
NUMERICAL SIMULATIONS OF A LOWMACH NUMBERMODEL IN HEAT
EXCHANGER

Gloria Faccanoni 1, Cédric Galusinski 1 and Moustoifa Rafiou 1

1 Université de Toulon – IMATH, EA 2134, avenue de l’Université, 83957 La Garde, France

Abstract
This work is devoted to the numerical simulation of liquid-vapour flows in nuclear frame-

work. We investigate a simplified model, named Lmnc (for Low Mach Nuclear Core), describ-
ing the evolution of the coolant within a core of a Pressurized Water Reactor. This model,
proposed in previous works, corresponds to the zero Mach asymptotic where the dilation of
the fluid depends simply on the density of the fluid, function of the enthalpy. The goal of this
work is to introduce a numerical approximation, validated on a reference test problem solved
analytically, able to solve the 3D configuration.

1 Introduction
The modelling of nuclear reactors is hard to achieve since it requires the coupling of several multi-
scale multi-physics problems [6]. Indeed, a reactor is characterized by a large number of systems
corresponding to different functions (heating, cooling, energy production, . . . ). The natural process
is thus to split the problems into lower-scale ones and then to carry out the coupling between
them [11]. Moreover, there exist several industrial codes based on a compressible model providing
numerical approximations of the whole nuclear reactor (see for instance [14, 4]).

A model was proposed in [7] to describe specifically flows within the reactor core in a simplified
approach (which may be enriched to provide a more complete description of the overall process).
Based on the assumption that the average Mach number is small, the model was derived through
an asymptotic expansion performed in the compressible Navier-Stokes equations with an energy
source term. This asymptotic approach amounts to filtering out the acoustic waves. Consequently,
the mathematical nature of the resulting system of PDEs is modified which requires numerical
methods that are different from the compressible Navier-Stokes framework. The model derived
in [7] is called Lmnc (for Low Mach Nuclear Core model) and consists of a transport equation
upon a thermodynamic variable (here the total enthalpy), of a divergence constraint upon the
velocity (with a nonlinear coupling source term which underlines the dilation property of the flow)
and of the momentum equation.

In [2], for single-phase fluid with the stiffened gas equation of state (SG EOS), an explicit 1D
unsteady solution was derived in the case of the power density Φ is constant and 1D academic
numerical simulations were carried out relying on the method of characteristics.

Phase change was then taken into account in [3] where each pure phase was modelled through
the SG EOS with tuned parameters. The modelling of the mixture phase based on thermodynamic
equilibria is detailled in the aforementioned paper and turns out to be a phasewise SG EOS. Explicit
1D unsteady solutions can still be derived in the case of constant power densities. In the general
case, 1D steady solutions are provided. The numerical scheme designed in [2] was adapted to phase
change and applied to more physical tests.

The extension to dimension 2 was performed in [8] involving the software FreeFem++. The
weak formulation was designed using the method of characteristics to handle the transport opera-
tors. In dimension 2, the issue consisted in dealing with the coupling of all equations in the system
while in dimension 1, equations can be treated one after the other (in single phase flows).

However, although the aforementioned algorithm provided a relevant hint of the behaviour of
the coolant fluid, discrepancies were noticed between numerical results (for instance values of the
temperature at which mixture appears) and experimental values. That is why another approach
was investigated. The analytical EOS was replaced by formulae fitting tabulated values provided
in [13]. Hence each thermodynamic variable and each constitutive parameter were considered
polynomial functions of the enthalpy and of the thermodynamic pressure in both liquid and vapour



phases. The modelling of the mixture remains unchanged. This approach, presented in [9], shows
a better assessment to experimental data. Moreover, to take into account the heat dissipation and
the phase transition without introducing a level set function, a new weak formulation was designed
(using again the method of characteristics to handle the transport operators).

In this paper, we present the extension to dimension 3 using a Finite Volume approach with
staggered Cartesian grids on general geometries and a projection method to deal with the nonlinear
dilation constraint. We use the phasewise SG EOS presented in [3] for simplicity.

2 Setting of the mathematical problem
The Lmnc model is derived from the fully compressible Navier-Stokes equations expanding each
variable into a power series of the Mach numberM and taking the asymptotic limit forM going
to zero. For each variable, the lowest order term remains in the equations, except for the pressure
p(t,x) which is split in two components: a thermodynamic pressure p0(t) uniform in space and
a hydrodynamic pressure p̄(t,x). One has p(t,x) = p0(t) + p̄(t,x). As the ratio p̄(t,x)/p(t,x) =
O(M2), the hydrodynamic pressure p̄(t,x) is much smaller than the thermodynamic pressure p0(t).

In this paper we take the assumption that pressure p0 does not depend on time.

2.1 Governing equations
For some bounded domain Ω ⊂ R3, the Lmnc model reads

∂t%+∇ · (%u) = 0, (1a)
∂t(%u) +∇ · (%u⊗ u + p̄I) = ∇ · σ(u) + %g, (t,x) ∈ R+ × Ω (1b)
∂t(%h) +∇ · (%hu) = Φ(t,x), (1c)

where u = (u, v, w) and h denote respectively the velocity field and the total enthalpy of the fluid.
The density %(h, p0) is related to the enthalpy through an equation of state (EOS). The power
density Φ(t,x) is a given function of time and space modelling the heating of the coolant fluid due
to the fission reactions in the nuclear core. Finally, g = (0,−g, 0) is the gravity field and σ(u)
models viscous effects: the classic internal friction in the fluid, and also the friction on the fluid
due to technological devices in the nuclear core (e.g. the friction on the fluid due to the fuel rods):

σ(u) = µ(h, p0)
(
∇u + (∇u)T

)
+ η(h, p0)(∇ · u) I,

where µ(h, p0) and η(h, p0) = − 2
3µ(h, p0) are the viscosity coefficients determined by constitutive

laws.
A 3D nonconservative formulation of the Lmnc model reads

∂th+ u · ∇h = Φ(t,x)
%(h, p0) , (2a)

∂tu + (u · ∇)u− 1
%(h, p0)∇ · σ(u) + 1

%(h, p0)∇p̄ = g, (t,x) ∈ R+ × Ω (2b)

∇ · u = β(h, p0)
p0

Φ(t,x), (2c)

where the compressibility coefficient β(h, p0) is defined as

β(h, p) def= − p

%2(h, p) ·
∂%

∂h

∣∣∣∣
p

(h, p). (3)

We must also emphasize that model (2) is characterized by two pressure fields, which is classic in
low Mach number approaches. The thermodynamic pressure p0 is involved in the equation of state
and is an average pressure (constant in time and space) within the core. The dynamic pressure p̄
appears in the momentum equation (2b) and can be considered as a perturbation around p0. This
pressure decomposition comes down to filtering out the acoustic waves which are no more involved
in system (2). We mention that model (2) is only valid under the assumption that pressure p0
does not depend on time.



hs˜l 1.627× 106 J ·K−1

hs`g 3.004× 106 J ·K−1

%s˜l 632.663 kg ·m−3

%s`g 52.937 kg ·m−3

T s 654.65 K
(a) Values at saturation for p0 = 15.5 MPa deduced

from the parameters of [12].

β˜l 8.769× 10−3

β ”mffl 1.949× 10−1

β`g 3.007× 10−1

q˜l −1.167× 106 J ·K−1

q ”mffl 1.501× 106 J ·K−1

q`g 2.030× 106 J ·K−1

(b) Orders of magnitude of the compressibility co-
efficient and the equivalent binding energy at
p0 = 15.5 MPa.

Table 1: Parameters for phasewise Stiffened Gas Equation of State

2.2 Equation of State: phasewise Stiffened Gas law
We now have to build a single set of governing equations that can represent both phases, i.e. an
equation of state (EOS) that relates the density % to the unknowns of the system (2). This relation
yields the expression of the compressibility coefficient involved in equation (2c). The two phases
in the mixture are assumed to be in thermodynamic equilibrium (of temperatures and chemical
potentials) and mechanical equilibrium and the temperature in the mixture is taken to be equal to
the saturation temperature. Consequently, the two-phase mixture is effectively treated as a single
(pseudo) fluid whose properties are suitable averages of the phasic properties of the individual
phases. The balance equations are the same as those for the single-phase flow as shown in [3]; but
each primary variable now represents the state of a homogeneous mixture of two phases. Thus the
stiffened gas law for two-phase flow with phase transition reads:

%(h, p0) = p0/β(h, p0)
h− q(h, p0)

with β(h, p0) and q(h, p0) phasewise constant and defined by:

β(h, p0) =


β˜l(p0), if h ≤ hs˜l (p0),
β ”mffl(p0), if hs˜l (p0) < h < hs`g (p0),
β`g(p0), if h ≥ hs`g (p0),

q(h, p0) =


q˜l, if h ≤ hs˜l (p),
q ”mffl(p0), if hs˜l (p0) < h < hs`g (p0),
q`g, if h ≥ hs`g (p0).

In Table 1 values for water and steam computed with parameters of [3].

2.3 Boundary conditions
Boundary conditions (BC) are specified in 3D (Ω = [0, Lx] × [0, Ly] × [0, Lz] where the vertical
variable is y).

• The fluid is injected vertically at the bottom of the core (y = 0) at a given enthalpy he and
at a given vertical flow rate De:{

h(t, x, 0, z) = he(t, x, z),
(%u)(t, x, 0, z) = (0, De(t, x, z), 0).

(4)

The entrance velocity ve(t, x, z) to apply at y = 0 is deduced from the relation ve(t, x, z) =
De(t, x, z)/%e(t, x, z) where %e def= %(he, p0).
An alternative consists in prescribing both density and vertical flow rate:{

%(t, x, 0, z) = %e(t, x, z),
(%u)(t, x, 0, z) =

(
0, De(t, x, z), 0

)
.

(5)

In that case, we need to invert the EOS to compute he from %e.



• At the top of the core, we consider a free outflow which is not detailed here, see for example
[5] for a well-posed closure. The approach chosen here can be detailed after introducing time
discretization and splitting techniques in the manner of [10].

• On the lateral walls, upon the velocity we consider slip or no slip boundary conditions. Slip
coditions are used for 1D solutions.

2.4 Assumptions
For the problem to be well-posed, we impose some assumptions upon the data and the ini-
tial/boundary states:
(i) Φ(t,x) is nonnegative for all (t,x) ∈ R+×Ω, characterizing the fact that we study a nuclear

core where the coolant fluid is heated;
(ii) p0 is a positive constant;
(iii) De(t, x, z) > 0 for all t ≥ 0 and (x, z) ∈ [0, Lx]× [0, Lz] (the flow is upward);
(iv) hinit is such that hinit(x, 0, z) = he(t = 0, x, z) for all (x, z) ∈ [0, Lx]× [0, Lz];
(v) uinit is such that ∇ · uinit = β(h, p0)

p0
Φ(0,x),

uinit(x, 0, z) = ue(t = 0, x, z),

corresponding to the fact that the steady equation (2c) is initially satisfied, which means that
initial conditions are well-prepared (see [3] for instance);

2.5 Steady state solution
In dimension 1, we can explicitly compute steady solutions of the LMNC model no matter what
the equation of state [3, 9].

Proposition 1 (Steady states). We consider the 1D steady case, i.e. %e, De and Φ do not depend
on time. Then, System (1) admits a unique steady solution given by

h(y) = he + 1
De

∫ y

0
Φ(z) dz, v(y) = De

%(h(y), p0) .

A distinctive feature of the Lmnc model is that the steady enthalpy does not depend on the
equation of state except through the computation of he. Moreover, given the expression of h in
Proposition 1, it can be stated whether the steady fluid appears only as a (pure) liquid phase (if
h(y) < hs˜l ) or as a mixture (hs˜l ≤ h(y) ≤ hs`g ) or also as a (pure) vapour phase (h(y) > hs`g ). We
define ys˜l and ys`g as the solutions of the equations h(y) = hs˜l and h(y) = hs`g respectively.

Note that with phasewise SG EOS, we can compute the transient 1D solution when Φ is
constant [3].

3 Numerical scheme
The spatial discretization of the model is based on finite volumes for staggered grid, where the
dynamic pressure is located at the center of the cells, while the components of the velocity densities
and the enthalpy are located on the faces. This choice is motivated by the fluid model looking like
incompressible flows. This choice is then conserved for the enthalpy equation.

Here we detail only the time discretization. In order to avoid complex coupling between
the enthalpy equation (2a) and the generalized Navier-Stokes equation (2b)-(2c), the system is



decoupled as follows,

∂th+ u · ∇h = Φ(t,x)
%(h, p0) , (6a)

∂tu + (u · ∇)u− 1
%(h, p0)

∇ · σ(u) + 1
%(h, p0)

∇p̄ = g, (6b)

∇ · u = β(h, p0)
p0

Φ(t,x), (6c)

where h(t,x) def= h(t − δt,x) is then known when solving (6b)-(6c) on a time step δt. It then
allows to solve the decoupled equation (6a), on a time step, with a given transport velocity u. The
system (6b)-(6c) is solved thanks to classical technique used for incompressible and inhomogeneous
flows. This part is detailed in appendix. We focus here on the enthalpy equation (6a) driven by
a transport term with a dilatable flow and a nonlinear source term. This equation is written as
follows

∂th = −∇ · (uh) + h∇ · u + Φ(t,x)
%(h, p0) , (7)

so that the three terms of the right hand-side are approached thanks to a time Strang splitting,
leading to an order 2 approximation with respect to time. The first term of the right hand-side
is discretized with an explicite order 2 scheme with respect to time and space. The second term
is solved thanks to the exact solution and the third term is discretized with an explicite order 2
scheme with respect to time.

In the following section, we discuss the validation of these approximations thanks to the exact
1D solution asymptotic steady state solution of Proposition 1.

4 Numerical Tests
For any test, reference values for pressure and gravity intensity are p0 = 155× 105 Pa and g =
9.81 m · s−2. The viscosity is constant in time and space (the same for both phases): µ(h, p0) =
8.4× 10−1 kg ·m−1 · s−1, η(h, p0) = − 2

3µ(h, p0). The reactor is a box Ω = { [0, Lx]× [0, Ly]× [0, Lz] }
with Lx = Lz = 1 m and Ly = 4.2 m.

Power density Constant in time

Φ(t, x, y, z) =
{

170× 106 W ·m−3 for all y > 1
2

0 W ·m−3 otherwise.

Let us denote Φ̂κ def= βκΦ/p0, thus

Φ̂˜l = 0.096 s−1, Φ̂ ”mffl = 2.137 s−1, Φ̂`g = 3.297 s−1. (8)

BC-bottom Inflow data: liquid phase constant in time and space

ue(t, x, z) = (ue(t, x, z), ve(t, x, z), we(t, x, z)) = (0, 0.4, 0) m · s−1

%e(t, x, z) = 749 kg ·m−3,

he(%e(t, x, z)) = h˜l(%e(t, x, z)) = p0/β˜l
%e(t, x, z)

+ q˜l ' 1.193× 106 J · kg−1.

Expected results The domain is initially filled with liquid. Mixture appears for ys˜l < y < ys`g
and pure vapour appears for y > ys`g where

ys˜l = 1
2 + %eve

Φ (hs˜l − he) '
1
2 + 0.765 m, ys`g = 1

2 + %eve
Φ (hs`g − he) '

1
2 + 3.192 m.



The asymptotic state is given by (see Figure 1):

u∞(x, y, z) = (u∞(x, y, z), v∞(x, y, z), w∞(x, y, z)) (9)
u∞(x, y, z) = 0, (10)

v∞(x, y, z) =


ve + Φ̂˜l(y − 1

2 ) for all ys˜l > y > 1
2

ve + Φ̂˜l(ys˜l −
1
2 ) + Φ̂ ”mffl(y − ys˜l ) for all ys`g > y > ys˜l

ve + Φ̂˜l(ys˜l −
1
2 ) + Φ̂ ”mffl(ys`g − ys˜l ) + Φ̂`g(y − ys`g ) for all y > ys`g

ve otherwise

(11)

w∞(x, y, z) = 0, (12)

h∞(x, y, z) =

he + Φ
%eve

(
y − 1

2
)
, for all y > 1

2

he otherwise.
(13)

The analytic expression of dynamic pressure can be computed a posteriori.

Comparisons of numerical and exact solutions
• In Figure 1, we show the exact asymptotic solution with a velocity linear by parts.

The slope changes occurs with phase changes and are significantly different. Thereby,
a slight modification on the enthalpy modify the position of change phase ys˜l and ys`g
shown on the figure and the velocity is significantly modified due to strong differences
between Φ̂˜l, Φ̂ ”mffl and Φ̂`g.

• On the Figure 2a, equation (6a) is solved with the order 2 scheme proposed above but
for a fixed given velocity corresponding to the exact asymptotic velocity (11). It leads to
a convergent approximation with an under-estimated numerical solution. This suggests
to introduce a scheme able to catch the asymptotic solution with respect to time. The
time order 2 scheme used for the conservative term of (7) is a Runge-Kutta scheme
corresponding to a θ-scheme with θ = 1

2 whose first order 1 prediction under-estimates
whereas the second prediction over-estimates in the manner of an implicit scheme. We
then introduce a θ-scheme with θ = 0.3 (the weight on the first prediction) leading to a
better numerical solution on coarsed grid. Such a solution is plotted on the Figure 2b.

• Then, the two schemes are compared for the full model (6). The advantage of the
tuned scheme is not conserved due to perturbations induced on the velocity. The order
2 scheme reveals better for the full model as shown on the Figure 2c and 2d. This
conclusion is condensed on the Figure 3 for the grid with 200 cells in y direction.

• On the velocity graphs shown on the Figure 4, the divergence of the velocity (8) can
be observed as the slope of curves and is precisely approached. Nevertheless, errors on
phase change positions induce error on velocity which influence the enthalpy. This is
why the order 2 scheme is better on the full model whereas the tuned model is more
appropriated for the enthalpy equation. The convergence with respect to the grid size
for the full model is also visible on the velocity.

5 Conclusion and Perspectives
The LMNC model introduces a strong coupling between the Navier-Stokes equations and the
enthalpy equation since the dilation of the fluid depends on the enthalpy transported by the flow.
Perturbations on velocities induces sensitive perturbations on the enthalpy and then on regions of
phase change. Nevertheless, some auto-corrections of perturbations occur since excessive enthalpies
induce sooner phase change leading to excessive velocities. The increased velocities cools the flow
and then reduces the excessive enthalpy.

With our 3D code, the presented results for 1D exact asymptotic solutions show convergent
results as well for decoupled problem as for the full LMNC code.

Previous works with different numerical strategy was already performed for the LMNC model,
but this one is the first produced on staggered grids with projection method inside a 3D code,
allowing realistic simulations.



(a) Enthalpy. (b) Velocity.

Figure 1: Exact asymptotic solution.

(a) Enthalpy with v computed analytically and
equation (7) solved by order 2 scheme

(b) Enthalpy with v computed analytically and
equation (7) solved by tuned order 1 scheme

(c) Enthalpy solved by the full model with order 2
scheme

(d) Enthalpy solved by the full model with the
tuned order 1 scheme

Figure 2: Enthalpy with different grids.



(a) Enthalpy with v computed analytically and
equation (7) solved by order 2 scheme vs tuned
order 1 scheme

(b) Enthalpy solved by the full model with order 2
scheme vs tuned order 1 scheme

Figure 3: Comparisons of the two schemes on the equation (7). We show the enthalpy computed
with 200 cells in y direction.

(a) Velocity with equation (7) solved by order 2
scheme

(b) Velocity with equation (7) solved by tuned or-
der 1 scheme

Figure 4: Velocity for different grids.



Other numerical strategies have to be tested in order to try to reduce the space discretization
leading to converged results. Namely, the continuity equation on the density has to be solved
instead of enthalpy equation.

A more distant goal concerns the comparison between the compressible original model and its
asymptotic, that is the LMNC model studied here.

Acknowledgment This work was partially funded by the CNRS project call NEEDS (nuclear, energy,
environment, waste and society) and “Conseil départemental” of Var (France).

Appendix: Fluid solver discretization
The viscous and buoyancy forces enter the computation of the dynamic pressure in low-Mach-
number flow in a similar way as they enter the pressure computation in incompressible flow, except
for a nonzero velocity-divergence constraint. The convection operator is discretized explicitly. The
diffusion is treated implicitly to avoid the stability constraint on the time step induced by the
second-order diffusion operator. The pressure and velocity are decoupled to avoid solving the
coupled saddle-point problem. This decoupling is done by using a classical prediction-projection
method.

The solution of equations (6b) and (6c) for (un+1, p̄n+1) is performed by a so-called pressure-
correction method. These schemes consist of two substeps per (fictive) time step k: the pressure
is treated explicitly in the first substep and corrected in the second substep by projecting the
intermediate velocity onto the space of “divergence-fixed” field. We repeat this two substeps until
the divergence of un+1 is equal to βn+1

p0
Φn+1(x).

Let k = 0 and p̄n,k = p̄n. While ‖∇ · un+1,k − βn+1

p0
Φn+1‖ > TOLL repeat:

[Velocity predictor] For an intermediate velocity ũn+1,k, solve the semi-implicit equation

%n+1

∆t ũn+1,k −∇ · σ(ũn+1,k) = %n+1
(

1
∆tu

n − (un · ∇)
)

un + %n+1g−∇p̄n. (14)

Supposing that ũn+1,k verifies the divergence constraint (6c), and if ∇µn+1 can be neglected
(and then ∇ηn+1 also), i.e. µn+1 = µ for all n, then we have

∇ · σ(ũn+1,k) ' µ∆ũn+1,k + (µ+ η)∇
(
βn+1

p0
Φn+1(x)

)
= µ

(
∆ũn+1,k + 4

3∇
(
βn+1

p0
Φn+1(x)

))
so that each component of the velocity can be computed independently of the others as
follows:

%n+1

µ∆t ũn+1,k−∆ũn+1,k = 4
3∇

(
βn+1

p0
Φn+1(x)

)
+ %n+1

µ∆t un+ %n+1

µ
(g− (un · ∇)un)− 1

µ
∇p̄n.

(15)

[Pressure correction] Once ũn+1,k is known, the projection step consists in extracting un+1,k

such a way that ∇ · un+1,k satisfies divergence constraint (16),
∇ · un+1,k = βn+1

p0
Φn+1(x),

un+1,k−ũn+1,k

∆t + 1
%n+1∇˜̄pn+1,k = 0.

(16)

Taking the divergence of the second equation and enforcing the first equation leads to∇ ·
(
∇˜̄pn,k

%n+1

)
= 1

∆t

(
∇ · ũn+1,k − βn+1

p0
Φn+1(x)

)
,

∂n˜̄pn,k = K(x), for x ∈ ∂Ω,
(17)



where ˜̄pn,k = p̄n,k − p̄n is the pressure increment and the function K is zero on the bound-
ary except for the outflow boundary where K is the constant satisfying the compatibility
condition between the boundary condition and the source term of (17).

[Updates] Once the dynamic pressure is obtained, the velocity un+1,k+1 is calculated from

un+1k+1 = ũn+1,k+1 − ∆t
%n+1∇˜̄pn,k. (18)

Finally the dynamical pressure p̄n,k+1 is updated as follows (this step is optional)

p̄n,k+1 = p̄n,k + ˜̄pn,k+1
. (19)

When ‖∇ · un+1,k+1 − βn+1

p0
Φn+1‖ ≤ TOLL, we set un+1 = un+1,∞ and p̄n+1 = p̄n,∞.
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