, we consider the piecewise constant functions (µ̃, λ̃) defined by
µ̃(x1, x2) = µ, λ̃(x) = λ if |x1| < ℓ/2−k′e, µ̃(x) = kµ, λ̃(x) = kλ, otherwise and we denote respectively (U−, θ−, v−)
and (U+, θ+, v+) the values of (U, θ, v) at x1 = − ℓ

2 and x1 = + ℓ
2 .

Lemma 2. There exists a constant C depending only on k, k′ and ν such that, for any u ∈ H1(ω),

∫

ω

(

µ̃‖e(u)‖2 + λ̃

2
tr(e(u))2

)

≥ Y e

ℓ

(

1− C
e

ℓ

)

×
[

(U+
1 − U−

1 )2

+
e2

3

(

3(θ+ + θ− − 2
U+
2 − U−

2

ℓ
)2 + (θ+ − θ−)2

)

− e

2ℓ
(v+ − v−)2

]

Lemma 3. There exists a constant C depending only on k, k′ and ν such that, for any U+, U− in R
2 and θ+, θ− in

R there exists u ∈ H1(ω,R2) satisfying u(x1, x2) = U−+θ−(−x2, x1) if x1 < − ℓ
2+k

′e, u(x1, x2) = U++θ+(−x2, x1)
if x1 >

ℓ
2 − k′e and

∫

ω

(

µ̃‖e(u)‖2 + λ̃

2
tr(e(u))2

)

≤ Y e

ℓ

(

1 + C
e

ℓ

)

×
[

(U+
1 − U−

1 )2 +
e2

3

(

3(θ+ + θ− − 2
U+
2 − U−

2

ℓ
)2 + (θ+ − θ−)2

)]

Proofs of these two lemmas are given in the Appendix.

3.2 Estimation for the whole structure

We can now prove Theorem 1.

Proof. We first notice that the number of edges which concur at a node yI,s of the graph is bounded by 9K. We
set k = (9K)−1. Therefore there exists a uniform lowerbound θm > 0 for the angles between these different edges.
The thickened edges of Ωε concurring at node yI,s do not intersect out of the disk of center yI,s and radius k′e with
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k′ = (sin(θm/2))
−1. We consider on Ωε the functions (µ̃, λ̃) defined by µ̃(x) := µ0, λ̃(x) := λ0, if d(x, εG̊) > k′βε2,

µ̃(x) = kµ0, λ̃(x) = kλ0, otherwise.

Let uε be any sequence of displacement fields with bounded elastic energy Eε(u
ε) ≤M and converging to some

function u. Our choice for k and k′ allows us to split the energy :

Eε(u
ε) =

1

βε3

∫

Ωε

(

µ0‖e(uε)‖2 +
λ0
2
tr(e(uε))2

)

dx

≥ 1

βε3

∑

(I,p,s,s′)∈Iε×A

∫

SI,p,s,s′

(

µ̃‖e(uε)‖2 + λ̃

2
tr(e(uε))2

)

dx.

where SI,p,s,s′ denotes the rectangle with mean line [yI,s, yI+p,s′ ] and thickness 2βε2.
Applying Lemma 2 to each term of this sum, we get

Eε(u
ε) ≥ 1

2ε2
(

1− Cβ

ℓm
ε
)

∑

(I,p,s,s′)∈Iε×A
ap,s,s′

[

((Uε+
I,p,s,s′ − Uε−

I,p,s,s′) · τp,s,s′)2

− βε

2ℓp,s,s′
(vε+I,p,s,s′ − vε−I,p,s,s′)

2 +
β2ε2

3

(

3
(

ε(θε+I,p,s,s′ + θε−I,p,s,s′)

−
(Uε+

I,p,s,s′ − Uε−
I,p,s,s′) · τ⊥p,s,s′

ℓp,s,s′

)2
+ (ε(θε+I,p,s,s′ − θε−I,p,s,s′))

2
)]

where Uε+
I,p,s,s′ , U

ε−
I,p,s,s′ , v

ε+
I,p,s,s′ , v

ε−
I,p,s,s′ , θ

ε+
I,p,s,s′ , θ

ε−
I,p,s,s′ are the quantities associated to uε on the rectangle SI,p,s,s′

as in Lemma 2.
On the other hand, Lemma 1 states that, for any (p, s, s′), the quantities

∑

I ‖Uε−
I,p,s,s′ − ūεI,s‖2,

∑

I ‖Uε+
I,p,s,s′ −

ūεI+p,s‖2,
∑

I |vε−I,p,s,s′ |2,
∑

I |vε+I,p,s,s′ |2,
∑

I |ε(θε−I,p,s,s′ − φεI,s)|2 and
∑

I |ε(θε+I,p,s,s′ − φεI+p,s)|2 are all bounded by
∑

I

∫

BI,s
‖e(u)‖2 and thus by Cε3 with C = Mβ

min(µ0,µ0+λ0)
. Here φεI,s is the quantity associated to uε on the disk

BI,s as in Lemma 1. Hence

Eε(u
ε) ≥ 1

2ε2

∑

(I,p,s,s′)∈A
ap,s,s′

[

((ūεI+p,s′ − ūεI,s) · τp,s,s′)2 +
β2ε2

3

(

3(ε(φεI+p,s′ + φεI,s)

−
(ūεI+p,s′ − ūεI,s) · τ⊥p,s,s′

ℓp,s,s′
)2 + (ε(φεI+p,s′ − φεI,s))

2
)]

+O(
√
ε)

≥ Eε(ū
ε) + Fε(ū

ε, φε) +O(
√
ε)

Passing to the limit we get

lim inf Eε(u
ε) ≥ lim inf

(

Eε(ū
ε) + Fε(ū

ε, φε)
)

≥ inf
Uε,θε

{

lim inf
(

Eε(U
ε) + Fε(U

ε, θε)
)

; Uε⇀u
}

This being true for any sequence (uε) converging to some function u with bounded energy, point (i) is proven.

Now let u be a measurable vector valued function and consider any sequence (Uε, θε) with bounded energy
(Eε(U

ε) + Fε(U
ε, θε) < M) and such that Uε⇀u.

On each thickened edge SI,p,s,s′ , Lemma 3 provides a piecewise C1 function uεI,p,s,s′ satisfying

uεI,p,s,s′(x1, x2) = Uε
I,s + θεI,s × (−x2, x1) on BI,s

uεI,p,s,s′(x1, x2) = Uε
I+p,s′ + θεI+p,s′ × (−x2, x1) on BI+p,s′

and such that
∫

SI,p,s,s′

(

µ‖e(uεI,p,s,s′)‖2 +
λ

2
tr(e(uεI,p,s,s′))

2

)

dx ≤ ap,s,s′

2ε2
(1 +

Cβ

lp,s,s′
ε)

(

(

(Uε
I+p,s′ − Uε

I,s) · τp,s,s′
)2

+
β2ε2

3

(

3(εθεI+p,s′ + εθεI,s)

+
2

lp,s,s′
((Uε

I+p,s′ − Uε
I,s) · τ⊥p,s,s′)

)2

+ (εθεI+p,s′ − εθεI,s)
2

)

.
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We can now define uε on Ωε by setting uε(x) := uεI,p,s,s′(x) if x ∈ SI,p,s,s′ . Our assumptions about the geometry
of the graph and our definition of k′ make this definition coherent on the intersections of different edges. By
definition ūε = Uε and so uε⇀u. By summation we get

Eε(u
ε) ≤ (1 +

Cβ

lm
ε)(Eε(U

ε) + Fε(U
ε, θε)))

Passing to the limit

inf
uε⇀u

lim supEε(u
ε) ≤ lim supEε(u

ε) ≤ lim sup(Eε(U
ε) + Fε(U

ε, θε))).

This being true for any sequence (θε) and any sequence (Uε) converging to u, Point (ii) is proven.

4 Main results

From now on we will seek for the Γ-limit E of the sequence of the discrete functionals (Eε + Fε) defined in (11),
(12).

We do not intend to study the way the different boundary conditions which could be imposed to our structures
pass to the limit. That is a very interesting topic as the boundary conditions associated to second gradient material
are rich and have exotic mechanical interpretation,[16],[35]. But studying their whole diversity would lead to very
long mathematical developments. On the other hand, as the structures we consider may present in the limit some
inextensibility constraint, assuming, at it is frequent, Dirichlet boundary conditions would lead to a trivial set of
admissible deformations. So we decide to consider here only free boundary conditions. As well known, in this case,
the equilibrium of the structure can be reached only when the applied external actions are balanced and the solution
of equilibrium problems is defined up to a global rigid motion. In order to ensure uniqueness, we need to impose
that U and θ have zero mean values:

∑

I

1

K

K
∑

s=1

UI,s = 0,
∑

I

1

K

K
∑

s=1

θI,s = 0 (13)

4.1 Compactness

Let us consider a sequence (Uε, θε) with bounded energy : Eε(U
ε)+Fε(U

ε, θε) ≤M . We associate to this sequence
the families of vectors mε

I , v
ε
I,s and χε

I,p defined by

mε
I :=

1

K

K
∑

s=1

Uε
I,s, vεI,s :=

1

ε
(Uε

I,s −mε
I), χε

p,I :=
1

ε
(mε

I+p −mε
I). (14)

and the family of reals ωε
I,p,s,s′ defined by

ωε
I,p,s,s′ :=

{

ε−2(Uε
I+p,s′ − Uε

I,s) · τp,s,s′ , if (p, s, s′) ∈ A,

0 otherwise.
(15)

Lemma 4. Let (Uε, θε) satisfying Eε(U
ε) + Fε(U

ε, θε) ≤ M , then the sequences (
∑

I
‖Uε

I,s‖2), (
∑

I
(θεI,s)

2),

(
∑

I
‖mε

I‖2), (
∑

I
‖vεI,s‖2), (

∑

I
‖χε

I,p‖2) and (
∑

I
(ωε

I,p,s,s′)
2) are bounded.

Proof. Let us also associate to Uε the quantities

(ρε)I,p,s,s′ :=
Uε
I+p,s′ − Uε

I,s

ε
· τp,s,s′ , (αε)I,p,s,s′ :=

Uε
I+p,s′ − Uε

I,s

εℓp,s,s′
· τ⊥p,s,s′ , (16)

The bound for the energy implies3

∑

I

∑

(p,s,s′)∈A
ap,s,s′

(

ρεI,p,s,s′
)2 ≤Mε2 (17)

∑

I

∑

(p,s,s′)∈A
ap,s,s′

(

3
(

θεI+p,s′ + θεI,s − 2αε
I,p,s,s′

)2
+ (θεI+p,s′ − θεI,s)

2
)

≤M (18)

3M is a bound which varies from line to line.

10



Inequality (17) gives directly the desired bound for
∑

I
(ωε

I,p,s,s′)
2. From inequality (18) we get

∑

I

∑

(p,s,s′)∈A
ap,s,s′(θ

ε
I+p,s′ − θεI,s)

2 ≤M.

This has two consequences. First, owing to the connectedness assumption (2),

∀J ∈ PR, ∀(s, s′) ∈ {1, . . . ,K}2, ∑
I

(θεI+J,s′ − θεI,s)
2 ≤M. (19)

Then, using again (18),
∑

I

∑

(p,s,s′)∈A
ap,s,s′

(

θεI,s − αε
I,p,s,s′

)2 ≤M. (20)

Consider now the two edges (p, s, t) and (p′, s′, t′) which we have assumed to be controlled in independent
directions J and J ′ following definition (3). Inequality (17) leads to

∑

I

(

αε
I+J,p,s,t − αε

I,p,s,t

)2 ≤ C
∑

I

∑

(p′,s′,t′)∈A
ap′,s′,t′

(

ρεI′,p′,s′,t′
)2 ≤ CMε2.

By triangle inequality we get, for any k ∈ Z such that I+I ′ ∈ Iε the bound
∑

I

(

αε
I+kJ,p,s,t−αε

I,p,s,t

)2 ≤M . Then,

using (20) and (19),
∑

I

(

θεI+kJ,s′ − θεI,s
)2 ≤M.

Combining this result with the similar result obtained considering the second edge (p′, s′, t′) controlled in the
direction J ′ we get, for any (k, k′) ∈ Z

2,

∑

I

(

θεI+kJ+k′J′,s′ − θεI,s
)2 ≤M.

Noticing that, for any I ′ ∈ Z
2, there exist (k, k′) ∈ Z

2 and J ′′ ∈ PR such that I ′ = I + kJ + k′J ′ + J ′′, we obtain

using once again (19),
∑

I

(

θεI+I′,s′ − θεI,s
)2 ≤M . Taking the mean value with respect to I ′ and s′ and using (13),

we get the desired bound for the field θ :
∑

I

(

θεI,s
)2 ≤M. (21)

From (20) and (21) we directly have
∑

I

ap,s,s′
(

αε
I,p,s,s′

)2 ≤M

which combined with (17) gives

∑

I

ap,s,s′

(‖UI+p,s′ − UI,s‖
ε

)2

≤M.

We use again the connectedness assumption (2) and get, for any p ∈ P and (s, s′) ∈ {1, . . . ,K}2,

∑

I

(‖UI+p,s′ − UI,s‖
ε

)2

≤M. (22)

By triangle inequality, for any I ′ ∈ Z
2 and (s, s′) ∈ {1, . . . ,K}2, one gets

∑

I
(‖UI+I′,s′ − UI,s‖)2 ≤M. Taking the

mean value with respect to I ′ and s′ and using (13), we finally obtain
∑

I

‖UI,s‖2 ≤M. (23)

Other bounds are now easy to get : taking the mean value with respect to s in (23) and (22) (with p = 0) gives
respectively

∑

I

‖mI‖2 ≤M,
∑

I

‖vI,s‖2 ≤M, (24)

while taking the mean value with respect to s and s′ in (22) gives
∑

I

‖χI,p‖2 ≤M. (25)
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4.2 Double scale convergence

Let us now introduce a finer notion of convergence than (8) : we say that the sequence (Ze) double-scale converges
to the measurable function z defined on R

2 × Iε and we write Zε⇀⇀z, if the following weak* convergences of
measures hold true :

∀s ∈ {1, . . . ,K},
∑

I∈I
Zε
I,sδεyI,s

∗
⇀ z(x, s) dx (26)

Note that we write indifferently z(x, s) or zs(x). Even if this definition is nothing else than a weak convergence for
all fixed s, it is enlightening to see this definition as a generalization of the double-scale convergence defined in Ref.
[30] or Ref. [4]. Indeed (8) is equivalent to the fact that, for all ϕ ∈ C0(Ω× {1, . . . ,K}),

∑

I

K
∑

s=1

Zε
I,sϕ(εyI,s, s) →

∫

Ω

K
∑

s=1

z(x, s)ϕ(x, s) dx (27)

Note that Remark 1 still apply : if
∑

I
‖Zε

I,s‖2 is bounded, we are thus assured that some subsequence double-

scale converges. We also can replace in (26) the Dirac measure δεyI,s
by δεyI

or by δεyI+p
. In consequence this

notion of convergence can also be applied to sequences of functions (Zε) that do not explicitly depend on s (like
mε or χε

p) : in that case it is equivalent to write Zε⇀⇀z or Zε⇀z.
The bounds that we established in Lemma 4 imply the existence of θ, u, v, χp and ωp,s,s′ in L2 such that, up to

subsequences,

θε⇀⇀θ, mε⇀u, vε⇀⇀v, χε
p⇀χp and ωε

p,s,s′⇀ωp,s,s′ . (28)

We also have

Uε⇀⇀u,

K
∑

s=1

v(x, s) = 0 and χp = ∇u · p. (29)

Indeed, the convergence of vε implies that (Uε−mε)⇀⇀ 0 and so Uε⇀⇀u; the fact that
∑K

s=1 v
ε
I,s = 0 clearly implies

that
∑K

s=1 vs(x) = 0. To check that χp = ∇u · p, it is enough to notice that, for any smooth test field ϕ

∫

Ω

χp(x) · ϕ(x) = lim
∑

I

ε−1(mε
I+p −mε

I) · ϕ(εyI)

= lim
∑

I

mε
I · ε−1(ϕ(εyI−p)− ϕ(εyI)) = lim

∑

I

mε
I · (−∇ϕ(εyI) · p) +O(ε)

= −
∫

Ω

u(x) · (∇ϕ(x) · p) =
∫

Ω

(∇u(x) · p) · ϕ(x).

4.3 Homogenization result

Using the notation introduced in the previous sections, we can rewrite the two addends of the energy, Eε(U
ε) and

Fε(U
ε, θε), under the forms

Ēε(v
ε, χε) := ε−2∑

I

∑

(p,s,s′)

ap,s,s′

2

(

(vεI+p,s′ − vεI,s + χε
I,p) · τp,s,s′

)2
(30)

F̄ε(v
ε, χε, θε) :=

∑

I

∑

(p,s,s′)

ap,s,s′β
2

6

(

3
(

θεI+p,s′ + θεI,s

− 2

ℓp,s,s′
(vεI+p,s′ − vεI,s + χε

I,p) · τ⊥p,s,s′
)2

+
(

θεI+p,s′ − θεI,s
)2
)

(31)

Let us introduce the continuous counterparts of these quantities. For functions θ, v defined respectively on
Ω×{1, . . . ,K} and η defined on Ω×P×{1, . . . ,K}, square integrable with respect to their first variable and taking
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value respectively in R, R2 and R
2, we set

Ē(v, η) :=

∫

Ω

∑

(p,s,s′)

ap,s,s′

2
((vs′ (x)− vs(x) + ηp,s′(x)) · τp,s,s′)2 dx, (32)

F̄ (v, η, θ) :=

∫

Ω

∑

p,s,s′

ap,s,s′β
2

6

(

3
(

θs′(x) + θs(x)

− 2

ℓp,s,s′
(vs′(x) − vs(x) + ηp,s′(x)) · τ⊥p,s,s′

)2
+
(

θs′(x) − θs(x)
)2
)

. (33)

We extend this definition to distributions by setting Ē = +∞ or F̄ = +∞ whenever the quantities are not square
integrable.

For any functions u and v respectively in L2(R2) and L2(R2 × {1, . . . ,K}) we set, in the sense of distributions,
for any (p, s) ∈ P × {1, . . . ,K}

(ηu)p,s := ∇u · p. (34)

(ξu,v)p,s = ∇vs · p+
1

2
∇∇u · p · p. (35)

The limit energy of our structure reads

E (u) := inf
w,v,θ

{

Ē(w, ξu,v) + F̄ (v, ηu, θ); Ē(v, ηu) = 0
}

. (36)

when all integrands are integrable functions, +∞ otherwise. Indeed we have

Theorem 2. The sequence (Eε + Fε) Γ-converges to E :
(i) For all sequence (Uε, θε) such that Uε⇀u, we have lim inf(Eε(U

ε) + Fε(U
ε, θε)) ≥ E (u).

(ii) For any u such that E (u) < +∞, there exists a sequence (Uε, θε) such that Uε⇀u and lim sup(Eε(U
ε) +

Fε(U
ε, θε)) ≤ E (u).

4.4 Proof of the homogenization result

We first prove assertion (i) of Theorem 2.

Proof. We consider a sequence (Uε, θε) with bounded energy : Eε(U
ε) + Fε(U

ε, θε) ≤ M (otherwise the result is
trivial). Therefore ε2Eε(U

ε) tends to zero. We know from (28) and (29) and Remark 1 that vε⇀⇀v and χε
p⇀ηu.

From Remark 2 we get
0 = lim inf

ε

(

ε2Eε(U
ε)
)

= lim inf
ε

(

ε2Ēε(v
ε, χε)

)

≥ Ē(v, ηu).

Hence Ē(v, ηu) = 0. Rewriting now Eε(U
ε) as

∑

I

∑

(p,s,s′)

ap,s,s′

2 (ωε
I,p,s,s′)

2, the energy reads

Ēε(v
ε, χε) + F̄ε(v

ε, χε, θε) =
∑

I

∑

(p,s,s′)

ap,s,s′

2

(

(

ωε
I,p,s,s′

)2
+
β2

3

(

3
(

θεI+p,s′ + θεI,s

− 2

ℓp,s,s′
(vεI+p,s′ − vεI,s + χε

I,p) · τ⊥p,s,s′
)2

+
(

θεI+p,s′ − θεI,s
)2
)

)

(37)

Using again (28), (29) and Remarks 1 and 2 we get

lim inf
ε

(

Ēε(v
ε, χε) + F̄ε(v

ε, χε, θε)
)

≥
∫

Ω

∑

(p,s,s′)

ap,s,s′

2

(

(

ωp,s,s′(x)
)2

+
β2

3

(

3
(

θs′(x) + θs(x) −
2

ℓp,s,s′
(vs′ (x)− vs(x) + χp(x)) · τ⊥p,s,s′

)2

+
(

θs′(x) − θs(x)
)2
)

)

dx

≥ F̄ (v, ηu, θ) +

∫

Ω

∑

(p,s,s′)

ap,s,s′

2

(

ωp,s,s′(x)
)2
dx. (38)
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It remains to characterize the limit ωp,s,s′ . To that aim, let us introduce the set DA of families of distributions in
H−1(R2):

DA :=
{

ψp,s,s′ = (w′
s − ws +∇λ · p) · τp,s,s′ : (p, s, s′) ∈ A, ws ∈ L2, λ ∈ L2

}

and DA
⊥ its orthogonal, that is the set of families (φp,s,s′ )(p,s,s′)∈A of functions in H1(R2) such that

∑

(p,s,s′)∈A
〈ψp,s,s′ , φp,s,s′〉 = 0

for all ψp,s,s′ ∈ DA. Let us remark that, for any φ ∈ DA
⊥ we have

∑

(p,s,s′)∈A
(∇φp,s,s′ · p) τp,s,s′ = 0. (39)

and for any (ws) ∈ L2(R2,R2)K ,

∑

(p,s,s′)∈A
((ws′ − ws) · τp,s,s′)φp,s,s′ = 0. (40)

If we extend φ by setting φp,s,s′ = 0 whenever (p, s, s′) 6∈ A we can rewrite this last equation as

∑

(p,s,s′)∈P
τp,s,s′ φp,s,s′ − τp,s′,s φp,s′,s = 0.

Thus, for such functions we have using (40)

∫

Ω

∑

(p,s,s′)∈A
ωp,s,s′(x)φp,s,s′ (x)

= lim
∑

I

∑

(p,s,s′)∈A
ε−2(Uε

I+p,s′ − Uε
I,s) · (φp,s,s′ (εyI)τp,s,s′)

= lim
∑

I

∑

(p,s,s′)∈A
(ε−1(vεI+p,s′−vεI,s′)+ε−1(vεI,s′−vεI,s)

+ ε−2(mε
I+p −mε

I)) · (φp,s,s′(εyI)τp,s,s′ )
= lim

∑

I

∑

(p,s,s′)∈A
(ε−1(vεI+p,s′−vεI,s′) + ε−2(mε

I+p −mε
I)) · (φp,s,s′(εyI)τp,s,s′ ).

Considering only smooth functions φp,s,s′ we can estimate the first addend by

lim
∑

I

∑

(p,s,s′)∈A
ε−1(vεI+p,s′ − vεI,s′) · (φp,s,s′ (εyI)τp,s,s′)

= lim
∑

I

∑

(p,s,s′)∈A
vεI,s′ · (ε−1(φp,s,s′ (εyI−p)− φp,s,s′ (εyI))τp,s,s′)

= lim
∑

I

∑

(p,s,s′)∈A
vεI,s′ · ((−∇φp,s,s′ (εyI) · p)τp,s,s′) +O(ε)

= −
∫

Ω

∑

(p,s,s′)∈A
vs′ (x) · ((∇φp,s,s′ (x) · p)τp,s,s′) dx

=
∑

(p,s,s′)∈A
〈(∇xvs′(x) · p) · (φp,s,s′(x)τp,s,s′ )〉 .
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The second addend becomes using (39)

lim
∑

I

∑

(p,s,s′)∈A
ε−2(mε

I+p−mε
I)) · (φp,s,s′(εyI)τp,s,s′ )

= lim
∑

I

∑

(p,s,s′)∈A
ε−2mε

I · ((φp,s,s′ (εyI−p)−φp,s,s′(εyI))τp,s,s′ )

= lim
∑

I

∑

(p,s,s′)∈A
mε

I · ((−ε−1∇φp,s,s′(εyI) · p+
1

2
∇∇φp,s,s′ (εyI) · p · p)τp,s,s′ )

= lim
∑

I

∑

(p,s,s′)∈A
mε

I · ((
1

2
∇∇φp,s,s′ (εyI) · p · p)τp,s,s′)

=

∫

Ω

∑

(p,s,s′)∈A
u(x) · ((1

2
∇∇φp,s,s′ (x) · p · p)τp,s,s′ ) dx

=
∑

(p,s,s′)∈A

1

2
〈(∇∇u(x) · p · p) · (φp,s,s′ (x)τp,s,s′ )〉 .

Collecting these results we obtain that the distribution

ωp
s,s′ −

(

∇vk′ · p+
1

2
∇∇u · p · p

)

· τp,s,s′

is orthogonal to all smooth functions in DA
⊥ with compact support in Ω. As they are dense in DA

⊥, we know that
there exist some fields ws and λ in L2(R2) such that, for any (p, s, s′) ∈ A,

ωp
s,s′ =

(

ws′ − ws +∇(vs′ + λ) · p+
1

2
∇∇u · p · p

)

· τp,s,s′

=
(

ws′ − ws + ξu,v+λ

)

· τp,s,s′

Hence inequality (38) becomes

lim inf
ε

Ēε(v
ε, χε) + F̄ε(v

ε, χε, θε) ≥ F̄ (v, ηu, θ) + Ē(w, ξu,v+λ). (41)

Noticing that F̄ (v + λ, η, θ) = F̄ (v, ηu, θ) and Ē(v + λ, η) = Ē(v, η), we get the desired bound.

We now prove assertion (ii) of Theorem 2.

Proof. Let us now consider a function u such that E(u) < +∞. By density, we can assume that u ∈ C∞(Ω). We
introduce (v, w, θ) such that E(u) = Ē(w, ξu,v) + F̄ (v, ηu, θ) and Ē(v, ηu) = 0. Their existence is ensured by the
coercivity and lower semicontinuity of these functionals. The fields (v, w, θ) also belong to C∞(Ω).

Note that Ē(v, ηu) = 0 implies that, for any (p, s, s′) ∈ A, we have

(vs′ − vs +∇u · p) · τp,s,s′ = 0 (42)

from which we can deduce that

(∇vs′ · p−∇vs · p+∇∇u · p · p) · τp,s,s′ = 0. (43)

We now define Uε and θε by setting

Uε
I,s := u(εyI) + εvs(εyI) + ε2ws(εyI) and θεI,s := θs(εyI).

15



It is clear that Uε⇀u and θε⇀⇀θ. Let us compute Eε(U
ε) + Fε(U

ε, θε). We have, using (42) and (43),

ωε
I,p,s,s′ = ε−2τp,s,s′ · (Uε

I+p,s′ − Uε
I,s)

= τp,s,s′ ·
(

ε−2(u(εyI+p)− u(εyI)) + ws′ (εyI+p)− ws(εyI)

+ ε−1(vs′(εyI+p)− vs(εyI+p)) + ε−1(vs(εyI+p)− vs(εyI))
)

= τp,s,s′ ·
(

ε−1∇u(εyI) · p+
1

2
∇∇u(εyI) · p · p+ ws′(εyI+p)− ws(εyI)

− ε−1∇u(εyI+p) · p+∇vs(εyI) · p
)

+O(ε)

= τp,s,s′ ·
(

− 1

2
∇∇u(εyI) · p · p+∇vs(εyI) · p+ ws′ (εyI+p)− ws(εyI)

)

+O(ε)

= τp,s,s′ ·
(1

2
∇∇u(εyI) · p · p+∇vs′ (εyI) · p+ ws′(εyI+p)− ws(εyI)

)

+O(ε).

Hence
ωε
I,p,s,s′ = τp,s,s′ ·

(

ws′(εyI+p)− ws(εyI) + (ξu,v)p,s′(εyI)
)

+O(ε)

and

limEε(U
ε) = lim

∑

I

∑

(p,s,s′)∈A

aps,s′

2
(ωε

I,p,s,s′)
2

=

∫

Ω

∑

(p,s,s′)∈A

aps,s′

2

(

(ws′(x) − ws(x) + (ξu,v)p,s,s′) · τp,s,s′
)2

= Ē(w, ξu,v). (44)

On the other hand

ε−1τ⊥p,s,s′ ·(Uε
I+p,s′ − Uε

I,s)

= τ⊥p,s,s′ ·
(

ε−1(u(εyI+p)− u(εyI)) + vs′ (εyI+p)− vs(εyI)
)

+O(ε)

= τ⊥p,s,s′ ·
(

∇u(εyI) · p+ vs′(εyI+p)− vs(εyI)
)

+O(ε).

As vs(εyI+p) = vs(εyI) +O(ε) and θs(εyI+p) = θs(εyI) +O(ε), we have

limFε(U
ε, θε) = lim

∑

I

∑

(p,s,s′)

ap,s,s′β
2

6

(

3
(

θs′(εyI) + θs(εyI)

− 2

ℓp,s,s′
(vs′ (εyI)− vs(εyI) +∇u(εyI) · p) · τ⊥p,s,s′

)2
+
(

θs′(εyI)− θs(εyI)
)2
)

= F̄ (v, ηu, θ). (45)

The result is obtained by collecting (44) and (45).

5 Conclusion

In the limit energy we have identified, namely

E (u) := inf
w,v,θ

{

Ē(w, ξu,v) + F̄ (v, ηu, θ); Ē(v, ηu) = 0
}

.

one has to compute the minimum with respect to three extra kinematic variables. These minima can essentially
be computed locally, through “a cell problem”. This is clearly the case for θ and w for which solutions depend
linearly respectively on ξu,v and ((v, ηu). The quadratic constraint E(v, ηu) = 0 is also easily solved and v takes
the form v = L · ηu + λ with L a linear operator and λ any field in the kernel of this energy. Collecting these
results, E becomes the integral of a quadratic form of the quantities ∇u, ∇∇u, λ and ∇λ. A priori, the infimum
with respect to λ cannot be computed locally and the limit model involves this extra kinematic variable : it is
both a generalized continuum model [19] and a strain gradient model. However in many cases, the variable λ does
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not appear directly in the limit energy and ∇λ can be computed locally. In such cases, the limit model is a pure
strain gradient model. The reader must be aware that, depending on the geometry of the considered graph, second
gradient effects may be present or not. They are present for instance when considering the graphs represented in
figure 3b or in figure 4 but absent when considering the graph of figure 3a. The precise description of the algorithm
which makes explicit the limit energy and its application to a complete set of examples is the subject of [1] where
the extension of our homogenization theorem 2 to different dimensions of space and periodicity is also provided. In
particular we emphasize the fact that the homogenized behaviour of the graph represented in figure 4 corresponds
to a complete second gradient material while the graph of figure 3 gives only a couple stress model.

The fact that bending stiffness is by itself a second gradient effect may be misleading. The reader may infer that
the presence in our structures of slender slabs, in which Euler-Bernoulli-Navier motions take place, is the source of
the homogenized second gradient effects. That is not the case : even when β = 0, that is when bending stiffness
is neglected, second gradient effects remain. They are due to the extensional stiffness of the slender slabs and to a
particular design of the periodic cell while the bending stiffness is, on the contrary, the source of the first gradient
effects in the homogenized energy and ensures the relative compactness of the considered energies. To understand
the nature of the appearance of second gradient through the homogenization process and to conceive new structures
with such effects, we recommend the reader to forget bending stiffness and focus on the case β = 0 reminding that
relative compactness can also be ensured by suitable boundary conditions.

6 Appendix

Here we collect the technical proofs of the lemma needed for the reduction of the 2D elastic problem to the discrete
one.

Proof of lowerbound Lemma 2: By adding if needed a rigid motion to u, we can restrict our attention to the case
U−
2 = U+

2 = 0 and U−
1 = −U+

1 . We also remark that, for any σ ∈ L2(ω),

∫

ω

(

µ̃‖e(u)‖2 + λ̃

2
tr(e(u))2

)

≥ −
∫

ω

(

1

4µ̃
‖σ‖2 − λ̃

8µ̃(λ̃+ µ̃)
tr(σ)2

)

+

∫

ω

σ : e(u)

Let us choose

σ =

(

a+ 2b(x1 + c)x2
b√
1+ν

(e2 − x22)
b√
1+ν

(e2 − x22) 0

)

with a = 2Y
ℓ U

+
1 , b = − 3Y

ℓ2 (θ
− + θ+) and c = ℓ

6
θ+−θ−

θ−+θ+ . Setting Ỹ (x) := 4µ̃(µ̃+λ̃)

2µ̃+λ̃
(which takes the values Y and kY ),

we have
1

4µ̃
‖σ‖2 − λ̃

8µ̃(λ̃+ µ̃)
tr(σ)2 =

1

2Ỹ

(

(a+ 2b(x1 + c)x2)
2 + 2b2(e2 − x22)

2
)

.

Integrating over the thickness we get

∫

ω

1

4µ̃
‖σ‖2 − λ̃

8µ̃(λ̃+ µ̃)
tr(σ)2 =

∫ ℓ/2

−ℓ/2

1

2Ỹ
(2ea2 +

8e3

3
b2(x1 + c)2 +

32e5

15
b2) dx1.

Direct computations give
∫ ℓ/2

−ℓ/2

1

Ỹ (x1)
dx1 ≤ ℓ

Y
(1 + 2

k′

k

e

ℓ
)

and
∫ ℓ/2

−ℓ/2

(x1 + c)2

Ỹ (x1)
dx1 ≤ ℓ3

36Y

(

3 +

(

6c

ℓ

)2
)

(1 + 12
k′

k

e

ℓ
).

Hence

∫

ω

1

4µ̃
‖σ‖2 − λ̃

8µ̃(λ̃ + µ̃)
tr(σ)2

≤ (1 + 82
k′

k

e

ℓ
)
Y e

ℓ

[

(2U+
1 )2 +

e2

3

(

3(θ+ + θ−)2 +
(

θ+ − θ−
)2
) ]
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On the other hand
∫

ω

σ : e(u) =

∫

∂ω

(σ · n) · u

≥ (1 − e

2ℓ(1 + ν)
)
2Y e

ℓ

[

(2U+
1 )2 +

e2

3

(

3(θ+ + θ−)2 + (θ+ − θ−)2
)

− e

2ℓ(1 + ν)
(v+ − v−)2

]

The lemma is proven by collecting these two results.

Proof of upperbound lemma 3: By adding if needed a rigid motion to u, we can restrict our attention to the case
U−
2 +θ−k′e = U+

2 −θ+k′e = 0 and U−
1 = −U+

1 . In that case we simply have to state for the energy the upperbound

∫

ω

(

µ̃‖e(u)‖2 + λ̃

2
tr(e(u))2

)

≤ Y e

ℓ

(

1 + C
e

ℓ

)

[

(U+
1 − U−

1 )2+

e2

3

(

3γ2(θ+ + θ−)2 + (θ+ − θ−)2
)]

(46)

where γ := ℓ−2k′e
ℓ = 1 − 2k′ eℓ . We introduce the continuous piecewise affine function ϕ defined by ϕ(x) = 1 if

|x| < ℓ
2 − 2k′e, ϕ(x) = 0 if |x| > ℓ

2 − k′e. Then we define u by setting u(x1, x2) = U− + θ−(−x2, x1 + ℓ
2 ) if

x1 < − ℓ
2 + k′e, u(x1, x2) = U+ + θ+(−x2, x1 − ℓ

2 ) if x1 >
ℓ
2 − k′e and, for |x1| < ℓ

2 − k′e,

u1(x1, x2) := (U+
1 − U−

1 )
x1
γℓ

− 1

4ℓ2

(12x21
γ2

(θ+ + θ−) +
4ℓx1
γ

(θ+ − θ−)− ℓ2(θ+ + θ−)
)

x2

u2(x1, x2) :=
γ

8ℓ2

(2x1
γ

(θ+ + θ−) + ℓ(θ+ − θ−)
)(4x21

γ2
− ℓ2

)

− γνϕ(x1)

ℓ2

(

ℓ(U+
1 − U−

1 )x2 −
(6x1
γ

(θ+ + θ−) + ℓ(θ+ − θ−)
)x22
2

)

It is straightforward to check that u belongs to H1(ω,R2) and some cumbersome but direct computations lead to
estimation (46).
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