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ABSTRACT
In computer vision, cameras more and more accurate, fast, 

3D featured are used. These still evolutions generate more data, 
which is an issue for users to store it with standard compression 
for example for recording proof in case of products 
manufacture defective.  
The aim of this work is to develop a specific solution adapted 
for vision systems which have a known scenario and can be 
described by dynamic models. In this framework, Kalman 
filters are used for data compression, observable variable 
prediction, and augmented reality. The developed concepts are 
tested with a scenario of a ruler on a table. The experiment aims 
to check the data compression level, the estimation of the 
friction forces coefficient of the ruler and the prediction of the 
stop position. 

KEYWORDS
Stochastic identification, Kalman filters, Augmented reality, 
Prediction. 

1 INTRODUCTION 

1.1 INDUSTRIAL CONTEXT 
Being a European manufacturer is not as easy as twenty 

years ago [1]. The rise of the Asian concurrency in the last two 
decades has brought the necessity in Europe to find another 
added value. European manufacturers had to deal with different 
financial constraints, and need to take advantage from their 
knowledge and their position on the global market. Quality 
assurance is one of the ways to raise the added value and 
capitalise from their position. [2] 

It is in this framework vision machines take action. In 
order to have a better manufacturing in terms of traceability, 
speed, and quality, vision is overwhelming more and more 
industrial domains. Currently, vision machines are able to 
measure a lot amount of parameters in order to level the 
controls. There is a lot of manufacturers who wants a 
customized control on a large number of parameters in several 
part of the production chain, and merge it on a database in order 
to keep tracks in case of a defective product. The immediate 
consequence is a large amount of data, several cameras in order 
to have many points of observations for inspection and for 3D, 
and limitations on speed. Besides, some hidden physical 
parameters of manufactured object are not accessible because 
they are not visual parameters: It is currently compensated by 
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the high use of augmented reality, merging visual data with data 
coming from other sensors type. 

The method introduced in this article is promising to 
enable vision machine dealing with all the points mentioned 
before by improving the comprehension of the object by the 
computer. Based on a physical model of the object seen, this 
algorithm enables the machine to understand the behaviour of 
the scene and to extract some hidden physical parameters 
directly from observation. A hidden parameter means that the 
parameter cannot be measured without specific instrumentation 
except a camera.  

The results could be interesting in the second industrial 
context of high speed videos. This type of cameras is used in 
order to measure deformation, speed, or efforts in the example 
of crash tests, or to understand some high speed phenomenon. 
The method introduced in this article is promising to add 
information holding on the same physical model. In addition, 
the model is allowing to produce interpolated frames as soon as 
the there is no aliasing [3] regarding to the ratio frame 
acquisition/object speed.  

1.2 PAPER PURPOSE 
This paper deals with a subject parted in several blocks. 

The main purpose of this paper is to develop a method to mix 
data extracted from the video of a dynamic scene with a 
parametric mechanical model describing the video. The 
merging and fitting process between data and parameters model 
is processed using Kalman Filters. Even if the method 
presented here are not time related yet, the aim in the industrial 
context is to reach a real time application. 

The paper purpose is double: on one hand, to develop the 
concept theory based on Kalman filters and object tracking, on 
the other hand, to prove its feasibility with a simple 2D 
example on a video scene. A qualitative and quantitative 
analyse of the results shows the kind of results expected on the 
different fields of improvement, which are prediction, 
augmented reality, high compression, and frame interpolation. 

1.3 IMAGE/VIDEO PROCESSING REFERENCES 
In order to extract data from video, an algorithm needs to 

be developed but the method has to be chosen regarding to the 
execution speed of the method. 
In this way, different method from image or video processing 
could be applied. The related work used to understand the 
different existing methods, their efficiency, their precision, and 
the computational load such as Object tracking [4], or 
background detection [5]. 
However, this image processing part is not the purpose of this 
article which deals only with a numerical simulation. The 
experimental part with the image processing block is going to 
be implemented in a second time. 

1.4 KALMAN FILTERS 
The present work aims to identify variables and parameters 

by using Unscented Kalman Filters. [6] 

In the field of dynamics, several works have already used 
Kalman filters for identification, detection, health monitoring or 
tracking order. In identification and detection processes, 
Kalman Filters are performed for the localization of cracks on 
rotating machines [7], for stiffness identification [8]or vibration 
force estimation [9], [10]. Some health monitoring methods for 
structures and rotating machines are based on Kalman Filters 
with varying Auto Regressive identification parameters [11], 
[12], [13], [14], [15]. Kalman Filters are also used in active 
vibration control [16], [17] [18] with real-time algorithms and 
non-stationary signals on smart structures. 

This work aims to track the trajectory of an object on a 
video. This work has to be based on ballistic tracking. Some 
comparative articles between different tracking algorithms, 
highlighting specifically the computational load, confirming the 
choice made here to use Extended or Unscented Kalman Filter 
[19]. Other work in ballistic tracking field using Kalman shows 
the possibility to use sophisticated model with a Kalman Filter 
[20]. 

2 EXPERIMENTAL USE CASE 
To illustrate properly all the four improvement 

consequence of the method, a simple use case has been 
developed. This use case would have been a dynamic scene 
easily achievable, but it had to deal with physical parameters 
which are not visual and had to be described by mechanical 
equations. The example of a ruler sliding upon a table is 
satisfying each point previously mentioned: on the mechanical 
side the model is not quite simple, there is different hidden 
physical parameter which are the friction force and the position 
of the two contact points with the table, on the realization side, 
the staging is easy and the variation of the friction force or the 
trajectory is easy. 

2.1 NUMERICAL TEST BENCH
In order to have a perfect comparison on the measures 

performed with the method, and the real parameters measured, 
a numerical test bench has to be developed to escape every bias 
due to another comparison measure, but to escape any 
propagation error in the image acquisition chain. 
This test bench allowed following a block working way. As a 
first step, only the value of the parameters measured further by 
the video are used. There is no image processing in this first 
part, enable to compare the initial set of parameters with the 
same set assessed by the method. As a second step, a video is 
generated with the previous values, and it enables to set up the 
image processing part. 
The model chosen to simulate the behaviour of the ruler is a 
double sliding contact point, A and B in the Diagram 1: ruler 
consideration for study, which models the ruler resistance by 
solid friction. TA and TB are the friction forces applied on A and 
B. 
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The position of A and B could be variable in order to 
model some rough variation on a real table. The position of the 
two sliding contacts enables to model a ruler not perfectly flat. 
The equation system below is solved by an explicit ODE 
method to generate the batch of value for the next step. 

{ 
 𝑚�̈� = 𝑇𝐴𝑥 + 𝑇𝐵𝑥𝑚�̈� = 𝑇𝐴𝑦 + 𝑇𝐵𝑦𝐼�̈̿� = 𝐿1 (𝑇𝐴𝑥. sin(𝛼) − 𝑇𝐴𝑦 . cos(𝛼))            −𝐿2 (𝑇𝐵𝑥 . sin(𝛼) − 𝑇𝐵𝑦 . cos(𝛼))

In this use case, the image processing has been chosen to assess 
the initial position or speed of the ruler, but it could have been 
part of the unknowns. 

Diagram 1: Ruler consideration for the study 

2.2 VIDEO OUTPUT 
In order to perform the image processing block, a video 

output is implemented in output of the ruler event simulator. 
The goal of this video is to enable to see the performances of 
the image processing block, and to allow to test the complete 
numerical part of the process. The visual result can be 
impressive [21]. 
The ruler is simulated by a rectangle between the two edge 
points calculated with (𝑥𝐺 , 𝑦𝐺 , 𝛼, 𝐿).

This video output saves the image processing block from 
any noise reflection of light, which will be an issue on real 
videos. A legend of the different information on the video is 
given in Diagram 2 and examples of the output are in Annex E 
and F. 

Diagram 2: legend of the video output 

In order to understand, the Diagram 3 is giving a simplified 
view on the simulation process. 

Diagram 3: Simplified view of the simulation process 

3 STOCHASTIC IDENTIFICATION PROCESS: THE
UNSCENTED KALMAN FILTER

3.1 KALMAN FILTERS
Kalman filtering refers to a family of algorithms that tracks 

the temporal evolution of a dynamic model based on noised 
measurements:  { 𝑋𝑘+1 = 𝑓(𝑋𝑘, 𝑤𝑘)𝑍𝑘+1 = ℎ(𝑋𝑘+1, 𝑣𝑘+1)

This evolution is described here in the discrete time 
domain. The first equation of the system above is the 
propagation equation whereas the second is the observation 
equation. Xk is the state vector at the step k, f(.) is the model 
function, wk the process noise assumed to be Gaussian N(0,Q), 
and Zk is the observation vector, h(.) the observation function 
and vk the observation noise assumed to be Gaussian N(0,R). 

The Kalman filter is an efficient algorithm able to predict 
the future state vector using its means and covariances. [22] It 
is based on a model of the system described by the function f(.) 
compared to the observation Zk with the observation function 
h(.). The Kalman filter is based on two major hypotheses: the 
model function and the observation function are linear, and the 
variables considered in the system are Gaussian. Due to the 
linear hypotheses, f(.) is the F matrix and h(.) the H matrix in 
the following. 

An approach of Kalman algorithm is to separate it in two 
phases. The predict phase gives an a priori estimate of the state 
and covariance based on previous time step tk: �̂�𝑘+1|𝑘 = 𝐹𝑘|𝑘�̂�𝑘|𝑘 
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�̂�𝑘+1|𝑘𝑋𝑋 = 𝐹𝑘|𝑘�̂�𝑘|𝑘𝑋𝑋𝐹𝑘|𝑘𝑇 + 𝑄
The update phase corrects the deviation of these estimations 
based on new observations at time stem tk+1. It is composed by 
an innovation phase: �̂�𝑘+1|𝑘 = 𝑍𝑘+1 − 𝐻�̂�𝑘+1|𝑘 �̂�𝑘+1|𝑘𝑌𝑌 =  𝐻�̂�𝑘|𝑘𝑌𝑌𝐻𝑇 + 𝑅
Then the calculus of the Kalman gain: 𝐾𝑘+1 = �̂�𝑘+1|𝑘𝑋𝑋 𝐻𝑇(�̂�𝑘+1|𝑘𝑌𝑌 )−1
Finally the update of the state and covariance: �̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑘+1�̂�𝑘+1|𝑘 �̂�𝑘+1|𝑘+1𝑋𝑋 = (𝐼 − 𝐾𝑘+1𝐻)�̂�𝑘+1|𝑘𝑋𝑋

3.2 UNSCENTED FALMAN FILTER 
Kalman has been derived in a lot of different forms in 

order to pass through the problem of non-linear cases. Among 
those methods, the Unscented Kalman filter method (called 
UKF) has been chosen to deal with the two issues of our case: 
the mechanical model is highly nonlinear, and it is described by 
unsolved differential equations. 
Unscented Kalman filter has a totally different approach 
compared to others filters as Extended Kalman filters. [6] The 
Extended version proposed to linearize using a first order 
development of the nonlinear function. The Unscented version 
proposes to use the probability distribution to approximate the 
nonlinear function. 

Diagram 4: Algorithm of the Unscented Falman Filter 

The unscented transform enables the propagation of the state 
vector through the model function f(.) or the observation 
function h(.). In this way, a deterministic sampling technique is 

used to catch the state probability distribution and the two first 
moments. The sampling set is composed of sigma points and 
those sigma points are propagated through the nonlinear 
function. The minimal number of points is n+1 with n the size 
of the state vector. In our case, it has been chosen 2n+1 sigma 
points. After that, the inverse unscented transformation is used 
to obtain the state vector and the covariance from the sigma 
points. This method can be repeated for the innovation phase 
whether the observation function is nonlinear too. 
After the unscented step, the standard Kalman filter can be 
applied from the update phase adding the innovation phase if 
the function is linear. A condensed algorithm is given on 
Diagram 4. 

3.3 STATE SYSTEM CHOICE 
The purpose of the article is to make a proof of working. In 

this scope, referring to the Diagram 3, the different values to be 
assessed to describe the ruler motion are the input batch from 
the trajectory (𝑥𝐺 , 𝑦𝐺 , 𝛼, 𝐿). However, the model is using the
translation and rotation speed as intermediate variables. These 
speeds have been added into the state vector in order to have a 
smoother value. 
The other value needed to be assessed is the friction coefficient 
μ and the position of the virtual points L1 and L2. 
The motion equations are quickly complicating to a nonlinear 
form due to the intervention of sinus/cosinus for the 
intervention of α. Moreover the differential system is a coupled 
one, making an explicit solution impossible. All these points 
lead to choose the Unscented Kalman filter with a Runge-Kutta 
4 solving method. 

The adopted approach is to make an observation matrix 
simple and linear and transfer all the nonlinearities to the model 
function. 

The observation vector at discrete time i is 𝑍𝑖 = (𝑥𝐺𝑦𝐺𝐿𝛼 )
The state vector at discrete time i is: 

𝑋𝑖 =
( 
   
   
𝑥𝐺𝑦𝐺𝐿𝛼𝑉𝑥𝑉𝑦𝑉𝛼𝐿1𝐿2𝜇 ) 
   
   

The propagation matrix is linear and has the form: 

𝐻𝑖 = (1 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0) 
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4 SIMULATION RESULTS DISCUSSIONS & 
PERSPECTIVES

4.1 RESULTS 
In order to analyze the results correctly, some scenarios 

have been chosen (see Annex A). These scenarios have been 
selected in order to test the model varying the different input. 
One version with an important initial translation speed, a 
second one with an important initial rotation initial speed, and a 
third one with both. These variations are preponderant in the 
parameters identification because the parameters in the models 
are more or less enhanced depending on the type of movement 
simulated. 
The presented results were simulated directly from the original 
data used to generate the simulated video, which means the 
input data is not biased neither by the video generation nor the 
object tracking. 
The results are presented in the Annex B, C, and D. They have 
been generated using the same initialization covariance, but 
with initial conditions on position and speed close to real, that 
is less than 20% of error. However, the parameters to assess 
have the same set values in all the simulation: 0.05 for the 
friction forces and 0.25 m for the contact point distance. 
The results are very impressive for the observed values. The 
position, angle and size of the ruler are very precise and even 
more precise than the noisy information provided to the filter. 
The friction coefficient is always and quickly assessed with a 
static error of about 10%. The contact point distance is assessed 
but this is a very noisy signal. 

4.2 DATA COMPRESSION 
The term of compression used here has been chosen for 

characterising the initial video size/size of the different element 
needed to generate the video. 

Here, the video size is 132 MB because not compressed. In 
order to generate the video, the mechanical model (10 kB), the 
state vector matrix (7 kB), and a generator are needed (10 kB) 
with the background image and the object image which means 
about 3 MB for a HD quality image. 

Thus this compression ratio is 2-3% maximum. This is 
important to understand that here this is not the precision on the 
entire image which is expected, but on the tracked values in the 
state vector. 

4.3 IMAGE INTERPOLATION 
The approach of the image interpolation is totally different 

than image processing. Here, pixel based methods are not 
mentioned. The confidence is on the model, and the 
interpolated frames are generated regarding only the acquisition 
frequency: the model is following the nonlinear behavior of the 
object, thus the interpolated frames are as precise as the model 
precision. 

4.4 PREDICTION 
The ruler motion equations enable to know the stop 

position for each discrete step time. While the different 
parameters are converging towards the right value, the final 
position assessment is becoming more and more precise. Here, 
the contact position is not accurate enough to enable to have 
very precise results; however, the results showed on the Annex 
E shows that this is working and very faster (after 1-2s). The 
prediction principle is based on a control on the covariance 
parameters and a trigger to execute the ODE with estimated 
parameters. 

4.5 AUGMENTED REALITY 
For the moment, the implemented algorithm with the 

Unscented Kalman Filter is fast enough to enable a real time 
augmented reality displayed on the result (a 0.9s execution for a 
2s video with 50 frame/s). 

In order to represent the friction coefficient and the contact 
points, the friction forces has been added on the ruler video. 
The representation of the final position is another example of 
the different hidden information that becomes visual with this 
method. See Annex F for an example. 

4.6 DISCUSSIONS AND PERSPECTIVES 
This preliminary work on the subject raises more questions 

than it solved. The concept works, and more quantitative results 
are quickly expected. For the moment, the robustness of the 
algorithm has to be tested deeply: the initial values used could 
be 50% false or more. In the same way, the repeatability on 
different event has to be tested on a larger batch of scenario: the 
initialization of the filter is one of the most difficult part of the 
process. The experimental part of the work with the image 
processing block is expected soon in order to make a 
comparative study. 

5 CONCLUSION 
Nowadays, there is a large scale development of object 

recognition based on SURF or SIFT algorithm ( [23]) using a 
library containing the different signature of the object. This 
work could be linked with those developments, adding for each 
object a mechanical model describing the object behaviour, 
depending on its environment. The computer would recognize 
the object and know its potential dynamic behaviour.  
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ANNEX A

THE DIFFERENT SCENARIOS

Mu is the friction coefficient. 
L1 and L2 are the distance of the contact point with the center. 
m is the mass of the ruler. 
g is the earth acceleration constant. 
L is the ruler size. 
x0, y0, Alpha0, Vx0, Vy0, VAlpha0 are the initial conditions simulated by the ruler shot simulator. These initial 
conditions are x0 and y0 for the position of the gravity center of the ruler, Alpha0 for the angle of the ruler, and Vx0, Vy0 
and VAlpha0 the associated speed. 
The units are not mentioned because the values chosen would not be really realistic. But L,L1, L2 could be meters as x0 
y0, and Vx0 and Vy0 are m.s-1, Alpha0 is radian and VAlpha0 rad.s-1, m is kilogram, and g is m.s-2. Mu is a dry friction 
coefficient, so it has no dimension. 

ANNEX B

DIAGRAMS FROM SCENARIO 3

Simulation Name Version Mu L1 L2 m g L x0 y0 Alpha0 Vx0 Vy0 VAlpha0

Ruler 3 0,2 0,1 0,1 0 10 1 0 0 0 3 1 10

Ruler 4 0,3 0,1 0,1 0 10 1 0 0 0 1 1 10

Ruler 5 0,3 0,4 0,4 0 10 1 0 0 0 2 3 1
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ANNEX C

DIAGRAMS FROM SCENARIO 4

ANNEX D

DIAGRAMS FROM SCENARIO 5
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ANNEX E

PREDICTION EXAMPLE ON SCENARIO 3: 
VIDEO SNAPSHOTS AT THE TRIGGER OF THE FINAL POSITION AND ANOTHER AT THE FINALE 

POSITION

ANNEX F

AUGMENTED REALITY EXAMPLE: VIDEO SNAPSHOT FROM ESTIMATED SCENARIO 3

This annex shows the prediction from the Kalman filter in dashed blue, the simulated ruler in green, and the Estimated with 
the red edges. The two arrows are representing the friction forces on the contact points. 
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