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Abstract. Mechatronic design optimization is a complex process characterized by an important number of
requirements, design variables, constraints and objectives. Therefore, it is very important to decompose
efficiently the system design problem into a set of partitions to minimize the computational cost while profiting
from the spatial distribution of design tools, working teams and expertise. However, the optimization of the
overall design requires incorporating the relevant partitions in order to find the optimum mechatronic design.
Efficient strategies of partitioning and coordination should be specified at the conceptual level to have a
successful optimization process. In this paper, a new approach based on multi-agent paradigm is proposed for
mechatronic design optimization. The proposed approach is applied to the preliminary design case of an electric

vehicle to demonstrate its validity and effectiveness.
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1 Introduction

A typical mechatronic design involves multidisciplinary
teams to work together on the design of a mechatronic
system. Challenges associated to a collaborative design of
multidisciplinary teams require dividing the work into
smaller design problems easier to manage and coordinating
between different design sub-problems in order to avoid
misleading conclusions that could make the mechatronic
system expensive or useless.

In this paper, a new approach for a mechatronic design
optimization based on multi-agent technologies is pre-
sented. The suggested approach has been applied to the
case of an electric vehicle design optimization to illustrate
its efficiency in facilitating the complex design of
mechatronic systems.

This paper is organized as follows: After the introduc-
tion, the related works addressing the optimization of
complex and mechatronic systems are presented. In the
subsequent section a detailed description of our approach
for optimizing the mechatronic systems design is offered.
Afterwards, a preliminary design of an electric vehicle is

* e-mail: amir.guizani@supmeca.fr

proposed to illustrate our approach. The results of the
application are presented and discussed in section five. The
last section is devoted to the conclusion.

2 Related works

The complex system design process begins by analysing how to
break a multidisciplinary design problem and large scale
individual elements. Several approaches for system partition-
ing may be used, and the choice depends on the system and the
analysis environment. Wagner [1] identified four categories of
system partitioning methods: by object, by aspect, sequential,
or matrix. Object decomposition involves dividing a system to
physical component or function. Aspect partitioning divides
the system to discipline. Sequential partitioning is appropriate
for flow processes. Matrix partitioning is applied to large
systems of mathematical equations.

Plume and Mitchell [2] stressed that a good design can only
be achieved by focusing on the parts, because the parameters of
one part may affect the level of other parts. There is therefore a
risk that one part is evaluated incorrectly which might make
the system unnecessary, expensive or inefficient.

Several approaches have been proposed in previous
works to solve this issue. The Multidisciplinary design
optimization (MDQO) seems to be the most promising
solution for the optimization of mechatronic systems, as it
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Fig. 1. The definition of an agent for the optimization of mechatronic design.

allows designers to incorporate all relevant disciplines
simultaneously. MDO has been introduced in numerous
fields, including aerospace design [3], electronics [4],
automobile design [5], etc.

MDO allows designers to reach the optimum of the
collaborative design which is more advantageous compared
to the design found by optimizing each discipline
sequentially, since it can exploit the interactions between
the disciplines. However, including all disciplines simulta-
neously increases significantly the complexity of the
problem and computation time.

The optimization of mechatronic systems with a
detailed level of design requires efficient strategies of
partitioning and coordination to lead to a successful
optimization workflow that reduces the complexity and
computation time. One idea for an optimal design of
mechatronic systems is to use the multi-agent approach.

The Multi-agent approach is considered as an emerging
development of a combination of trends including artificial
intelligence, object-oriented programming and concurrent
object-based systems [6]. Multi-agent systems are already
present in several multi-domain industrial applications
such as: software development, intelligent manufacturing
and intelligent transportation systems [7]. Several past
studies have dealt with multi-agent technologies to address
the problems of distributed analysis and collaborative
design. Villanueva et al. [8] proposed the use of multi-agent
systems with a new technique of adaptive partitioning of

the design space to solve optimization problems involving
expensive digital simulators. The technique consists in
partitioning the design space between different agents
using different meta-models to approximate their sub-
region and coordinating to change the boundaries of their
sub-regions. Hao et al. [9] worked on a framework for
engineering design and optimization based on agents.
Distributed decision-making is among the main services of
the developed application. La Rocca and van Tooren [10]
proposed a new knowledge-based application for aircraft
multidisciplinary design and optimization. The authors in
[10] argued that the use of a knowledge-based approach
presents more flexibility and automation, which provides
solutions to the urgent problems including the exploitation
of the MDO approach in large distributed design
frameworks. Ren et al. [11] presented a comparison study
between MDO and multi-agent technology to optimize the
construction design. Authors in [11] concluded that agent
based systems may be adopted into the collaboration
process in the MDO to enhance the efficiency of the process.

3 Description of the multi agent approach
for mechatronic design optimization

Our approach is based on a multi agent platform
containing only software agents, which communicate with
physical agents (designers, engineers, etc.) and design
software (modelling, simulation and optimization).
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Fig. 2. The design process for optimizing a mechatronic system.

For each mechatronic optimization problem, we choose
the multi agent platform to be composed of two types of
agents: Design Agents (DAs) and a Coordinating Agent
(CA). This choice is justified by the fact that in every
optimization problem, there are global objectives related to
the system and local objectives linked to components or
subsystems. The CA objectiveisto participate in the research
of global optimal solutions for the mechatronic optimization
problem, while each DA is affected to a local partition of the
optimization problem in order to find local optimal solutions.

Each software agent (CA or DA) is associated to an
engineering team and a development platform (Fig. 1). The
engineering team may be composed of engineers and
experts in the various fields of Systems Engineering. The
platform consists of various development tools for
modelling, simulation and optimization.

Each software agent can share, communicate or
coordinate with physical agents throughout the analysis
model, the knowledge model and the coordination model:
— the analysis model is used to evaluate the design assigned

to a partition (CAD model, finite element model);

— the knowledge model is based on the rules of modelling,
control and contextual information of the agent. The
modelling rules help the designers to define the
mathematical models that can be used in the mecha-
tronic system modelling. The control rules are used to
verify the consistency of the analysis model. The agent
context is based on information about design require-
ments, constraints and optimization objectives;

— the coordination model contains information for cooper-
ation and communication between DA(s) such as
coupling variables and shared variables, etc.

In order to explain our approach, the rest of this part
details the principal tasks realized along the optimization
process to facilitate the collaborative distributed design.
Thus, we indicate the steps where C'A and DA intervene
and the tasks to be realized. Figure 2 shows the design
process used in the multi-agent approach for optimizing a
mechatronic system.

The first task in the design process is to define the
optimal number of DA(s) necessary for the optimization
and the optimal repartition of objectives, constraints and
design variables between different agents. In order to
accomplish this task, it is necessary to execute the steps
below:

1. The first step consists in finding the possible
configurations to partition the optimization problem.
Several techniques may be used to ensure this step. The
simplest technique is that the partitioning is manually made
by studying the coupling degree between the objective
functions, the constraints and the design variables or by
following approaches that already exist in the literature such
as: the graph theory [12], the game theory [13], the
Augmented Lagrangian Coordination [14], etc.

2. Once the configurations are found, the second step of
the design process is to find the best configuration to be
used to solve the global optimization problem. To obtain
the best configuration, we propose to use two criteria: the
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calculation time of the overall solution C; and the number
of partitions C, of each configuration. Both criteria must be
minimized.

With

C :tglobal = maxtipeq + maXtexchangea (1)

where

— tgobai: the global calculation time of the configuration,

— toear: the local calculation time for each partition(can be
evaluated for one iteration)

— teschange: the data transfer time (the information amount
to be exchanged) between two partitions (depends on the
number of coupling variables, number of shared
variables, used tools, etc.)

The software agent CA can intervene in this step in
order to help us to choose the best configuration. For this,
we propose to use the SysML [15] language. In fact, the
optimization configuration can be represented with an
Internal Block Diagram (IBD). Each block can represent a
partition. The necessary information to describe the
partition such as execution time can be attributed to the
properties of the block that define the partition. The
SysML ports ensure the specification of the exchange
variables and can contain other information about
exchange time throughout the ports. A CA that can be
described via Java program can read the information
defined in the IBD via a XML format, which ensures the
evaluation of criterion Cj.

3. The third step is to determine the coupling variables
between the partitions of the chosen configuration. These
coupling variables are subsequently used to facilitate the
coordination process between the different partitions in
order to find the optimal design of the global problem.

Once the coupling variables are identified, the designer
verifies the designer verifies if these variables have
variation intervals. If it is the case, the design process
goes directly to the seventh step. Otherwise, the designer
has to determine the variables having unknown validity
domains to execute the fourth, the fifth and the sixth steps.

4. In the fourth step, a sensitivity analysis of the design
variables is necessary to identify those with negligible
influence on the behaviour of the partitions already
identified in the previous step. These variables have to
be eliminated in order to maximize the precision and
minimize the calculation time of the meta-model.

5. Once the sensitivity analysis is done, the physical
agent builds a meta-model (surrogate model) having as
inputs the design variables and as outputs the objective
functions, the constraints and the coupling variables
identified in the third step.

6. After building the surrogate model, the role of the
designer is to determine the validity range of the coupling
variables based on the optimization of the surrogate model.

7. The following step is to formulate the optimization
sub-problems of the different partitions of the selected
configuration issuing from the previous steps. The
formulation of each optimization sub-problem requires:

— the choice of a partition of the configuration selected in
the second step (specify the design variables, the local
constraints and objectives);

— the determination of the coupling variables that are
linked to the chosen partition according to the third step;

— the specification of the validity domain of every coupling
variable according to the third or the sixth step.

8. Next, the CA assigns each partition (sub-problem) to
a DA. In fact, starting from the XML file already built in
the second step, the C'A can transform the data of each
partition into messages containing the optimization
formulations of every DA.

After the reception of the formulation messages from the
CA, each DA informs the associated designer about the
proposed formulation in order to accomplish a local
optimization in his specific partition and determine the
optimal local solutions compared to theinternal objectives to
meet the requested requirements (steps 9 and 10 in the design
process). The local optimization of each DA requires the:
— specification of an analysis model to evaluate the local

constraints and objectives;
— allocation of a multi-objective optimization algorithm to
determine the local optimal solutions;

Once the local optimizations are performed and the
solutions are generated, the system engineer’s task, with
the help of CA, is to find the best strategy to link the
coordination variables (the coupling variables and the
shared variables between different DA(s)) and to find the
global solutions that respect all the required performances
(steps 11 and 12).

4 Application to the case of a preliminary
design of an electric vehicle

4.1 Introduction

We consider the case of a preliminary design of an electric
vehicle. The objective of this study is to optimize the
battery, the electric motor and the gear ratio to meet the
performance requirements related to the maximum
velocity and the acceleration test.

4.2 Modelling the electric vehicle with Modelica

The electric vehicle model has been modelled using
Modelica language [16]. This model is composed of Figure 3:
an input model for velocity demand, a battery (DC voltage
source), a rectifier (DC-AC inverter) and a propulsion
system. The latter is composed of an electric motor
(permanent magnet synchronous motor) connected to a
one-ratio gear box, a wheel component and a translating
mass representing the vehicle mass. This mass is support-
ing resistive forces due to air drag, rolling resistance of the
wheels and grade angle resistance. A detailed model of the
electric vehicle is developed in [17].

4.3 Simulation results

For the sake of simulation and to reproduce a road path
with different driving conditions, we will be using the New
European Driving Cycle (NEDC) [18]. In this study, the
parameters used in the electric vehicle model are given in
Table 1.
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Fig. 3. Electric vehicle model developed with Modelica.

Table 1. Electric vehicle parameters.

Parameters Description Value Unit
M Vehicle mass 1540 kg

0 Air density 1.2 kg-m*
Afront Vehicle frontal area 1.8 m>

C., Rolling coefficient 0.2 -

Cy Aerodynamic drag coefficient 0.013 —

o Grade angle 0 rad

g Gravitational acceleration constant 9.81 ms 2
Tw Wheel radius 0.28 m

R, Gearbox ratio 1<R,<12 -

Emf Constant of the electromotive force 0.1<Emf<2 N-m-A~!
nu Inverter efficiency 0.98 -

N, Number of series connected 1< N,<100 -

N, Number of parallel strings 1<N,<10 -
S0Cnit Initial state of charge 0.8 -

Vv Speed vehicle Variable km/h
SoC State-of-charge Variable -

The objective is to simulate the proposed model. The
default values of the N, N,,, Emfand R are respectively 75,
4, 0.5 and 6.

The results shown in Figure 4 indicate a good
agreement between the input driving cycle and the output
vehicle velocity. By modifying the input to constant speed,
we can simulate other different performance test cases,
such as the maximum vehicle velocity, the velocity at 10
seconds and the velocity in a grade road.

The state-of-charge SoC is the history of the
battery when a driving cycle used. Figure 5 shows
the variation of the SoC during the NEDC cycle. The
first SoCwas 80%. The operating range is between 80%
and 67%, i.e., the battery has lost 16.25% of its
capacity during the NEDC cycle. With a minimum
state-of-charge SoC,,;,=0.2 and the same values of
N;, N, Emfand R, the electric vehicle can repeat 4.6
times the NEDC cycle.



6 A. Guizani et al.: Mechanics & Industry 18, 507 (2017)

—NEDC.y — to_km/hy

120- 72
100: 684
20 64 .3
g 60 60.
> 40
20 ]
0]
0o 200 400 600 800 1000 1200
Time [s]

Fig. 4. Comparison between the input NEDC cycle and the
output vehicle velocity.

{/1: 2}
{1 12 f3: 4}
‘ {f}:ﬂ}
All-At-One

Two partitions

0.80
0.78 4
0.76 4

0.74 4

SoC

0.72 4
0.70 1
0.68 4

0.66 |
0 200

600 800 1000

Time [s]

Fig. 5. State-of-Charge for the NEDC.

400 1200

12}

2} e

Three partitions

Fig. 6. Three possible configurations for partitioning.

Defining one analysis model for different test cases such
as acceleration test and maximum velocity is a complex
task and computationally expensive when classical MDO
techniques are used. Therefore, the multi-agent approach is
used to solve these problems.

To develop our approach, it is convenient to choose a
platform, adopting open-sourced JADE [19] as the software
development environment fully implemented in JAVA
language. JADE follows the Agent Management Refer-
ences Model (AMRF) specification, which provides a
standard infrastructure with well-defined functions. Mul-
tiple agents can be easily created, deployed, registered,
located and communicated in JADE.

4.4 Use of the Multi-Agent approach

We consider the optimization of an electric vehicle with

four objective functions and three design constraints:

— Objective fi: minimizing the mass of the energy storage
system in order to choose the optimal battery;

— Objective f;: maximizing the state-of-charge of the
battery at the end of a driving cycle;

— Objective f;3: minimizing the electric power required by
the propulsion and the transmission systems in order to
choose the optimal electric motor;

Objective f;: minimizing the gear ratio to reduce the
volume of the gearbox;

— Constraint ¢;: Acceleration test: Vehicle velocity after 10
seconds of start-up (Vi) shall be equal to 60+ 5km /h;

— Constraint cy: Maximum velocity: Vehicle maximum
velocity (Vg shall be equal to 120 4 5 km /h;

— Constraint c3: Battery Mass: The mass of the battery
should be less than 200 kg.

For the design variables, we will limit our study to the
number of series connected cells Ny, the number of parallel
strings N, the electromotive force Emfof the electric motor
and the gear ratio R,

The first step of the design process is to find the possible
configurations for the partitioning of the optimization
problem. An important measure, which is used in this case,
is the degree of coupling between the objective functions,
constraints and design variables.

According to the formulation of the optimization
problem, the two constraints V;g and V,,,, are related to
the overall system performance. It is difficult to assign
these two constraints to specific partitions. Furthermore,
the decomposition following the design variables is very
effective if the whole problem is modeled in a mathematical
form. The problem of the electric vehicle is modeled at the
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Table 2. Choice of the best configuration.

Criterion Configurationl Configuration2 Configuration3
C; (for one evaluation) 5.17s 2.6s 2.1s
Cy 1 2 3
Table 3. Optimization results of the surrogate model.

RSM
N, 74-83 Myt (kg) 149.7-198.2 Vinae (km/h) 115.4-123.9
N, 4-5 SOC 0.722-0.754 I(A) 141.6-155.3
Emf (Nm/A) 0.203-0.381 P (kW) 54.6-65.7 U (V) 385.8-422.7
R, 4.73-7.91 Vio (km/h) 55.1-64.4

same time by components and mathematical models.
Hence, it is indispensable to study the degree of coupling
between the objective functions, which are associated with
specific components (battery, motor and gearbox) to
decompose the problem into multiple partitions and to
assign constraints and internal design variables to each
partition.

In our case, several combinations can be studied; some
of them are realizable. The three possible configurations
are: a partition, two partitions and three partitions (Fig. 6).

One partition is a multidisciplinary optimization
problem where all objective functions are assigned to a
single partition which corresponds to all-at-one (AAO)
problem. In this case one analysis model is needed to solve
the overall problem. AAO currently used for the
optimization of multidisciplinary systems is expensive in
computation time, difficult to implement, and inflexible
with the preliminary design phase where the objectives and
design constraints change frequently.

In the configuration with two partitions, both objective
functions f; and f, are tightly coupled, so they must be
assigned to the same partition. However, the degree of
coupling between the two objective functions f; and f; is
low. Therefore, the solution is to consider two analysis
models assigned to both partitions. The first model is the
model of the battery to analyze f; and f> and the second
model is the propulsion system to treat f; and f;. These
analysis models are associated to both partitions that may
be run in parallel either on the same computer or on two
different computers, which reduces the computation time.

In the configuration with three partitions, the degree of
coupling between f; and f; is low so that each function can
be associated with an analysis model. In this case, three
analysis models are needed to treat this problem: The
battery model for f; and f;, engine model for f; and last
model is the transmission model for f;.

The second step is finding the best configuration to be
used to solve this problem. The two criteria that can be
considered here are: the computation time of the overall
solution C)} and the number of partitions for each

configuration C,. Both criteria must be minimized.
According to Table 2, the choice is trivial since both
criteria are in favor of configuration with two partitions.

In our case, the coupling variables between the two
partitions of the selected configuration are the voltage U
and the current I of the battery. The search space of these
variables is unknown and therefore it is necessary to
perform the steps 4—6 during the design process to
determine the validity domain of U and I.

To identify the validity areas of the coupling variables,
first it is necessary to make a sensitivity analysis of the
design variables. The four design variables N, N,, Emfand
R, have a great influence on the required system
performance. Indeed, the objective function f; is expressed
according to Nyand N, (M, = Ny N, - M.;). The function
f3 depends on the internal characteristics of the motor in
particular the electromotive force Emfand f, represents the
reduction ratio R,.

The next step is to build a surrogate model of the overall
problem. The input vector of the surrogate model is
X={N, N,, Emf, R,} and output vector is Y= { My, SoC,
P, Rg, Vig, Vinary U, I}. The design field is defined by:
1<N,<100,1<N,<10, 0.1 < Emf<2and 1< R, <12,

Several techniques have been used to build a surrogate
model. The polynomial Response Surface Method (RSM)
[20] is commonly considered as the first surrogate modelling
technique. It uses a polynomial formulation to approximate
an exact function. Other techniques such as Kriging and
Radial Basis Function Neural Networks (RBFNNs) [21] are
also used to model complex relationships between inputs
and outputs. In this example, the technique RSM provided
in the Model Center library is used to construct the
surrogate model.

Once the surrogate model is built, the designer’s task is
to define an optimizer to determine the range of validity of
the coupling variables. In the current study, the optimi-
zation of the surrogate model is performed using the Non-
dominated Sorting Genetic Algorithm II (NSGA II) [22]
with Model Center software. NSGA II is a multi-objective
optimization technique that uses a non-dominated sorting
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genetic algorithm. A design is said to be dominated if there
is another design that is superior to it in all objectives.
NSGA Il is a fast sorting algorithm to compute Pareto set.

The optimization problem is multi-objective, the
surrogate model was not a single solution but a set of
solutions whose lower and upper limits of the vectors X and
Y are given in Table 3.

The next step is to formulate the optimization problems
of DA(s) from the previous steps. For the selected
configuration with two partitions, we will consider two
design agents DA, and DA,. Each DA has an analysis
model (Modelica) to evaluate its constraints and local
objectives. For each DA we allocate the same optimization
algorithm NSGA II with Model Center software.

The first analysis model consists of the battery in series with
an equivalent resistance R, representing the rest of the electric
vehicle model. The value of this resistance is determined from
the optimization results of the surrogate model:

Refl :Umax/Imax = Umin/Imm = 2.72Q. (2)

The second analysis model is the model of the
propulsion system. To get an accurate simulation of this
system it must connect with a constant voltage source U to
replace the battery model.

The formulation of each optimization sub-problem is
given by:

minMp. Min(P, Ry)
maxSoC' 55 < Vg < 65
My < 200 115 < Vipax < 125
DAy : ¢ 1416 < T < 155.3 DAy : < 141.6 < I < 155.3
385.8 < U < 422.7 385.8 < U < 422.7
1 < N, <100 01 < Emf <2
1< N, <10 1< R, <12

The optimization results of each DA and the coordina-
tion process of the CA are explained in the following
section.

4.5 Results and discussion

After the complete specification of two DA(s), a local
optimization was performed within each agent. Each agent
is characterized by a local optimizer and an analysis model.
Both optimizations are based on the electric vehicle
parameters and variables listed in Table 1. Both
optimizations are multi-objective; these problems do not
have a unique solution, but a set of solutions (Pareto Front)
as shown in Figure 7.

Each point of the Pareto front is characterized by an
input vector X (design variables to optimize) and an output
vector Y (objective functions to be achieved and
constraints to be respected).

After the generation of the Pareto fronts, the best
design solutions obtained by DA(s) are summarized in
Table 4.

For instance, the optimization performed by DA, shows
that the maximum power required by the motor P ranges
between 55.4kW and 64.8 kW, a variation on AP is about
14.5%. The gear ratio of the gearbox R, varies between 4.92
and 7.36, which has a AR, variation is about 33%. The two
criteria therefore vary strongly along the optimal front,
which means that there is a compromise between them. If
we find that one of the criterion is showing a significant
variation with respect to the other, e.g., negligible AP to
AR, this would mean that it is possible to improve the

" criterion of the maximum power required by the motor P

without having a significant impact on the criterion of gear
ratio R, The compromise is likely to exist in this case of
DA, and also in the case of DA;. The choice of a solution on
the fronts is difficult. Therefore, it is very difficult to



A. Guizani et al.: Mechanics & Industry 18, 507 (2017) 9

Table 4. Optimization results of DA(s).

Results after optimization

DA, N, 75-82
N, 4-5
1(A) 142.1-152.5
U (V) 387.9-416.1
My (kg) 150.8-198.4
S0C 0.723-0.752
Computing time (min) 14.56
Number of solutions 15

DA, Emf (Nm/A) 0.214-0.348
R, 4.92-7.36
I(A) 142.6-151.6
U (V) 392.1-419.3
P (kW) 55.4-64.8
Vio (km/h) 56.5-63.8
Vimaz (km/h) 116.2-123.5
Computing time (min) 21.36
Number of solutions 23

Table 5. Optimal solutions of the multi-agent approach.

Table 6. Optimization results of the AAO method.

Solutions Ns Np Emf Rg AAO
1 79 4 0.264 5.83 N, 74-83
2 80 4 0.251 6.18 N, 4-5
3 81 4 0.244 6.41 Emf(Nm/A) 0.214-0.413
4 82 4 0.226 6.91 R, 4.52-7.76
5 76 5 0.309 5.14 My, (kg) 150.8-198.4
6 7 5 0.280 546 SOC 0.722-0.756
7 78 5 0.270 5.59 P (kW) 53.4-66.3
Vio (km/h) 55.1-64.6
. . . Vinae (km/h) 115.2-123.6
determine the Valugs of the design Varlables of DAand DA, Computing time (min) 43.22
that meet the requirements requested in order to find the ]
Number of solutions 10

optimal solutions for the overall problem. The advantage of
the agent based approach is to define rules allowing the CA
to make decisions in such cases of conflicts.

The simple design rule used by the CA consists in
coordinating the coupling variables between the different
DA(s) to find consistency between the good values of the
design variables that meet the overall system performance.

In our case, the two coupling variables are U and I. The
coordination algorithm used by the CA to determine the
values of the design variables of DA; and DA, is given by:

Fori = 1ton
Forj = 1tom
ifo, (i) -0, ()
Return (Ns (z)
End If

: < land "Il (1) -1, (])"2 < 1then
, Np (1)) of D4, and(Emf (]) Rg (j))

End For
End For

where, n and m are the numbers of optimal solutions along
the Pareto fronts of DAjand DA, respectively. (Uy, I;) and
(Us, I5) are the values of the coupling variables of DA; and
DA, respectively.

The implementation of the coordination algorithm
allowed us to determine 7 optimal solutions whose values
are given in Table 5.

Figure 8 shows the variation of the vehicle speed for the
first 4 optimal solutions for which we have 57.1 < Vi
<62.5 and 118.3< V,,,,<122.4.

The choice of the global optimal solution is based on
decision making rules that we add to the CA. For example,
if the priority is given to minimizing the mass of the
battery, the characteristics of the optimal solution are:
(Ns=79, Np=4, Emf=0.264 and Rg=>5.83). However, if
the priority is given to minimizing the volume of the gear-
box, the best solution in this case is: (Ns=76, Np=25,
Emf=0.309, Rg=5.14).

To validate our approach, a comparative study with
classical optimization methods is required. For this reason,
we used one of the most used multidisciplinary optimiza-
tion methods in the literature: the AAO method which
corresponds to the first partitioning configuration of our
problem where all the objective functions are associated
with a single partition. In addition, even if this case-study
seems to be relatively simple, the exact solution is not easy
to find to solve this problem. Therefore it is necessary to
have an analysis model; this model has been presented in
Figure 3. The optimization results of this configuration are
shown in Table 6.
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Fig. 8. The vehicle velocity for the optimal configurations.

The two criteria selected here to compare the multi-
agent approach with the AAO method are the total number
of optimal solutions and overall calculation time. The
multi-agent approach allowed us to identify 7 solutions in
21.36 min (this is the maximum computation time of
different partitions of the selected configuration) while
with the AAO method we detected 10 solutions in
43.22 min. Comparing these optimization results, it can
be deduced that 70% of the total number of solution is
determined with an important reduction of 50.6% in the
overall calculation time.

In this paper, we have described a multi-agent approach
that enables agents to follow a design process in order to
facilitate the coordination of distributed design. We
decomposed the design problem into two design agents
and we assigned to each agent its objectives and
constraints. A coordinating agent was considered to
coordinate between design agents to achieve optimal
decisions.

The proposed approach allows designers to integrate
the optimization process requirements in the conceptual
design level, simplify the complexity of a mechatronic
design optimization and reduce the computation time.
Global results were found and the optimal design
simulation results were presented.

5 Conclusion

Optimizing mechatronic systems with classical MDO
techniques is quite challenging. As a result, using multi-
agent technologies is considered to be the solution to
handle this problem. Our main contribution in this study is
proposing a multi-agent approach to decompose the design
optimization problem into partitions and coordinate
between them. For each partition, we allocate a design

agent to make a local optimization. To find the global
optimal design of mechatronic systems, we considered
another type of agent called the coordinating agent. The
proposed approach is based on a design process to facilitate
the collaborative distributed design of mechatronic
systems. This approach was applied to the case of a
preliminary design of an electric vehicle to illustrate how
the use of the multi-agent paradigm helps designers in
making effective decisions and to achieve an optimal
decision of the overall problem.

Acknowledgment. The authors would like to thank Mrs. Samia
Ammar, English language teacher in the National Engineering
School of Gafsa (ENIGafsa), for her time in English language
proofreading.
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