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STRAIN GRADIENT AND GENERALIZED CONTINUA

OBTAINED BY HOMOGENIZING FRAME LATTICES

H. ABDOUL-ANZIZ P. SEPPECHER∗†

December 22, 2017

Abstract

We determine the effective behavior of periodic structures made of welded elastic bars. Taking into account

the fact that flexural and torsional stiffnesses are much smaller than the extensional one we overpass classical

homogenization formula and obtain totally different types of effective energies. We work in the framework of

linear elasticity. We give different examples of two dimensional or three dimensional micro-structures which lead

to generalized 1D, 2D or 3D continua like Timoshenko beam, Mindlin-Reissner plate, strain gradient, Cosserat,

or micromorphic continua.
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1 Introduction

Composite materials have proved to be so useful in structural design that homogenization techniques have received
considerable attention over the past few decades both in mechanics and mathematics. More recently researchers
realized that homogenization of composites made of very highly contrasted materials could lead to exotic effective
behaviors. On the other hand the new manufacturing processes, which allows for extremely fine designs, gave birth
to the new research field of metamaterials (or architectured materials).

From the mathematical point of view, asymptotic homogenization of periodic media is now well founded. It
consists in taking into account the fact that the size of the periodic cell is much smaller than the characteristic size
of the considered sample and in passing to the limit when the ratio ε between these two lengths tends to zero. This
problem has been widely studied in static or dynamic cases, for conduction or elasticity problems, when the cell is
made of a material with varying properties [18], [64], [7], [62]. A formula (see for instance formula (3.6) of [7] or page
10 of [57]) gives the effective (i.e. limit) behavior of the medium in terms of a local minimization problem set in a
rescaled cell. In this approach one lets ε tend to zero alone, while all other parameters of the system remain fixed.
However, in many cases some other small parameters are present and the relative convergence speeds are crucial for
the effective behavior of the material. The case when the cell is made of materials with very different properties is
called “high contrast homogenization” (see [30]). Closely related is the case (which could be called “infinitely high
contrast” case) when holes are present (see for instance chapter 16 of [78]). But a small parameter can also derive
from strong anisotropy or from geometric considerations. It is known that the effective behavior can then strongly
differ [66], [15], [17], [16], [14] from the initial behavior of the materials the structure is made of. The first results in
this direction were dealing with conduction problems and a non-local limit energy was found [77], [46]. We are more
interested by limit energies involving higher derivatives than the initial ones. Indeed materials with such energies
are seldom found in nature [12], [13] and are expected to have a very special behavior [32], [36], [39], [60]. Their
most distinctive feature is that they do not enter the framework of Cauchy stress theory (the internal mechanical
interactions are not described by a Cauchy stress tensor) [37], [35], [33]. However such models are frequently used
for regularizing the singularities which may arise in fracture, plasticity, interfaces, . . . (see for instance [81], [69], [3],
[4], [55], [75], [85]).

Here we deal with static linear elasticity. In this framework a general closure result [26] states that all regular
enough objective quadratic energies can be obtained through homogenization of highly contrasted media. In par-
ticular energies depending on the second gradient of the displacement (or equivalently on the strain gradient) or
non-local energies [17] like energies associated to generalized continua [40] can be obtained. But the result stated in
[26] does not provide any reasonably applicable procedure for designing a microstructure with these exotic effective
properties.

Note that we are interested here in the actual effective (i.e. limit) energy and not in corrections at order ε of
a classical effective energy. The controversy about the sign of such corrective terms [8], [47] shows that they are
difficult to interpret and to apply. Moreover the fact that these corrective terms are present in conduction problems
as well as in elasticity problems while it has been proved that no second gradient effect can appear in the limit
energy for conductivity [25] shows that they are a very different notion.

A few structures have been described with a second gradient effective energy. Many of them [66], [15], [16], [14],
[24] lead to a couple-stress model, that is to an energy depending only on the gradient of the skew-symmetric part
of the gradient of the displacement [79], [80], [58], [59], [19] . Some discrete structures [6], [5], [20], [76], [21] lead to
a more general second gradient energy.

In a recent paper [2] we have provided the first rigorous homogenization result in continuous elasticity which
lead to a general second gradient energy. We have considered periodic structures made by a single very stiff linear
elastic material and void. The geometry of the structure consists in connected slender bars. They are so slender
that the ratio of the section of these bars with respect to the size of the cell is comparable to ε. We have been
able to prove that the 2D elasticity problem was, as expected, asymptotically similar to a frame lattice whose bars
have a much smaller flexural stiffness than extensional stiffness. Then we have established a general formula for
computing the effective energy of the medium. This result differs from the ones given in [54], [53] or [44] where
very similar discrete systems are studied. The point is that, in these works, the orders of magnitude of the different
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types of interactions are assumed, as generally done (see Remark 7.5 of [54], Equation (2.7) of [56] or [23]), not to
interfere with the homogenization asymptotic process. In [65] or [87] the authors have assumed, like we do, that
the ratio of the section of the bars with respect to the size of the cell is of order ε but they considered like in [86] a
too soft material for obtaining generalized continuum limits.

In this paper, we start with a discrete lattice and extend the homogenization result of [2] to dimension 3. We
also study concomitant homogenization and reduction of dimension in order to describe beam or plate models. We
precisely describe the algebraic computation needed for making explicit the effective behavior of the considered
lattices. Then we explore the wide variety of models which can be obtained. We feel that these examples provide
academical microscopic mechanisms enlightening the behavior of generalized materials. Our homogenization formula
is a tool, which was up to now missing, for explaining how can the strain (or the micro-deformation) propagate in
a strain gradient material (respectively in a micromorphic material).

The paper is organized as follows. In Section 2 we fix the notation and the way of describing lattices. In Section
3 we recall the homogenization result and show that it can be recovered by using a formal expansion procedure.
In Section 4 we present the algebraic computation needed for making explicit the effective energy in a sufficiently
detailed way for enabling the reader to follow (and eventually check) the Octave/Matlab package that we provide
in [1]. Section 5 is devoted to the description of many examples, leading successively to beams, membranes, plates
and three dimensional materials. We recover classical models like Euler or Timoshenko beams, Cosserat model for
membrane, Kirchoff-Love or Mindlin-Reissner plate, but we also get strain gradient models with the possibility of
mixing different effects.

2 Initial problem, description of the geometry, notation

2.1 The frame lattice

In the physical space R
3, we consider a periodic discrete lattice defined by

• a bounded open domain Ω ⊂ R
3;

• a small dimensionless parameter ε which we will let tend to zero. This parameter compares the size of the
periodic cell Y of the lattice with the size of the macroscopic domain Ω;

• a prototype cell containing a finite number K of nodes the positions of which are denoted ys ∈ R
3, s ∈

{1, . . . ,K}1;

• a family of N independent periodicity vectors tα, α ∈ {1, . . . , N} with 1 ≤ N ≤ 3. The caseN = 3 corresponds
to standard 3D homogenization while the cases N = 2 or N = 1 correspond respectively to 3D-2D and 3D-1D
concomitant homogenization and reduction of dimension. They lead to plate or beam models2.

We assume with no loss of generality that the vector space R
N spanned by the vectors tα coincides with the

space spanned by the N first vectors of the canonical basis (e1, e2, e3) of the physical space. The intersection
of Ω with R

N is denoted Ω and we assume (a simple choice of the unit length) that its N -dimensional volume
satisfies |Ω| = 1.

We introduce, for I = (i1, . . . , iN) ∈ Z
N , the points yεI,s := ε(ys+i1t1+· · ·+iN tN ), and we use yεI := 1

K

∑K
s=1 y

ε
I,s

as a reference point in the cell I. The nodes of the considered lattice are those nodes which lie sufficiently inside
the domain Ω: more precisely the nodes yεI,s with s ∈ {1, . . . ,K} and I ∈ Iε where

Iε := {I : yεI ∈ Ω, d(yεI , ∂Ω) >
√
ε}. (1)

The cardinal of this set, denoted Nε, is of order ε−N . In the sequel, for any field ΦI,s defined at the nodes of the
structure, we will denote

∑

I
ΦI,s the mean values

∑

I

ΦI,s :=
1

Nε

∑

I∈Iε

ΦI,s ∼ εN
∑

I∈Iε

ΦI,s. (2)

1Note that lower dimension cases ys ∈ R or ys ∈ R
2 can be treated by simply embedding R or R

2 in R
3.

2Note that 2D-2D and 2D-1D are also treated by using previous remark.
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For any fixed cell I, the number of closest neighboring cells is 3N − 1. Counting the cell I itself, these cells are
the cells I ± p with p ∈ P (the cardinal of P is n = (3N + 1)/2). When N = 1, 2 or 3 we can choose respectively

P := {0, 1} (3)

P := {(0, 0), (1, 0), (0, 1), (1, 1), (1,−1)} (4)

P := {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1,−1, 0), (0, 1, 1), (0, 1,−1),

(1, 0, 1), (1, 0,−1), (1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1)}. (5)

In all cases, respecting the order given above, we identify P with {1, . . . , n}. For any p = (p1, . . . , pN) ∈ P , we
denote p := p1t1 + · · ·+ pN tN the corresponding vector so that yεI+p,s = yεI,s + εp.

For any pair of distinct nodes (yεI,s, y
ε
I+p,s′), we denote

ℓp,s,s′ := ε−1‖yεI+p,s′ − yεI,s‖, τp,s,s′ := (yεI+p,s′ − yεI,s)/‖yεI+p,s′ − yεI,s‖.

2.2 Mechanical interactions

To make precise the mechanical structure we are considering, we have to precise the mechanical interactions between
the nodes. The structures we want to model are periodic grids or frames made of welded elastic bars. Essentially,
the nodes behave like small rigid bodies and the interactions between these bodies can be divided in two parts.
The extensional stiffness of one bar control the relative displacements of its extremity nodes in the direction of the
bar while the flexural and torsional stiffnesses control the relative rotations its extremity nodes and the difference
between these rotations and the global rotation of the bar.

Without loss of generality we assume that a cell is interacting only with its closest neighbors : indeed we can
always choose a prototype cell large enough for this assumption to become true. Taking into account the symmetry,
it is enough to fix the interactions between the nodes of cell I and between the nodes of cell I and half of its closest
neighbors I + p with p ∈ P .

• Extensional interactions between the nodes of the lattice are determined by n matrices ap of size K ×K
taking values in the set of non negative 3 × 3 matrices. We introduce the set of multi-indices corresponding
to all pairs of nodes in interaction :

A := {(p, s, s′) : p ∈ P , 1 ≤ s ≤ K, 1 ≤ s′ ≤ K, ap,s,s′ 6= 0}.

For any displacement field U of the lattice, that is a vector field UI,s defined on Iε × {1, . . . ,K}, we call
“extension” between nodes (I, s) and (I + p, s′) the quantity

(ρU )I,p,s,s′ :=
UI+p,s′ − UI,s

ε
· τp,s,s′ . (6)

The extensional energy of the lattice has the form

Eε(U) := ε−2∑

I

∑

(p,s,s′)

ap,s,s′

2
(ρU )

2
I,p,s,s′ = ε−2∑

I

∑

(p,s,s′)∈A

ap,s,s′

2
(ρU )

2
I,p,s,s′ . (7)

• Flexural/torsional interactions : we attach to each node (I, s) of the structure a rigid motion : in addition
to the displacement UI,s, each node is endowed with a rotation vector3 θI,s. Let us introduce the vector

(αU )I,p,s,s′ := τp,s,s′ ×
UI+p,s′ − UI,s

εlp,s,s′

As mechanical interactions need to be objective (i.e. invariant when adding both a constant value Φ to the field
θI,s and the field Φ × yεI,s to the displacement field UI,s), flexural/torsional interaction between nodes (I, s)
and (I+p, s′) has to be a positive quadratic form of the two vectors θI,s−(αU )I,p,s,s′ and θI+p,s′ −(αU )I,p,s,s′ .
It can be represented by a non negative 6× 6 matrix4.

3Remind that we are in the framework of linear elasticity and that rotations are represented by skew-symmetric matrices which can

be identified to vectors.
4Note that objectivity implies also that the rank of this matrix cannot exceed 5.
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Thus flexural/torsional interactions are determined by n matrices of size K ×K taking values in the set of
non negative symmetric 6× 6 matrices or equivalently by 3n matrices bp, cp, dp of size K ×K taking values
in the set of 3× 3 matrices so that the flexural energy reads

F ε(U, θ) :=
∑

I

∑

(p,s,s′)

[

(θI,s − (αU )I,p,s,s′) ·
bp,s,s′

2
· (θI,s − (αU )I,p,s,s′)+

+ (θI,s − (αU )I,p,s,s′) · cp,s,s′ · (θI+p,s′ − (αU )I,p,s,s′) (8)

+ (θI+p,s′ − (αU )I,p,s,s′) ·
dp,s,s′

2
· (θI+p,s′ − (αU )I,p,s,s′)

]

We assume that flexural/torsional interaction is present only in conjunction with extensional interaction :

ap,s,s′ > 0 ⇔
(

bp cp
ctp dp

)

> 0.

Our choice of the order of magnitude of these interactions needs some comment. We first emphasize that
speaking of the order of magnitude of the stiffness of a structure takes sense only if we compare it to some force. In
other words, making an assumption over the elastic rigidity is equivalent to making an assumption over the order of
magnitude of the applied external forces. Our aim is to consider structures for which classical homogenization would
lead to a degenerated material. As usual a rescaling process is needed if one want to capture a finite limit energy.
Different assumptions can be made which correspond to different experiments. This is not surprising : the reader
accustomed for instance to the 3D-2D or 3D-1D reduction of models for plates or beams knows that, changing the
assumptions upon the order of magnitude of the elasticity stiffness of the material, drastically changes the limit
model. If the structure cannot resist to some applied forces (like a membrane cannot resist to transverse forces), it
may resist to them after a suitable scaling of the material properties (like the membrane model is replaced by the
Kirchhoff-Love plate model). Simultaneously some mobility may disappear (like the Kirchhoff-Love plate becomes
inextensible). Our choice of the order of magnitude of the extensional interactions means that the applied external
forces are not sufficient for significantly extend the bonds between nodes. On the other hand, we have assumed
that the flexural rigidities were much smaller than the extensional ones. This is unavoidable when considering
structures in which mechanical interactions are due to slender parts. The chosen order of magnitude (ε0) is critical.
Other cases can be deduced from our results by letting in a further step (bp, cp, dp) tend to zero or to infinity. The
assumption that the ratio between bending and extension stiffnesses is comparable to the homogenization small
parameter ε is essential : we emphasize that one cannot capture all interesting asymptotic effects by homogenizing
the structure in a first step and letting the ratio bending stiffness/extension stiffness tends to zero in a second step
(cf. [54]).

Example 1. Assume that the lattice is made by slender cylinders joining the nodes which are in interaction. Assume
that all these cylinders have circular basis with same radius rε = βε2 and are made of an homogeneous isotropic
elastic material with Young modulus Y and Poisson coefficient ν. Extension, bending and torsion rigidities of an
elastic cylindrical bar of radius rε are classical results of mechanics [41]. Integrating along the bar, one can deduce
the values of the interactions due to the elasticity of a bar of length ℓε. We get

bp,s,s′ = dp,s,s′ = ap,s,s′
(

f Id+ (t− f) τp,s,s′ ⊗ τp,s,s′
)

, 2cp,s,s′ = ap,s,s′
(

f Id− (2t+ f) τp,s,s′ ⊗ τp,s,s′
)

with

ap,s,s′ =
Yπβ2ε7Nε

ℓp,s,s′
, f = β2, t =

β2

4(1 + ν)
.

This case satisfies our assumptions as soon as one assumes that the Young modulus of the material is of order
εN−7.

Example 2. The case of a two dimensional lattice can also be treated in our framework. It is enough to fix
ys,3 = 0 for all s ∈ {1, . . . ,K}, tα,3 = 0 for all α ≤ N ≤ 2 and to focus only on planar displacements UI,s,3 = 0,
θI,s,1 = θI,s,2 = 0 at all nodes. Let us assume that the nodes are linked by slender rectangles of thickness βε2. Text
books in mechanics give the extension and bending rigidities of a slender rectangle. We still can use the matrices
bp,s,s′ , cp,s,s′ , dp,s,s′ defined in previous example but modifying ap,s,s′ and f in

ap,s,s′ =
Yβε3Nε

ℓp,s,s′
and f =

4β2

3
.
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Note that t plays no role in this example. This case satisfies again our assumptions as soon as one assumes that
the Young modulus of the material is of order εN−5.

• Boundary conditions : we do not intend to study the way the different boundary conditions which could be
imposed to our lattices pass to the limit. The richness [36], [76] of the boundary conditions associated to
generalized continua is such that trying to describe them in a general way is a real challenge. On the other
hand, we cannot adopt the frequently used Dirichlet boundary conditions : indeed the lattices we consider
generally present in the limit some inextensibility constraint and Dirichlet boundary conditions could lead to
a trivial set of admissible deformations. So we consider here only free boundary conditions. So, in order to
ensure uniqueness of equilibrium solution, we impose a zero mean rigid motion:

∑

I

1

K

K
∑

s=1

UI,s = 0,
∑

I

1

K

K
∑

s=1

θI,s = 0 (9)

• Connectedness : We are not interested in structures made of different unconnected parts : we assume that
mechanical interactions make a connected network. This has to be checked before using our results. This
checking is generally obvious but it is actually difficult to automate [11].

3 Homogenization result

In a recent paper [2] we have rigorously derived the model (7)-(8) from a 2D linear elastic problem by analyzing the
behavior of the slender sub-structures : we have then identified the effective energy through a Γ-convergence theorem
(for a simple definition of this notion the reader can refer to [22] or [31]) using tools of double scale convergence
(see [61] or [7]). This has been done in the 2D-2D case. The extension of the proof to other dimensions does not
need new arguments. We will not provide here neither the proof which can be found in [2] nor the technical but
straightforward extension to other dimensions. The goal of this paper is to explore the diversity of possible limit
models. However, for the readers who do not desire to enter in the mathematical developments of [2], we show
below that formal expansions of the kinematic variables actually give the right effective energy.

Assume that there exist smooth enough functions (u, vs, ws, θs) (for any s ∈ {1, . . . ,K}) such that

Uε
I,s := u(yεI) + εvs(y

ε
I) + ε2ws(y

ε
I) + o(ε2) and θεI,s := θs(y

ε
I) + o(1). (10)

Then

Uε
I+p,s′ −Uε

I,s = ε∇u(yεI) ·p+
ε2

2
∇∇u(yεI) ·p ·p+ ε

(

vs′(y
ε
I)+ ε∇vs′(yεI) ·p− vs(y

ε
I)
)

+ ε2
(

ws′(y
ε
I)−ws(y

ε
I)
)

+ o(ε2)

and thus

ε2Eε(Uε) =
∑

I

∑

(p,s,s′)∈A

ap,s,s′

2
(
UI+p,s′ − UI,s

ε
· τp,s,s′)2

=
∑

I

∑

(p,s,s′)∈A

ap,s,s′

2

(

(

∇u(yεI) · p+ vs′(y
ε
I)− vs(y

ε
I)
)

· τp,s,s′
)2

+ o(1)

=

∫

Ω

∑

(p,s,s′)∈A

ap,s,s′

2

(

(

∇u(x) · p+ vs′(x) − vs(x)
)

· τp,s,s′
)2

dx+ o(1)

= Ē(v, ηu) + o(1).

where we define for any functions vs and ηp,s

Ē(v, η) :=

∫

Ω

∑

p,s,s′

ap,s,s′

2

(

(

ηp,s′(x) + vs′(x) − vs(x)
)

· τp,s,s′
)2

(11)

and

ηu := ∇u · p. (12)
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As we are only interested by situations in which the energy Eε(Uε) + F ε(Uε, θε) remains bounded, ε2Eε(Uε)
tends to zero and we get the constraint

Ē(v, ηu) = 0. (13)

This implies that, for any (p, s, s′) ∈ A,

(vs′ − vs +∇u · p) · τp,s,s′ = 0,

from which we deduce that
(∇vs′ · p−∇vs · p+∇∇u · p · p) · τp,s,s′ = 0.

Using the two last equations, we get for any (p, s, s′) ∈ A

ε−2(Uε
I+p,s′ − Uε

I,s) · τp,s,s′ =
(1

2
∇∇u(yεI) · p · p+∇vs′(yεI) · p+

(

ws′ (y
ε
I)− ws(y

ε
I)
)

)

· τp,s,s′ + o(1)

and thus

Eε(Uε) =
∑

I

∑

(p,s,s′)∈A

ap,s,s′

2

(

UI+p,s′ − UI,s

ε2
· τp,s,s′

)2

=

∫

Ω

∑

(p,s,s′)∈A

ap,s,s′

2

(

(1

2
∇∇u(x) · p · p+∇vs′(x) · p+

(

ws′ (x)− ws(x)
)

)

· τp,s,s′
)2

dx+ o(1)

= Ē(w, ξu,v) + o(1)

where Ē is the functional defined in (11) and ξu,v is the quantity

ξu,v :=
1

2
∇∇u · p · p+∇vs′ · p. (14)

On the other hand

(αU )
ε
I,p,s,s′ := ε−1τp,s,s′ × (Uε

I+p,s′ − Uε
I,s) = ε−1τp,s,s′ ×

(

(

u(yεI+p)− u(yεI)
)

+ ε
(

vs′(y
ε
I+p)− vs(y

ε
I)
)

+ o(ε)
)

= τp,s,s′ ×
(

∇u(yεI) · p+ vs′(y
ε
I)− vs(y

ε
I)
)

+ o(1).

Using also the fact that θI+p,s′ = θ(yεI+p) = θ(yεI) + o(1) we get

F ε(Uε, θε) :=
∑

I

∑

(p,s,s′)

[

(θεI,s − (αU )
ε
I,p,s,s′) ·

bp,s,s′

2
· (θεI,s − (αU )

ε
I,p,s,s′)+

+ (θεI,s − (αU )
ε
I,p,s,s′) · cp,s,s′ · (θεI+p,s′ − (αU )

ε
I,p,s,s′)

+ (θεI+p,s′ − (αU )
ε
I,p,s,s′) ·

dp,s,s′

2
· (θεI+p,s′ − (αU )

ε
I,p,s,s′)

]

= F̄ (v, ηu, θ) + o(1).

where we define

F̄ (v, η, θ) := (15)
∫

Ω

∑

p,s,s′

[

(

θs(x) −
τp,s,s′

ℓp,s,s′
× (vs′ (x)− vs(x) + ηp,s′(x))

)

· bp,s,s′
2

·
(

θs(x)−
τp,s,s′

ℓp,s,s′
× (vs′ (x)− vs(x) + ηp,s′(x))

)

+
(

θs(x) −
τp,s,s′

ℓp,s,s′
× (vs′(x) − vs(x) + ηp,s′(x))

)

· cp,s,s′ ·
(

θs′(x)−
τp,s,s′

ℓp,s,s′
× (vs′ (x)− vs(x) + ηp,s′(x))

)

+
(

θs′(x)−
τp,s,s′

ℓp,s,s′
× (vs′ (x)− vs(x) + ηp,s′(x))

)

· dp,s,s′
2

·
(

θs′(x)−
τp,s,s′

ℓp,s,s′
× (vs′(x) − vs(x) + ηp,s′(x))

)

]

.

To resume, the effective energy is Ē(w, ξu,v)+ F̄ (v, ηu, θ) under the constraint Ē(v, ηu) = 0. As w is an internal
variable and as, in general, we also have no external action on θ, it is better to write the effective energy in terms
of the macroscopic displacement u only : we have

7



Theorem 1. The limit (effective) energy associated to the microscopic energy Eε + F ε is

E (u) := inf
w,v,θ

{

Ē(w, ξu,v) + F̄ (v, ηu, θ); Ē(v, ηu) = 0
}

. (16)

We remark that the constraint Ē(v, ηu) = 0 may induce a constraint on the strain tensor e(u) (i.e. the symmetric
part of ∇u). Indeed we will see that the effective behavior of the considered structure is often submitted to some
constraints (like inextensibility in some direction, incompressibility, or even total rigidity).

We also expect that the effective energy corresponds to a strain gradient model. Indeed the second gradient of u
enters the expression of Ē(w, ξu,v) directly through the definition (14) of ξu,v. Moreover the constraint Ē(v, ηu) = 0
establishes a linear relation between v and ∇u thus the dependence of ξu,v on the gradient of v can be a second
source for strain gradient terms. However, it is not so simple to find structures for which such strain gradient effects
arise and are not concealed by the constraint. In the next section we explain how to compute explicitly the limit
energy and we apply this procedure to many examples in Section 5.

Note that we prefer to describe the homogenized behavior of the considered structures in terms of the limit
elastic energy only. Beyond the fact that it is very concise, it has the advantage to be written without considering
any applied external forces. Indeed external forces have little to do with the constitutive law of the new material.
Equilibrium equations under the action of a (reasonable) external force field f can then be obtained by simply writing
the Euler equations of the minimization of the total energy E (u) −

∫

Ω
f(x) · u(x) dx. Properties of Γ-convergence

[22], [31] ensure that the equilibrium states of the considered structure converge toward this minimum.

4 Explicit computation of the homogenized stiffness matrices

Let us describe the algorithm which makes explicit the limit energy. We give here all the details needed for
understanding the Octave/Matlab software we provide in [1].

Note first that in the computations leading to Theorem 1, we have assumed |Y | = 1. As it is sometimes clearer
to describe the structure using a prototype cell which does not satisfy |Y | = 1, all geometric quantities have to be
rescaled (i.e. divided by |Y |1/N ) before using the following algorithm.

Both limit energies Ē(v, ηu) and F̄ (v, ηu, θ) are quadratic forms of their variables. A priori the variables v and
θ are K × 3 matrices vs,i and θs,i with s ∈ {1, . . . ,K} and i ∈ {1, 2, 3}, while the variable η is a n×K × 3 tensor
ηp,s,i with p ∈ P . From now on we identify them with 3K or 3nK vectors v(s,i), θ(s,i) and η(p,s,i) without modifying
the notation. In the same way (∇u)i,γ and (∇∇u)i,γ,γ′ are identified with the 3N and 3N2 vectors (∇u)(i,γ) and
(∇∇u)(i,γ,γ′) without modifying the notation.

Step 1 : Rewriting the energies (11), (15) in canonical form.

Ē(v, η) =
1

2

∫

Ω

vt ·A · v + ηt ·B · η + 2 vt ·C · η,

F̄ (v, η, θ) =
1

2

∫

Ω

vt ·D · v + ηt · E · η + θt · F · θ + 2 vt ·G · η + 2 θt ·H · v + 2 θt · J · η.

This is a simple assembly process. Indeed, denoting ãp,s,r,i,j := ap,s,r τp,s,r,i τp,s,r,j ,

{

A(s,i),(r,j) := −∑p∈P

(

ãp,s,r,i,j + ãp,r,s,i,j
)

if r 6= s,

A(s,i),(s,j) := −∑r 6=s A(s,i),(r,j),
{

B(p,s,i),(q,r,j) := 0, if (q, r) 6= (p, s),

B(p,s,i),(p,s,j) :=
∑

r ãp,r,s,i,j .
{

C(s,i),(p,r,j) := −ãp,s,r,i,j if r 6= s,

C(s,i),(p,s,j) := −∑r 6=s C(s,i),(p,r,j),
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and using the Levi-Civita symbol ǫ and denoting b̃p,s,r,i,j :=
∑

k,k′,l,l′
1

ℓ2p,s,r
ǫi,k,l ǫj,k′,l′(b+2c+d)p,s,r,k,k′ τp,s,r,l τp,s,r,l′ ,

{

D(s,i),(r,j) := −
∑

p∈P

(

b̃p,s,r,i,j + b̃p,r,s,i,j
)

if r 6= s,

D(s,i),(s,j) := −
∑

r 6=s D(s,i),(r,j),
{

E(p,s,i),(q,r,j) := 0, if (q, r) 6= (p, s),

E(p,s,i),(p,s,j) :=
∑

r b̃p,r,s,i,j.
{

G(s,i),(p,r,j) := −b̃p,s,r,i,j if r 6= s,

G(s,i),(p,s,j) := −∑r 6=s G(s,i),(p,r,j),
{

F(s,i),(r,j) := 2
∑

p∈P cp,s,r,i,j if r 6= s,

F(s,i),(s,j) :=
∑

p∈P

(

2cp,s,s,i,j +
∑

r(bp,s,r,i,j + dp,r,s,i,j)
)

,
{

H(s,i),(r,j) := −
∑

p∈P

∑

k,l
1

ℓp,s,s
ǫj,l,k

(

(b+ c)p,s,r,l,i + (d+ c)p,r,s,l,i
)

τp,s,r,k if r 6= s,

H(s,i),(s,j) := −∑r 6=s H(s,i),(r,j),






J(s,i),(p,r,j) :=
∑

p∈P

∑

k,l
1

ℓp,s,r
ǫj,l,k(b+ c)p,s,r,l,i) τp,s,r,k if r 6= s,

J(s,i),(p,s,j) :=
∑

p∈P

∑

k,l
1

ℓp,s,s
ǫj,l,k

(

(b + c)p,s,s,l,i +
∑

r 6=s(c+ d)p,s,r,l,i

)

τp,s,r,k.

Step 2 : Computing the constraint.

Using the canonical form it is easy to compute the minimum of Ē(v, ηu) with respect to v. When the minimum
is attained, v satisfies A · v +C · ηu = 0. The vector v̄ := −A+ ·C · ηu where A+ stands for the pseudo-inverse of
A is a possible solution5 and the minimal value is

∫

Ω
1
2ηu ·X · ηu where

X := B−Ct ·A+ ·C (17)

Note that the minimum with respect to w of Ē(w, ξu,v) is computed in a similar way and becomes
∫

Ω
1
2 (ξu,v)

t ·X·ξu,v.
Let us now introduce a linear operator L by setting, for any p ∈ P , s ∈ {1, . . . ,K}, 1 ≤ i, j ≤ 3 and 1 ≤ γ ≤ n,

L(p,s,i),(j,γ) := δi,j (p · tγ), (18)

where δ stands for the Kronecker delta so that

ηu = L · ∇u. (19)

Setting Q := Lt ·X · L and K := −A+ ·C · L, the constraint Ē(v, ηu) = 0 reads

Q · ∇u = 0, (20)

v = K · ∇u+ ṽ with ṽ ∈ Ker(A). (21)

with ṽ in the kernel of A.

Note that the matrix Q would have been the homogenized stiffness matrix of our structure if we had assumed
a less stiff behavior of the interactions : we recover here results which have been obtained recently by [54]. As we
are, on the contrary, interested here in structures made by a stiff very material, we have to focus only on the kernel
of Q. Objectivity implies that it contains at least the skew-symmetric matrices6 but in the most interesting cases
it is much larger.

Let us introduce an orthonormal basis (W ξ)dξ=1 of Ker(Q) (N(5−N)
2 ≤ d ≤ 3N). The matrix P(i,γ),(j,γ′) :=

∑

ξW
ξ
(i,γ)W

ξ
(j,γ′) represents the projection onto Ker(Q) and constraint (20) reads

∇u = P · ∇u (22)

On the other hand, in order to represent ṽ, we introduce a basis (V ξ)d̃ξ=1 of Ker(A) (3 ≤ d̃ ≤ 3K) of Ker(A) :

we set ṽ =
∑d̃

ξ=1 bξ(x)V
ξ, that is ṽ = V · b with V(s,i),ξ := V ξ

(s,i).

5The properties of the Moore-Penrose pseudo inverse imply that this vector v̄ belongs to the orthogonal to the kernel of A and so

satisfies
∑

k vk = 0.
6By saying that a 3×N matrix M is skew symmetric we mean that, for all 1 ≤ γ, γ′ ≤ N , Mγ,γ′ +Mγ′,γ = 0.
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Step 3 : Computing the extensional part of the energy.

Owing to (20), we have (∇v)s,i,γ =
∑

j,γ′

(

K(s,i),(j,γ′)(∇∇u)j,γ′,γ

)

+ (∇ṽ)s,i,γ . Using (22) and expressing ṽ in

the base (V ξ), we can rewrite (14) as

ξu,v = M · ∇∇u+N · ∇b

with

M(p,s,i),(j,γ,γ′) =
∑

ζ

∑

k

(

K(s,i),(k,ζ) +
1

2
pζδi,k

)

P(k,ζ),(j,γ)pγ′

N(p,s,i),(ξ,γ) = V ξ
(s,i)pγ .

The extensional energy Ē(w, ξu,v) =
1
2

∫

Ω(ξu,v)
t ·X · ξu,v becomes

1

2

∫

Ω

(∇∇u)t ·Mt ·X ·M · ∇∇u + (∇b)t ·Nt ·X ·N · ∇b+ 2 (∇∇u)t ·Mt ·X ·N · ∇b.

We prefer to rewrite it as the sum of two non negative terms :

inf
w
Ē(w, ξu,v) =

1

2

∫

Ω

(∇∇u)t · R · ∇∇u+ (∇b + T · ∇∇u)t · S · (∇b+ T · ∇∇u) (23)

where

S := Nt ·X ·N, T := S+ ·Nt ·X ·M and R := Mt ·X ·M−Mt ·X ·N · T .

Step 4 : Computing the flexural part of the energy.

We can also easily compute the minimum with respect to θ of F̄ (v, ηu, θ). When the minimum is attained, θ
satisfies F · θ+H · v+J · ηu = 0. The vector θ̄ := −F+ · (H · v+J · ηu) is a possible solution and the minimal value
is

inf
θ
F̄ (v, ηu, θ) =

1

2

∫

Ω

vt · (D−Ht · F+ ·H) · v + ηtu · (E− Jt ·F+ · J) · ηu + 2vt · (G−Ht · F+ · J) · ηu.

Let us replace ηu by L · ∇u = L ·P · ∇u and, using again (22), v by K ·P · ∇u +V · b. We get

inf
θ
F̄ (v, ηu, θ) =

1

2

∫

Ω

bt · S · b+ (∇u)t · Z · ∇u + 2 bt ·Y · ∇u

with

S := Vt · (D−Ht · F+ ·H) ·V,

Z := Pt ·
(

Kt · (D−Ht · F+ ·H) ·K+ Lt · (E− Jt · F+ · J) · L

+Kt · (G−Ht · F+ · J) · L+ Lt · (Gt − Jt · F+ ·K) · L
)

·P,

Y := Vt · ((D−Ht · F+ ·H) ·K+ (G−Ht · F+ · J) · L) ·P.

Again we prefer to write this energy as the sum of two non negative terms :

inf
θ
F̄ (v, ηu, θ) =

1

2

∫

Ω

(∇u)t ·R · ∇u+ (b+T · ∇u)t · S · (b+T · ∇u)

with

T := S+ ·Y and R := Z−Yt ·T. (24)

Collecting the results.
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The limit energy E obtained by collecting (23) and (24), namely

E =
1

2

∫

Ω

(∇∇u)t · R · ∇∇u+ (∇b + T · ∇∇u)t · S · (∇b + T · ∇∇u)

+ (∇u)t ·R · ∇u+ (b+T · ∇u)t · S · (b+T · ∇u) (25)

appears to be the integral of a quadratic form depending on the first and second gradient of the macroscopic
displacement and on an extra kinematic variable b and its first gradient. The limit model is both a second gradient
model (or strain gradient model) and a generalized continuum. From now on, we will call “micro-adjustment” the
variable b.

In general we cannot go further because the micro-adjustment cannot be computed locally. The equilibrium
equations are a coupled linear system of partial differential equations for u and b. This system is fixed as soon as
the matrices Q, R, S, T , R, S, T are fixed.

Step 5 : When possible, eliminating the extra kinematic variable.

However, it is sometimes still possible to eliminate the micro-adjustment. That is the case when, for any field
u, there exists a field b̄ such that

S · (∇b̄ + T · ∇∇u) = 0 and S · (b̄ +T · ∇u) = 0. (26)

Note that this operation would lead to serious difficulties if non-free boundary conditions were considered. This
field b̄ clearly minimizes the energy and the homogenized energy reduces to

E (u) =
1

2

∫

Ω

(∇∇u)t · R · ∇∇u+ (∇u)t ·R · ∇u under the constraint Q · ∇u = 0 (27)

Implementation.

The algorithm we just described for determining the homogenized energy (25) or (27) is pure linear algebra
dealing with very low dimension matrices. It is very easy to implement in languages like Octave c© or Matlab R©

(an Octave c©/Matlab R© package can be found in [1]) for getting numerical results or like Maxima c© for obtaining
analytical results. As no optimization is needed, it can even be implemented in JavaScript (a online JavaScript tool
is in development).

However two points are not automated. Before using the algorithm, one has to manually check that the con-
nectedness condition is satisfied. Then for using (27) one has also to check that equations (26) admit a solution,
otherwise one has to deal with the generalized continuum model given by (25).

In view of our results, the effective energy may correspond to a second gradient model (i.e. a strain gradient
model) possibly coupled with an extra kinematic variable and submitted to some first gradient constraints. However
few periodic structures exhibit such a behavior. Indeed most of them present a non degenerate energy Ē; in that
case the strong constraint Q · ∇u = 0 hides any second gradient effect. But even when Q is degenerate, it happens
frequently that R = 0 : the model remains degenerate after rescaling. Different cases will be illustrated in the next
section.

5 Examples

We apply the procedure described in the previous section to different 2D or 3D examples following the cases
described in the introduction. To fix the ideas we always choose ap,s,r = 1 whenever two nodes are interacting (i.e.
when ap,s,r 6= 0). Note that this assumption means that the sections of the bars differ when their lengths differ. We
also always choose f = 1 (and, in the 3D case, t = 0.25). We classify our examples by the dimension N = 1, 2, 3
of the space in which lives the homogenized energy leading thus to beams, membranes or plates or 3D materials.
In the cases N = 1 or N = 2 we successively consider 2D and 3D examples. We write the effective energy in terms

of the components ei,j(u) of the strain tensor e(u) and of the components ∂2ui

∂xj∂xk
of the second gradient of the

displacement. Translating the results in terms of the strain gradient is straightforward. Mind that the presence of
constraints allows to get different forms for

5.1 Beams

For sake of simplicity let us start by considering structures in R
2 with one vector of periodicity (N = 1).
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5.1.1 2D Warren beam

We consider the following geometry (see Fig. 1) : Ω = (0, 1); K = 2; y1 = (0, 0); y2 = (0, 1); t1 = (1, 0);
a1,1,2 = a2,1,1 = a2,2,2 = a2,1,2 = 1; all other components ap,s,s′ vanish. For this well known structure, the

εt1

Figure 1: Warren beam

constraint (22) reads e1,1 = 0 : the beam is inextensible. A simple solution for condition (26) is b = 0 and the limit
energy reads

E =
1

2

∫ 1

0

λ

(

∂2u2
∂x21

)2

dx1

(with λ = 1/2) and thus corresponds to an inextensible Euler-Bernoulli beam model.

5.1.2 Square periodic beam

The geometry is similar to the previous example (see Fig. 2). We simply delete the diagonal bars by setting
a2,1,2 = 0. The constraint (22) still reads e1,1 = 0 but the homogenized energy now reads

εt1

Figure 2: Square periodic beam

E = inf
b

1

2

∫ 1

0

(

∂b2
∂x1

)2

+

(

∂b1
∂x1

)2

+ 2

(

−b1 + b2 +
∂u2
∂x1

)2

dx1

Denoting ϕ := b1 − b2 and minimizing with respect to b1 + b2 (by choosing b1 + b2 = 0) the limit energy becomes

E = inf
ϕ

1

2

∫ 1

0

λ

(

∂ϕ

∂x1

)2

+ ζ

(

∂u2
∂x1

− ϕ

)2

dx1

(with λ = 1/2 and ζ = 2) and thus corresponds to an inextensible Timoshenko beam model. It is well known that
this model is non-local (in terms of u only) and that the extra kinematic variable ϕ cannot be locally eliminated.
The remaining part of our “micro-adjustment” coincides with the Timoshenko extra variable usually interpreted as
the “rotation of the section”.

5.1.3 Pantographic beam

Structures based on a pantograph have been the first (and almost the only ones) to give a microscopic interpretation
to the propagation of dilatation, a characteristic feature of complete second gradient models. The structures
have been studied using formal homogenization techniques [71], [76], [52], Γ-convergence tools [6], [5], numerical
simulations [43], [82] and even experimentally [34], [83]. Our procedure make their study easy.

We consider a planar beam with a cell made of six nodes y1 = 1
6e2, y2 = − 1

6e2, y3 = 1
6e1, y4 = 1

6 (3e1 + 2e2),
y5 = 1

6 (3e1 − 2e2), y6 = 5
6e1; a periodicity vector t1 = e1;

a1,1,3 = a1,1,4 = a1,2,3 = a1,2,5 = a1,3,4 = a1,3,5 = a1,4,6 = a1,5,6 = a2,4,1 = a2,5,2 = a2,6,1 = a2,6,2 = 1,

all other components of the matrices a1 and a2 vanish.
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εt1

Figure 3: Pantographic beam Pe1,e2

This beam (see Fig. 3) which lies along the line (0, e1) and belongs to the plane (e1, e2) is denoted Pe1,e2 for
further purpose.

In that case (22) gives no constraint. A possible solution for condition (26) is b = (4, 0,−1,−1, 1, 1)/4×∂u3/∂x1.
The limit energy reads

E =
1

2

∫ 1

0

(

λ

(

∂2u1
∂ x21

)2

+ µ

(

∂2u2
∂ x21

)2

+ ζ

(

∂u1
∂x1

)2
)

dx1

(with λ = 2/23, µ = 2/63 and ζ = 324). We recover the results obtained in [76], [6], [5] where the exotic properties
of this pantographic structure have been detailed. Its main specificity lies in the fact that a dilatation imposed in

a part of the beam tends to spread on the whole beam. This phenomenon is due to the term
(

∂2u1/∂x
2
1

)2
and

damped by the term (∂u1/∂x1)
2
. This competition endows the model with intrinsic length

√

λ/ζ.

5.1.4 3D Warren beam

The previous examples deal with planar beams. In that case the energy is, of course, degenerate with respect to
out of plane displacements. Let us give a single example of a warren type 3D beam leading to an Euler-Bernoulli
beam. The geometry (see Fig. 4) is now : Ω = (0, 1); K = 3; y1 = (0, 0,−1/2); y2 = (0, 0, 1/2); y2 = (1/2, 0,

√
2/2);

t1 = (1, 0); a1,1,2 = a1,1,3 = a1,2,3 = a2,1,1 = a2,2,2 = a2,3,3 = a2,3,1 = a2,3,2 = 1; all other components of the
matrices a1 and a2 vanish. Again the beam is not extensible (e1,1 = 0) and b = 0 is a possible solution for the
micro-adjustment. The limit energy reads

E =
1

2

∫ 1

0

(

λ

(

∂2u2
∂x21

)2

+ ζ

(

∂2u3
∂x21

)2
)

dx1

(with λ = 1/3 and ζ = 1/2) and corresponds to a non degenerate Euler-Bernoulli beam. The bending stiffnesses in
the two transverse directions are uncoupled. This is due to the symmetry of our structure.

εt1

Figure 4: 3D Warren beam

5.2 Membranes

5.2.1 Regular triangle lattice

The regular triangular truss (see fig. 5) is defined by a cell Y made of only one node (K = 1); two vectors t1 = (1, 0),
t2 = (−1/2,

√
3/2) for translating the cell; five 1× 1-matrices ap, defining the interactions between the node of cell

YI and the one of its neighbors YI+p, given by a1 = [0], a2 = [1], a3 = [1], a4 = [1], a5 = [0].
We know that the constraint Q · ∇u involves only the symmetric part of ∇u. In terms of e(u) it reads

√
3

2





3 1 0
1 3 0
0 0 4



 ·





e1,1(u)
e2,2(u)
e1,2(u)



 = 0

We already noticed that the matrixQ corresponds to the homogenized behavior which would have been obtained
if assuming a smaller order of magnitude for the mechanical interactions. The result above is consistent with this

13



εt2

εt1

Figure 5: Regular triangle truss

remark and with the result given by [54]. It corresponds, as expected, to a 2D isotropic material. Its Lamé
coefficients are µ = λ =

√
3 and its Poisson ratio is ν = 1/3. As the matrix above is non degenerated, the constraint

imposes the homogenized material to behave like a rigid body. As we have E = 0 for rigid motions : there is no need
for supplementary computations for the energy. We get the same uninteresting result for many structures (like, for
instance, the Kagome (trihexagonal) lattice studied in [51]). From now on, we will focus only on structures which
have more degrees of mobility.

5.2.2 Square grid

The geometry of the regular square (see fig. 6) is determined by a single node (K = 1); two vectors t1 = (1, 0),
t2 = (0, 1) for translating the cell; five 1 × 1-matrices ap defining the interactions between the node yεI,1 and its
neighbors yεI+p,1 given by a1 = [0], a2 = [1], a3 = [1], a4 = [0], a5 = [0].

εt2

εt1

εt2

εt1

Figure 6: The regular square lattice and its admissible shear deformation

Constraint (22) reads e1,1(u) = e2,2(u) = 0 : the structure is inextensible in direction e1 and e2 and only shear
is allowed. Micro-adjustment b = 0 is optimal and the limit energy is

E =
1

2

∫

Ω

λ (e1,2(u))
2
dx1 dx2

(with λ = 6). Contrarily to its 1D analogous, this structure is a classical elastic material. It does not present either
any second gradient effect nor generalized continuum effect.

5.2.3 Square grid without constraints

The reader may be frustrated by the fact that almost all our examples present a homogenized behavior submitted to
strong constraints. We show in this example that constraints can be avoided. Let us replace in the previous example
the direct interactions by zigzags (see Fig. 7) : we consider a cell made of three nodes y1 = (0, 0), y2 = (0.5, 0.3),
y3 = (0.3, 0.5). All components of the five interactions 3×3-matrices ap vanish but a1,1,2 = a1,1,3 = a2,2,1 = a3,3,1 =
1.

Constraint (22) disappears and the limit energy reads

E =
1

2

∫

Ω

(

λ(e1,1(u))
2 + λ(e2,2(u))

2 + ζ (e1,2(u))
2
)

dx1 dx2
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εt2

εt1

Figure 7: A square structure with unconstrained limit energy

(with λ = 50/3 and ζ = 3).
In the sequel, for sake of simplicity, we will not try to avoid all constraints : we let the reader check whether a

suitable modification of the proposed structures could provide an unconstrained limit energy.

5.2.4 Honeycomb structure

The honeycomb structure (see Fig. 8) is frequently put forward for its mechanical properties. It is defined by
a cell Y made of two nodes (K = 2); two vectors t1 = (3/2,−

√
3/2)), t2 = (0,

√
3) for translating the cell; five

2× 2-matrices ap defining the interactions between the node of cell YI and the one of its neighbors YI+p. All their
components vanish but a1,1,2 = a2,1,2 = a3,2,1 = 1. Constraint (22) reads e1,1(u) + e2,2(u) = 0 : the structure is
incompressible. The micro-adjustment can be eliminated and the limit energy is

E =
1

2

∫

Ω

λ ‖e(u)‖2 dx1dx2

(with λ = 9). Contrarily to what was expected, this structure is a classical 2D elastic material which does not
present either any second gradient effect nor generalized continuum effect. Incompressibility is its only specificity.
This geometry has been studied in [42], [29], [28], [38]. Our result is in concordance with these results but differ due
to different assumptions : in these works bending and extensional stiffnesses have the same order of magnitude. It
differs also from [72] or [48] where non linearity has been taken into account but where bending stiffness has been
chosen either weaker or stronger than we do.

Figure 8: The honeycomb structure

5.2.5 A couple-stress membrane

We add a diagonal bar in one square cell over two in the example 5.2.2 (see figure 9). The lattice is now defined by
a cell Y made of two nodes (K = 2) at points y1 = (0, 0), y2 = (0, 1); the periodicity vectors t1 = (1, 0), t2 = (0, 2);
five 2× 2-matrices ap. All components of these matrices vanish but a1,1,2 = a2,1,1 = a2,2,2 = a2,1,2 = a3,2,1 = 1.

This structure, when homogenized, is again submitted to the constraint e1,1 = e2,2 = 0. An optimal micro-
adjustment can be found and the limit energy reads

E (u) =
1

2

∫

Ω

(

λ

(

∂2u2
∂x21

)2

+ ζ (e1,2(u))
2

)

dx1 dx2
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εt2

εt1

Figure 9: A layered structure

(with λ = 1/8 and ζ = 192/5). From the mechanical point of view, the horizontal sub-structures behave like
bending beams and their resistance to bending is responsible to the second gradient part of the limit energy. The
model enters the framework of couple-stress models. Indeed, owing to the constraint, the energy can be rewritten

E (u) =
1

2

∫

Ω

(

λ

(

∂

∂x1

(

∂u2
∂x1

− ∂u1
∂x2

))2

+ ζ (e1,2(u))
2

)

dx1 dx2

and depends only on the gradient of the skew-symmetric part of the gradient of u.

As the energy can alternatively be written E (u) = 1
2

∫

Ω

(

4λ (∂e1,2(u)/∂x1)
2 + ζ (e1,2(u))

2
)

dx1 dx2, the model

is clearly endowed with the internal length
√

4λ/ζ.

5.2.6 Pantographic membrane

This structure is made by a connected array of pantographic structures quite similar to those studied in 5.1.3. It
is defined by a cell Y made of six nodes (K = 6) at points y1 = (0, 1), y2 = (0,−1), y3 = (1, 0), y4 = (2, 2),
y5 = (2,−2), y6 = (3, 0); two vectors t1 = (4, 0), t2 = (−2, 4) for translating the cell; five 6× 6-matrices ap defining
the mechanical interactions. All components of these matrices vanish but

a1,1,3 = a1,1,4 = a1,2,3 = a1,2,5 = a1,3,4 = a1,3,5 = a1,4,6 = a1,5,6 = 1,

a2,4,1 = a2,5,2 = a2,6,1 = a2,6,2 = a3,1,5 = a4,4,2 = 1.

εt2

εt1

Figure 10: Pantographic membrane and its two admissible deformations (bending of the bars are not represented
in the deformed configurations).
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Figure 11: Experiment : traction of a pantographic membrane.

Constraint (22) reads e2,2(u) = 0. Both horizontal dilatation and shear are admissible. Indeed, these macroscopic
displacements, as shown in figures 10, can be performed without extending any bar. A micro-adjustment satisfying
(26) can be found and the homogenized energy is

E =
1

2

∫

Ω

(

ζ
(

e1,1(u)
)2

+ σ
(

e1,2(u)
)2

+ µ

(

(

∂2u1
∂x21

)2

+

(

∂2u2
∂x21

)2

+ λ

(

∂2u1
∂x1∂x2

+ κ
∂2u2
∂x21

)2
))

dx1dx2

(with λ = 484/131, κ = 13/44, µ = 3/176, σ = 72 and ζ = 36). This model which has been studied in [2] is the
prototype of complete second gradient models (indeed it does not enters the framework of couple-stress models,

because of the term
(

∂2u1/∂x
2
1

)2
). The very special behavior of this model has been described in [76]. Due to

the strong anisotropy of the structure, it is difficult to distinguish the several intrinsic lengths contained in the
model. Structures based on pantographic mechanisms have been intensively studied from theoretical [68] but also
numerical [84], [45] and experimental [67] points of views.

5.2.7 A Cosserat model

We consider the lattice described in Fig. 12. It is a planar structure in which we have authorized crossing
interactions. The periodic cell is made of two nodes at points y1 = (0, 0), y2 = (0.5, 0.5); the periodicity vectors are
t1 = (1, 0), t2 = (0, 1). All components of the five 2× 2 matrices ap vanish but a1,1,2 = a2,1,1 = a2,2,2 = a3,1,1 = 1.

εt2

εt1

Figure 12: Planar structure leading to Cosserat model.

The constraint (22) is again e1,1(u) = e2,2(u) = 0 and only shear is admissible. The limit energy takes the form

E (u) =
1

2

∫

Ω

[(

ζ

(

∂ϕ

∂x1

)2

+ γ

(

ϕ− 1

2

(

∂u2
∂x1

− ∂u1
∂x2

))2

+ κ
(

e1,2(u)
)2

]

dx1 dx2
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(with ζ = 800/729, γ = 1600/333, κ = 56/9). The extra variable ϕ plays the role of a Cosserat variable. The reader
can understand by considering Fig. 12 that the rotation of the bars [yεI,1, y

ε
I,2] tends to be uniform and that it is

coupled to the global displacement owing to the welding of the bars at each node.

5.2.8 Second gradient and Cosserat effects together

Let us combine in Fig. 13 the structures of Fig. 9 and Fig. 12 : the periodic cell is now made of three nodes at
points y1 = (0, 0), y2 = (1, 1) and y3 = (1.5, 0.5); the periodicity vectors t1 = (1, 0), t2 = (0, 2); five 3 × 3-matrices
ap. All components of these matrices vanish but a1,1,2 = a1,2,3 = a2,1,1 = a2,1,2 = a2,2,2 = a2,3,3 = a3,2,1 = 1.

Figure 13: Planar structure leading to both second gradient and Cosserat effects.

The constraint (22) is still e1,1(u) = e2,2(u) = 0. Shear is admissible. The limit energy takes now the form

E (u) =
1

2

∫

Ω

[(

λ

(

∂2u2
∂x21

)2

+ ζ

(

∂ϕ

∂x1

)2

+ γ

(

ϕ− 1

2

(

∂u2
∂x1

− ∂u1
∂x2

))2

+ κ
(

e1,2(u)
)2

]

dx1 dx2

thus mixing second gradient and Cosserat effects.

5.3 Plates

Up to now we have only considered planar structures which, of course, are completely degenerate with respect to
transverse displacement. Let us now consider structures with a non-zero thickness.

5.3.1 Kirchhoff-Love plate

The considered lattice is made by two superposed regular triangular lattices (see Fig. 14). It is defined by a
cell Y made of two nodes (K = 2) at points y1 = (0, 0, 0), y2 = (0, 0, 1); the periodicity vectors t1 = (1, 0, 0),
t2 = (−1/2,

√
3/2, 0); five 2× 2-matrices ap. All components of these matrices vanish but a1,1,2 = a2,1,1 = a2,2,2 =

a2,1,2 = a2,2,1 = a3,1,1 = a3,2,2 = a3,1,2 = a3,2,1 = a4,1,1 = a4,2,2 = a4,1,2 = a4,2,1 = 1.

Figure 14: A Kirchoff-Love plate

The homogenized model is submitted to the constraints e11(u) = e22(u) = e12(u) = 0 (as a membrane, it is
undeformable). The micro-adjustment b = 0 is optimal and the limit energy reads

E =
1

2

∫

Ω

(

λ‖∇∇u3‖2 + ζ
(

∆u3
)2
)

dx1dx2
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(with λ = 1/2 and ζ = 1/4) which corresponds to an isotropic inextensible Kirchhoff-Love bending plate.

5.3.2 Mindlin-Reissner plate

Let us consider the same geometry as in the previous example but where all diagonals joining the lower nodes to
the upper ones are deleted (see Fig. 15): it is enough to set a2,1,2 = a2,2,1 = a3,1,2 = a3,2,1 = a4,1,2 = a4,2,1 = 0.

Figure 15: A Mindlin-Reissner plate

The inextensibility constraint e11(u) = e22(u) = e12(u) = 0 remains but now the micro-adjustment b cannot be
completely eliminated. The homogenized energy still involves two extra kinematic variables which can be written
ϕ = (ϕ1, ϕ2) and reads

E = inf
ϕ

1

2

∫

Ω

(

λ ‖∇u3 − ϕ‖2 + ζ ‖e(ϕ)‖2
)

dx1dx2

(with λ = 9/4 and ζ = 1/2). This corresponds to an isotropic Mindlin-Reissner plate [73], [74]. Generally, in this
theory, ϕ is interpreted as the rotation of the “fiber” which differs from the rotation of the “mid-surface”.

5.3.3 Generalized Mindlin-Reissner plate

We are not limited to the extra kinematic variable ϕ introduced in the previous section : when considering three
superposed triangular lattices instead of two (see Fig. 16), for instance assuming that the lattice is defined by a cell
Y made of three nodes at points y1 = (0, 0, 0), y2 = (0, 0, 1), y3 = (0, 0,−2) ; the periodicity vectors t1 = (1, 0, 0),
t2 = (−1/2,

√
3/2, 0). All components of the matrices ap vanish but a1,1,2 = a2,1,1 = a2,2,2 = a3,1,1 = a3,2,2 =

a4,1,1 = a4,2,2 = a1,1,3 = a2,3,3 = a3,3,3 = a4,3,3 = 1.

Figure 16: A generalized Mindlin-Reissner plate
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In that case we obtain a model with two “rotation” vectors ϕ and ψ and an energy of type

E = inf
ϕ

1

2

∫

Ω

(

λ ‖∇u3 − ϕ‖2 + ζ ‖∇u3 − ψ‖2 +Q(ϕ, ψ,∇ϕ,∇ψ)
)

dx1dx2

where Q is a non negative quadratic form. It is no worth giving here the precise values of λ and ζ nor detailing Q.
Multiple layers could also be considered leading to more extra kinematic variables. These models correspond to

the generalized Mindlin-Reissner plates recently described in [50].
Another way for generalizing Reissner models is to mix the structures described in Fig. 16 and Fig. 12 in order

to mix the in-plane Cosserat effect obtained in Section 5.2.7 and Reissner effect. Then we would get a model similar
to Reissner but with ϕ living in R

3 like described in [9].

5.3.4 Origami-type plate

We consider now a lattice made of four nodes at points y1 = (0, 0, 0), y2 = (1, 0, 1), y3 = (−1, 1, 0), y4 = (0, 1, 1)
with periodicity vectors t1 = (2, 0, 0), t2 = (0, 2, 0); the interaction matrices are defined by a1,1,2 = a1,1,3 = a1,2,3 =
a1,2,3 = a1,2,4 = a1,3,4 = a2,2,1 = a2,2,3 = a2,4,1 = a2,4,3 = a3,3,1 = a3,3,2 = a3,3,2 = a3,4,2 = a4,4,1 = a5,2,3 = 1. (all
other components vanish). This simulates a Miura fold which is suspected to have exotic mechanical properties [49]
: nodes corresponds to wedges of the fold while interactions corresponds to edges and diagonals of the faces (see
Fig. 17).

Figure 17: An “Origami” plate

Constraint (22) reads e1,2(u) = 0, e1,1(u) = e2,2(u). Micro-adjustment b = 0 is optimal and the limit energy
reads

E =
1

2

∫

Ω

(

λ
(

∆u3
)2

+ ζ
(

e1,1(u) + e2,2(u)
)2
)

dx1dx2

(with λ = 1/64 and ζ = 61/9) As a membrane, only isotropic dilatation is admissible and no in-plane second
gradient effects are present. As far as transverse displacements are concerned, the structure is degenerated : a
curvature is possible with zero elastic energy provided the total curvature vanishes (this behavior is clearly visible
when one manipulates this type of folds). From the mathematical point of view, compactness is not ensured and
the homogenization result can only be applied when some extra confinement potential is present.

5.3.5 Reinforced origami plate

In the previous example the faces of the structure, made by a planar parallelogram with one diagonal are very easy to
bend. Let us reinforce each of them by adding an out-of-plane node and linking it to the four corners of the face. We
add y5 = (0, 0, 1), y6 = (1, 0, 0), y7 = (−1, 1, 1), y8 = (0, 1, 0), and we add the interactions a1,1,5 = a1,2,5 = a1,3,5 =
a1,4,5 = a1,2,6 = a1,4,6 = a2,6,1 = a2,6,3 = a1,4,8 = a1,3,8 = a3,8,1 = a3,8,2 = a1,3,7 = a5,2,7 = a3,7,1 = a2,4,7 = 1.
Constraint is unchanged but the effective energy E becomes

1

2

∫

Ω

(

λ

(

(

∆u3
)2
+

(

∂2u3
∂x1∂x2

)2

+

(

∂2u2
∂x1∂x2

)2

+

(

∂2u2
∂x21

)2
)

+ µ

(

∂2u3
∂x21

− ∂2u3
∂x22

)2

+ ζ
(

e1,1(u) + e2,2(u)
)2

)

dx1dx2
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(with λ = 1/64, µ = 1/192 and ζ ≈ 14.06). Now the plate is non degenerate : transverse displacement is controlled.
As far as in-plane displacement is concerned, the strain tensor takes the form e = kId (note that compatibility
conditions induce strong constraints for the second derivatives of k) and the corresponding part of the energy reads

∫

Ω

(

λ

(

∂k

∂x1

)2

+ ζk2

)

dx1dx2.

The effective membrane is endowed with the intrinsic length
√

λ/ζ.

5.4 Materials

It is difficult to describe clearly and even more to draw periodic lattices with a three dimensional periodicity. Indeed
the number of nodes and edges increases considerably. So we limit ourselves to study the simple regular cubic lattice
and the lattice obtained by replacing each “fiber” of this cubic lattice by a pantographic structure as described in
5.1.3.

5.4.1 Cubic lattice

Let us extend example 5.2.2 to dimension three by considering a periodic lattice (see fig. 18) made by a single node
(K = 1); three vectors t1 = (1, 0, 0), t2 = (0, 1, 0), t3 = (0, 0, 1), for translating the cell; fourteen 1 × 1-matrices
ap defining the interactions between the node yεI,1 and its neighbors yεI+p,1 given by a1 = [0], a2 = [1], a3 = [1],
a4 = [1] and ap = [0] for p > 4.

εt3

εt1

εt2

Figure 18: The regular cubic lattice

Constraint (22) reads e1,1(u) = e2,2(u) = e3,3(u) = 0 : the structure is inextensible in directions e1, e2, e3. Only
shear is allowed. Again b = 0 is an optimal micro-adjustment and the limit energy is

E =
1

2

∫

Ω

λ ‖e(u)‖2 dx1 dx2 dx3

(with λ = 3). This structure is a classical elastic material which do not present any second gradient effect nor
generalized continuum effect.

5.4.2 Weaved pantographs

We can see structure 5.4.1 as made by three families of parallel fibers. Now let us replace the fibers with direction e1
by pantographic beams Pe1,e3 and those with direction e2 or e3 by pantographic beams Pe2,e1 and Pe3,e2 respectively.
These beams share the common node y3 = 0, so our new structure is made of a cell containing 16 nodes with 24
internal edges and 12 edges linking it to its neighbors (see Fig. 19).

The effective material resulting from the homogenization of this structure is not submitted to any constraint.
Micro-adjustment b = 0 is still optimal and the limit energy reads

E =
1

2

∫

Ω

[

λ

(

(

∂2u1
∂x21

)2

+

(

∂2u2
∂x22

)2

+

(

∂2u3
∂x23

)2
)

+ µ

(

(

∂2u1
∂x22

)2

+

(

∂2u2
∂x23

)2

+

(

∂2u3
∂x21

)2
)

+ ξ
(

(e3,1(u))
2 + (e2,3(u))

2 + (e1,2(u))
2
)

+ ζ
(

(e1,1(u))
2 + (e2,2(u))

2 + (e3,3(u))
2
)

]

dx1 dx2 dx3
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with λ = 2/23, µ = 2/63, ζ = 324 and ξ ≈ 3.91 .

Figure 19: Weaved pantographs

We obtain here a complete strain gradient 3D material. This example illustrates the huge variety of models
which can be obtained by homogenizing lattice structures.

6 Conclusion

Let us conclude by some remarks.

Our starting point is a lattice made of welded bars with extensional, flexural and torsional rigidities. The reader
could think that, as bending stiffness is by itself a second gradient effect, it is the source of the effective second
gradient effects. Surprising enough, it is not the case : second gradient effects are due to the extensional stiffness
of the bars and to particular designs of the periodic cell while the bending stiffness of the bars is, on the contrary,
the source of the first gradient effects in the homogenized energy. Paper [63] has foreseen that lattices can be very
useful for giving a micro-mechanical insight of non-classical continua but the role played by the non-extensional
part of the mechanical interactions is there overestimated.

Strain gradient and micromorphic models are often presented as competing models. For some researchers, strain
gradient models correspond simply to the limit case of micromorphic models in which the coupling between strain
and micro-deformation is infinitely strong. For other ones, generalized continuum models are regularization of strain
gradient models. Our results show that both effects appear generally together and at the same level.

It is also remarkable that, in our results, strain and strain gradient are never coupled. There is no fundamental
reason which prevents such a coupling in a strain gradient model. Some symmetries could explain this absence
of coupling [10], [70] but our general homogenization result does not ask for any symmetry in the design of the
structure. The point is that strain gradient terms and classical strain terms come from two different sources
(extensional and flexural/torsional energies) which are assumed at the very beginning to be uncoupled. We think
that considering non homogeneous or non isotropic bars would likely lead to coupled models.

The general closure result [26] allows for effective models more exotic than the ones we have presented in this
paper, for instance with an elastic energy depending on the third gradient of the displacement. Indeed we already
mentioned that we can design our structures in order to get a degenerate effective energy. In that case, it is natural
to rescale again the original energy by multiplying it by ε−2 (or equivalently to act with much lighter forces on the
sample), and hope that the limit energy will become non degenerate. Moreover one would have to assume that the
bars are still slenderer in order to get a compatible flexural energy. In that case, increasing the formal expansion
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(10) up to order three, one should likely get third order models. And, of course, the process can be pushed further.
It is not clear whether one can get any reachable effective model by homogenizing frame lattices. Such inverse
problem has been addressed in the dynamic case in [27].

We have tried to get experimental evidence of second gradient effects (see Fig. 11) for the structures described
in Section 5.2.6. Up to now, our efforts have been unsuccessful. We think that the major reason for that is twofold :
(i) geometrical non linearities arise very quickly in these micro-structures, (ii) the limit model is extremely sensitive
to design, indeed we have checked that a small modification of the position of one node of the periodic cell is enough
for changing the effective model from strain gradient model to a totally rigid body. Hence, the basic assumption
of linear elasticity that current and initial configurations coincide is too strong and the extension of our study to
non-linear elasticity should be undertaken.
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formation and propagation. Continuum Mechanics and Thermodynamics, 27(1-2):83–104, 2015.

25



[56] N. Meunier, O. Pantz, and A. Raoult. Elastic limit of square lattices with three-point interactions. Mathematical
Models and Methods in Applied Sciences, 22(11):1250032, 2012.

[57] G. W. Milton. The theory of composites. Cambridge, UK: Cambridge University Press, 2002.

[58] R. Mindlin. Influence of couple-stresses on stress concentrations. Experimental mechanics, 3(6):756–757, 1962.

[59] R. Mindlin and H. Tiersten. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and
Analysis, 11(1):415–448, 1962.

[60] R. D. Mindlin. Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids
and Structures, 1(4):417–438, 1965.

[61] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization. SIAM
Journal on Mathematical Analysis, 20(3):608–623, 1989.

[62] O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian. Mathematical problems in elasticity and homogenization,
volume 26. North-Holland, 1992.

[63] M. Ostoja-Starzewski. Lattice models in micromechanics. Applied Mechanics Reviews, 55(1):35–60, 2002.

[64] E. S. Palencia. Non-homogeneous media and vibration theory. Springer-Verlag, 1980.

[65] S. Pastukhova. Homogenization of problems of elasticity theory on periodic box and rod frames of critical
thickness. Journal of Mathematical Sciences, 130(5):4954–5004, 2005.

[66] C. Pideri and P. Seppecher. A second gradient material resulting from the homogenization of an heterogeneous
linear elastic medium. Continuum Mechanics and Thermodynamics, 9(5):241–257, 1997.

[67] L. Placidi, U. Andreaus, and I. Giorgio. Identification of two-dimensional pantographic structure via a linear
D4 orthotropic second gradient elastic model. Journal of Engineering Mathematics, 103(1):1–21, 2017.

[68] L. Placidi, E. Barchiesi, E. Turco, and N. L. Rizzi. A review on 2D models for the description of pantographic
fabrics. Zeitschrift für angewandte Mathematik und Physik, 67(5):121, 2016.

[69] C. Polizzotto and G. Borino. A thermodynamics-based formulation of gradient-dependent plasticity. European
Journal of Mechanics-A/Solids, 17(5):741–761, 1998.

[70] M. Poncelet, N. Auffray, C. Jailin, A. Somera, and C. Morel. Experimental strain gradient evidence in non-
central symmetric lattice. In EUROMECH-Colloquium 579 on Generalized and microstructured continua, 2017.

[71] Y. Rahali, I. Giorgio, J. Ganghoffer, and F. dell’Isola. Homogenization à la Piola produces second gradient con-
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