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Qualitative Adaptive Reward Learning With Success
Failure Maps: Applied to Humanoid Robot Walking

John Nassour, Member, IEEE, Vincent Hugel, Member, IEEE, Fethi Ben Ouezdou, Member, IEEE,
and Gordon Cheng, Senior Member, IEEE

Abstract— In the human brain, rewards are encoded in a
flexible and adaptive way after each novel stimulus. Neurons of
the orbitofrontal cortex are the key reward structure of the brain.
Neurobiological studies show that the anterior cingulate cortex of
the brain is primarily responsible for avoiding repeated mistakes.
According to vigilance threshold, which denotes the tolerance
to risks, we can differentiate between a learning mechanism
that takes risks and one that averts risks. The tolerance to risk
plays an important role in such a learning mechanism. Results
have shown the differences in learning capacity between risk-
taking and risk-avert behaviors. These neurological properties
provide promising inspirations for robot learning based on
rewards. In this paper, we propose a learning mechanism that is
able to learn from negative and positive feedback with reward
coding adaptively. It is composed of two phases: evaluation and
decision making. In the evaluation phase, we use a Kohonen
self-organizing map technique to represent success and failure.
Decision making is based on an early warning mechanism that
enables avoiding repeating past mistakes. The behavior to risk is
modulated in order to gain experiences for success and for failure.
Success map is learned with adaptive reward that qualifies the
learned task in order to optimize the efficiency. Our approach is
presented with an implementation on the NAO humanoid robot,
controlled by a bioinspired neural controller based on a central
pattern generator. The learning system adapts the oscillation
frequency and the motor neuron gain in pitch and roll in order
to walk on flat and sloped terrain, and to switch between them.

Index Terms— Experience-based learning mechanism,
humanoid learning, humanoid robot walking, neurorobotics.

I. INTRODUCTION

IN THIS paper, we bring forward an approach to bet-
ter match biological models of brain-like mechanisms in

learning tasks. The key point presented here is the careful
combination of two usually isolated studies of two distinct
brain regions, namely, the anterior cingulate cortex (ACC) and
the orbitofrontal cortex (OFC). We draw upon these studies
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Fig. 1. Conceptual overview of our work. ACC is the interior cingulate
cortex. OFC is the orbitofrontal cortex. CPG is the central pattern generator.

in coming up with a functional and practical computational
model that has been applied to a physical humanoid robot.
Fig. 1 provides a conceptual overview of this paper. We have
addressed the development of a learning mechanism based
on the well-known self-organizing maps (SOMs). Walking
has been used as an example task, which follows from our
own previous neuronal-based studies on the central pattern
generator (CPG) of the spinal cord for pattern generation for
walking [1].

The adaptation property of the brain even with limited
dynamic coding range enables efficient processing of different
physical events such as locomotion [2]. The brain’s reward
system discriminates a diversity of possible rewards, which can
ensure the best conditions for survival. The OFC is related to
reward dealing in the brain. Damages to the OFC have shown
abnormal response to changes to reward contingencies [3].
Due to the sensitivity of neurons of this cortex and to the
types and the amount of rewards, OFC can be said to encode
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reward features into a scalar value [4]. Physiological studies
demonstrated the adaptivity of the OFC in coding the reward
according to the available rewards that changed in every block
of trials [5]. They show how the coding of reward in this cortex
can be affected by the changes in reward distribution [6]. This
supports the concept that the OFC adjusts rewards information
in a flexible and adaptive manner after each new stimulus [7].

Neurocognitive studies have identified an early warning
system in the human brain that can avoid making past mis-
takes. They have shown how the brain remembers details
about past dangers [8]. The ACC is activated during high-
risk decision [9], and also after making mistakes [10]. This
cortical area acts as an early warning system that adjusts
the behavior to avoid dangerous situations. It responds not
only to the sources of errors (external error feedback) but
also to the earliest sources of error information available
(internal error detection) [11]. It becomes active in propor-
tion to the occurrence of likelihood of an error [12], [13].
Therefore, it can learn to identify situations where humans
may make mistakes, and then help avoiding such situations
occurring again [10]. It learns to predict error likelihood
even for situations where no error occurred previously [14].
Through the observation of particular areas located in the
cerebral cortex in the brain responsible for cognitive control,
neuropsychological studies have demonstrated a switching in
human learning strategies around the age of 12 years. This
switch from learning with positive feedback to learning with
negative feedback probably comes from a combination of brain
maturing and experience [15]. It has been shown that the
decision of taking risk is accomplished by activities in ACC
and OFC [9]. Activity increases with failure likelihood and
also reward action likelihood. The fusion of the functionalities
of these two cortex areas in one mechanism gives raise to the
possibility of getting a task learning system that could predict
risky cases and avoid danger (e.g., learning to walk).

Computational models of learning systems such as tech-
niques based on the associative memory such as the CMAC
neural networks rely on offline trajectory generation. They
first learn the joints trajectory, and then generate the learned
trajectory [16]. They assume that the models of the robot and
the environment are available, and therefore a stable walking
pattern can be generated offline.

On the contrary, reinforcement learning techniques aim to
adjust the physical actions and motor skills. It allows to
the automatic determination of the ideal behavior within a
specific context, in order to maximize performance. Simple
reward feedback is required for the agent to learn its behavior
[17]. Robot bipedal locomotion research such as those by
Morimoto et al. [18] have improved biped walking controller
using an approximated Poincaré map based on reinforcement
learning. Their model controls the action between each two
single support states for 2-D five-link biped robot with a U-
shaped foot. Another study used CMAC as a multivariable
function to approximate the Q-factor in the Q-learning to learn
the foot placement for the front leg in order to walk with a
constant velocity [19]. Reinforcement learning is used also as
a subcontrol routine to compensate dynamic reactions of the
ground around the ZMP [20].

The main difference between this paper and the
above-mentioned works is the fact that we generalize learning
of different tasks over varying conditions. Our method is
motivated by the functions of ACC and OFC, which build on
past experiences without requiring a predefined model of the
environment. We propose a technique that works by learning
an action-value function to follow a fixed policy by optimizing
the energy of the task that keeps record of both positive and,
more importantly, negative action consequences.

In this way, we aim to produce an early warning mechanism
that can help avoid repeating past errors in the generation of
walking patterns of a humanoid robot. It is necessary for such
a mechanism to experience mistakes, as well as experience
success, in order to evaluate new situations before taking any
decision and performing the next action. The notion of reward
adaptation is introduced in order to qualify the walking task
in term of energy. The notion of adaptive vigilance threshold
is also introduced; the tolerance to risk is modulated to be
sure to have the same experience for success as for failure,
which makes the system converge. Selection with a qualitative
adaptive reward allows us to not only determine the state space
of parameters in the zone of success but also to optimize the
learned task. It is used to adapt the intrinsic parameters of a
low level controller based on a CPG for walking on flat and
sloped terrains. Experimental validation was conducted on a
NAO humanoid robot [21].

The motivation of this paper is to put forward better models
based on biologically plausible mechanisms [22]. This may or
may not agree with all members of the research community,
but this is the general direction of our research. In this paper,
we highlight the importance of the different brain mechanisms
and how they have been able to influence the development of
real robotic control. To further carry this paper forward, we
have to match the functions of the mechanisms to additional
brain studies [e.g., functional nuclear magnetic resonance
(FMRI) studies].

The rest of this paper is structured as follows. Section II
presents the principles of our learning mechanism in detail,
and then introduces the concept of vigilance. The interest of
adapting vigilance is presented. The concept of qualitative
adaptive reward is described. Section III details a biologically
inspired neural controller for locomotion based on CPG. Three
intrinsic parameters of this low level controller are studied
by the proposed learning mechanism. In Section IV, we
apply the proposed method on a humanoid robot in order to
make it learn to walk on flat terrain. Learning to walk on
sloped terrain is presented in Section V, where we focus on
switching between different sloped terrains based on past expe-
riences and sensory feedback. Finally, conclusions are given in
Section VII.

II. SUCCESS–FAILURE LEARNING

The objectives of this learning mechanism are adapting
the parameters of a low-level controller and detecting their
domain of viability. We designate by � the state space
of those influential parameters. The mechanism must be
able to learn from negative feedback (failure) and positive
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Fig. 2. Success–failure learning mechanism with evaluation and decision
phases.

feedback (success). Therefore it must have experience of
success and experience of failure in the state space �. As each
action vector −→v from � leads to either success or failure,
the mechanism will evaluate whether this vector belongs to
a success case or to a failure case. The decision mechanism
“go” or “no-go” described in [23] works as an early warning
system similar to that in the ACC [10], [14]. The learning
architecture is then based on these two mechanisms, and works
as shown in Fig. 2.

A. Success–Failure Evaluation

To represent the knowledge in success and in failure,
we define two independent neural networks which are the
well-known SOMs proposed by Kohonen [24]. SOMs are
widely used for classification and for visualization of high-
dimensional data [25]–[27]. Success map Sm learns in case
of success trials, and failure map Fm learns in case of failure
trials. During the learning, the two maps will be self-organized
in the state space which will be therefore divided into three
zones: 1) a zone of success represented by success map; 2) a
zone of failure represented by failure map; and 3) a zone of
conflict that corresponds to the overlap between the two maps.
The evaluation of any vector −→v from space � belonging to
success or failure is defined by the distance between −→v and
each map. The distance of a vector with a map is the minimal
Euclidean norm between this vector and the closest neuron’s
weights vector in the state space (the winning neuron). For
each −→v we have therefore two distances: one to Sm called ds ,
and another to Fm called d f . ds and d f are then used for the
decision process.

B. Decision Mechanism

For a vector −→v , the comparison between the distance ds

with the success map and the distance d f with the failure map
leads to an expected result in the case where the vector was
passed to the low-level controller (trial). According to expected
results, if it may lead to failure, then an early warning signal
(EWS) becomes active to avoid passing into the lower level,
and the decision will be “no-go.” When the EWS is inactive,

the decision is “go.” The decision mechanism is affected by
the threshold of vigilance svig, which will be detailed later.

C. Learning Algorithm

Success and failure maps represent the knowledge in success
and in failure inside the state space. Maps will be initialized
in the state space �. Then we take one vector −→v randomly
from this space. In the phase of evaluation, we calculate the
distance between this vector and all the neurons of both maps.
In (1),

−→
d i

s is the distance between −→v and the i th neuron in
the success map, −→w i

s is the weight vector of this neuron,
−→
d i

f
is the distance between −→v and the i th neuron in the failure
map, and −→w i

f is the weight vector of this neuron. For each
map, the winner neuron corresponds to the smallest distance
to the vector.

In the decision phase, we compare ds with d f , by taking
into account the threshold of vigilance svig (see Section II-D),
which represents the tolerance to risks. If the threshold is
higher than the difference between the distance to failure map
and the distance to success map, the EWS becomes active;
otherwise, this signal is inactive, see (3).

The activation of the EWS indicates that −→v will lead
to failure if it is passed into the lower level. As maps
are in the learning phase, it is possible that vector −→v can
activate the EWS at a time and inactivate it at another time,
because the distances with the neurons changes. A decision of
“no-go” corresponds to an active EWS, and a decision of “go”
corresponds to an inactive EWS. In the case where decision
is “no-go,” we take another vector −→v randomly from �, and
then look for the expected results by evaluation and decision
phases as detailed before. In case where the decision is go
(−→v may lead to success), the vector will be passed into the
low-level controller to run a trial. There is a reward R for each
trial, either negative (failure) or positive (success). Only one
map learns −→v . If the reward is negative, the failure map learns,
and, if it is positive, the success map learns. Next, other vectors
are randomly taken from � and the same steps are executed
until the convergence of the maps. The convergence of the
map occurs when any new vector −→v will not cause a marked
displacement of the neurons of this map in the parameter
space. The displacement can be represented by the sum of
squared-weight changes for all the neurons of the map.

The following steps summarize the learning process:

1) ∀ (Sm , Fm) ∈ �
2) ∀ −→v ∈ �

a) Evaluation:
the distances to the neurons of the two maps{ −→

d i
s = −−→w i

s + −→v−→
d i

f = −−→w i
f + −→v (1)

the distances to the winners neurons of the two
maps {

ds = min ‖ −→
d i

s ‖
d f = min ‖ −→

d i
f ‖ (2)
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b) Decision:

EW S =
{

0 (go), if(d f − ds) > svig
1 (no-go), otherwise

(3)

3) if (no-go) go to 2
else if (go) test −→v , and get a reward R

if (R: positive) learn Sm ,
else if (R: negative) learn Fm ,
go to 2.

In success–failure learning, the objective is to determine
the cloud of success in the state space. Success map can do
this only by scanning all the space or by exploring the space
around the successful trials. The first solution is eliminated
because the number of trials needed for scanning all the state
space is huge. Failure map makes learning faster, because it
avoids testing not only previously failed tested trials but also
their surrounding areas. Even the training vector is randomly
selected but the decision phase will reject it before the trial if
it is incorporated into the failure map area. As the state space
is continuous, the vector will not be repeated; otherwise it will
be needed to make precise the “accuracy” with which we can
judge that there is repetition for a previously tested vector.

D. Concept of Vigilance

Psychological research suggests that some people are
more tolerant to risk than others who are more cautious
[28]–[30]. Vigilance is related to human learning in connection
with decision making [31]. In the standard psychological
assessment of risk taking, people are classified as risk-seeking
or risk-averse [32].

In this paper, for robot tasks learning by success and failure
maps, we introduced the concept of vigilance in order to
control the learning process in the two maps (success and
failure) and manage the learning cycle while avoiding or taking
risks according to the system’s needs.

The vigilance is represented by a threshold svig that is used
to adjust the EWS in the decision mechanism. This threshold
describes the tolerance of risk (see Fig. 2). By definition, the
threshold of vigilance is the allowed margin of difference
between the distances of state space vector −→v with failure
map (d f ) and with success map (ds), for which the decision
mechanism still responds with “go” [see (3)]. The threshold
has a limited value according to the dimensions of the state
space. As learning occurs inside a unit space [e.g., in a 2-D
state space, as in Fig. 3(a)], the maximum difference between
d f and ds is equal to the diameter of the unit space [

√
2 in

Fig. 3(a)], which corresponds to all −→w i
s in a corner and all−→w i

f in the opposite corner in the unit space, and −→v is close to−→w i
s . The minimum difference between d f and ds corresponds

to −→w i
s for all success map neurons in a corner, and −→w i

f for all
failure map neurons and the randomly selected vector −→v in
the opposite corner. Therefore, the vigilance threshold svig ∈
[−√

2,+√
2] in the 2-D unit space, and svig ∈ [−√

3,+√
3]

in the 3-D unit space. Therefore, as we move toward positive
values of the threshold, the decision mechanism becomes more
alert to risk (cautious). In the opposite, it has a tendency to

(a)

(b)

Fig. 3. (a) Distance to the neurons winner of success and failure maps.
(b) Tolerance to risk.

take risks (courageous) [see Fig. 3(b), where D is the diameter
of the space].

For instance, let us suppose that svig = 0.1, ds = 0.3, and
d f = 0.35. According to (3), the EWS becomes active, −→v
will be rejected, another vector will be selected, and then
the distances between the two maps will be measured. The
randomly selected vector will then be tested on the robot when
EWS is inactive.

E. Vigilance Adaptation

Studies show that humans reduce the probability of sam-
pling alternatives with poor past outcomes when learning
from experience [33], [34]. They show how adaptive sampling
could lead to risk-averse as well as risk-seeking behaviors.
Risk tendency may change according to the distribution of
the uncertain alternatives and the information about foregone
payoffs.

According to the vigilance threshold of success–failure
learning, the system can be risky or cautious during learning.
Fig. 4(a) shows the successful trial ratio for learning stages
with different vigilance thresholds [35]. Learning occurred in
the 2-D parameter space of a sensorimotor walking controller
[36]. The first, α, denotes the dynamics of rhythmic movement
in the hip joint (dynamics of extensor sensor neuron), while
the second, θ , represents the amplitude of this movement
(amplitude in the activity of extensor sensor neurons). It is
to be noted that for a vigilance threshold svig = 0.05, and
after 500 trials, there is 98% success and only 2% failure. As
a result, only the success map converges. The area occupied by
the success map with cautious behavior will be much smaller
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Fig. 4. Success and failure maps after learning on flat terrain with vigilance
threshold svig = 0.05 (right) and svig = −0.2 (left). (a) Rate of succeeded
trials as a function of the vigilance threshold. (b) Success map (svig = −0.2).
(c) Success map (svig = 0.05). (d) Failure map (svig = −0.2). (e) Failure
map (svig = 0.05).

than the area occupied by the success map with more risky
behavior in term of vigilance threshold, see Fig. 4(c) and (b).
On the other hand, with a vigilance threshold svig = 0.05
and the system avoiding risk, the failure map was not able
to self-organize in the parameter space �, largely due to
the lack in the number of failed trials, as the input vectors
were not sufficient for learning, Fig. 4(e). On the contrary,
as shown in Fig. 4(d) about taking risks, the rate of failure is
more than 70%. With a smaller vigilance threshold, the system
takes risks considerably, and the decision mechanism tends to
accept all proposed vectors from � to be tested on the robot.
Otherwise, no more selection occurs on the proposed pattern,
which justifies the saturation on the left side in Fig. 4(a).

Therefore it is important to modulate the vigilance threshold
to ensure success and failure maps learn together, converge,
and avoid the saturation areas in Fig. 4(a).

For instance, the number of successful and failed trials can
be used to influence risk-taking and risk-avoiding behaviors.
Increasing the current vigilance threshold if the number of
failed trials is greater than the number of successful trials
will lead the system to risk-avoiding behavior. Decreasing that

threshold if the number of failed trials is smaller than that for
succeeded trials will lead to risk-taking behavior.

F. Qualitative Adaptive Reward Learning (QARL)

In the proposed success–failure learning, the success map
learns all successful trials with the same importance. However,
successful trials can be qualified differently according to a
desirable criterion. The objective is to influence learning by
the trial quality. This can be done by introducing the quality
of trial as a weighted reward into the map. Each trial will have
its own weighted reward representing the objective criterion
to be optimized. During each learning step, neurons will get
closer to trials with high rewards rather than to trials with low
rewards. After enough number of trials, this will result in a
shift of the map into a spatial area associated with the highest
rewards.

The quality of a trial η(k) is expressed as a number ranging
from ηmin to ηmax. However, this range cannot be determined
at the beginning of learning. This is because no previous
experience, neither for success nor for failure, is available at
the beginning.

Most reinforcement-learning-based robotic walking studies
use predefined constants to determine the maximum and the
minimum reward or to determine the multiplier factors [37],
[38]. In their definition of the reward function, maximum and
minimum values are used to normalize the rewards [37]. These
parameters represent the minimum and maximum score for
walking speed and for the zero moment point, which cannot
be estimated without extensive experiments on the robot [37].
One of the challenges is to adjust these parameters automat-
ically and adapt them by learning. Therefore, adaptation is
needed to redetermine the range limits ηmin to ηmax after
each trial. Let us denote the input data by a n-dimensional
vector v(k) = [ζ1(k), ζ2(k), . . . , ζn(k)]. Here, k is the index
of input data in a trial sequence. Let weights vector for the i th
neuron in the map be wi (k) = [μi1(k), μi2(k), . . . , μin(k)],
where k denotes the index in the sequence in which the
neurons are generated. The updated weights vector wi (k + 1)
is calculated as

wi (k + 1) = wi (k) + γ (k).hci(k).ρ(k).[v(k) − wi (k)] (4)

where γ (k) is the learning rate which is a scalar factor that
defines the size of the correction. Its value decreases with the
step index k. The index i refers to the neuron under processing,
and c is the index of the neuron winner [that has the smallest
distance from the input vector v(k)].

The factor hci(k) is the neighborhood function. It is equal
to 1 when i = c and its value decreases when the distance
between the neuron wi and wc increases (e.g., one choice for
a neighborhood function is to use a Gaussian kernel around
the winning neuron).

The factor ρ(k) denotes the qualitative adaptive reward of
v(k) which is computed iteratively as

ρ(k) =
{

ρmax k = 0
ρmax−ρmin
ηmax−ηmin

(η(k) − ηmin) + ρmin k > 0 (5)
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Fig. 5. Flow diagram for success–failure learning with the vigilance
adaptation concept and qualitative adaptive reward.

where ⎧⎨
⎩

η(k) = F(v(k))
ηmax = max(η(k = 0, . . . , K ))
ηmin = min(η(k = 0, . . . , K )).

(6)

The function F allows us to obtain the criterion η(k) for
the trial that corresponds to v(k). For instance, for a bowling
robotic arm, η(k) can denote the efficiency of the throw by
combining the obtained result and the energy spent by the
actuators. K is the index of the current trial. Maximal and
minimal rewards ρmin and ρmax are predefined from the trainer.

When the success map learns after the first successful trial,
the reward will be maximal. After the second successful trial,
the trial with highest quality will match the maximal reward,
and the trial with the lowest quality will match the minimal
reward. A scaling between maximal and minimal rewards will
occur for any new successful trial. A trial that matched a high
reward at the start of learning phase could match a low reward
at the end of learning.

By introducing the concept of QARL, it will be possible to
scale the quality of a trial according to the quality in previous
experiences even when starting from scratch. After learning,
the optimal parameter is presented by the success map neuron
that is close to the trial with maximum reward in training set.
The general diagram of the proposed technique is presented
in Fig. 5.

The SOM has been employed as a clustering technique
because it guarantees safe switching between two different
behaviors, e.g., some neurons can match highly efficient
walking patterns, while others can match patterns with high
walking velocity. Intermediary neurons are in charge of such
a switching. This can also play a role in having not only
one solution for the walking problem but also other possible
solutions.

Compared to a k-nearest neighbor algorithm, where an
object is classified by a majority vote of its neighbors,
this method can be used to calculate the minimum distance
between the tentative input v and each map. SOM is employed
in success–failure not only to judge the candidate samples
but also to represent all tested samples according to their
efficiencies.

While K -means clustering is able to classify success and
failure and separate them, it is unable to quantify the success
because cluster centers do not necessarily match the higher
efficiency of the learned task.

The proposed algorithm can be regarded as a policy search
method. Different search methods have been proposed previ-
ously for reinforcement learning on autonomous robot con-
trollers [39], [40]. Policy gradient method is one of the most
accepted approaches. It was widely used in robotics and in
walking controller [37], [38]. Policy gradient reinforcement
learning (PGRL) is an optimization technique that guarantees
the convergence to at least a local optimum, unlike the other
RL search methods. The convergence to a global optimum
cannot be guaranteed unless starting with the right initial
condition; this limits the flexibility of this method as such
a dependency cannot be established easily.

Due to the random samplings before the decision phase and
due to the vigilance adaptation technique, QARL can guaran-
tee the convergence to all successful clusters in the state space.
In addition, the use of SOM helps in representing the success-
ful clusters although they are separated in the state space.

Evolutionary computation methods are widely used in
robotics for parameter optimization. The common method of
evolutionary computation is genetic algorithms (GAs) [41] that
generate solutions to optimization problems using techniques
inspired by natural evolution [42]. They are more likely to
converge toward a global optimum than PGRL techniques;
furthermore, they can solve problems with multiple solutions.
However, they have limitations in robotic applications where
researchers are interested in the way to get the solution rather
than the solution itself in order to build auto-adaptive and
autonomous robots. GAs can provide the solution provided
that the fitness function is well described beforehand. In
QARL, we are interested in the way to the solution in order to
build an auto-adaptive algorithm that can adjust the controller
parameters in dealing with environmental changes.

As it is based on learning from success and failure trials, the
proposed method (QARL) can be considered as a RL method.
In other RL methods, both negative and positive rewards
can be used, and the difference of the efficiency among the
successful cases can also be considered. However, there is an
essential difference between the proposed method and other
RL methods much like a kind of multiarmed bandit (MAB)
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problem. In the MAB problem, an arm can lead to success
with some trials and to failure with others trials. MAB is
based on the success probability in the building of its prior
tree. In QARL, learning and sampling occur in continuous
space. Therefore the number of samples for trials is unlimited
(not only multiarms). Unlike classical MAB that has stochastic
property, in our method a trial that leads to success will never
lead to failure, even if it is tested again; and a trial that leads
to failure will never lead to success.

When applying an RL algorithm with continuous space,
a neural network, such as a multilayer perceptron (MLP),
is usually used as a function approximator. Although MLP
can distinguish data that are not linearly separable, which is
the case between regions of success and region of failure,
MLP will not be able to determine success matches with high
efficiency from any other region. This qualitative approach is
one of the QARL principles.

The concept of qualitative adaptive reward with success–
failure learning will be applied to humanoid robots. The
humanoid NAO robotic platform is used in our experiments.
Based on QARL, the robot learns to walk on flat terrain and
constructs the experience for success and for failure. Then,
learning to walk on sloped terrain will be presented, and
the robot will construct its experiences in walking on sloped
terrain. The objective is to achieve success–failure learning in
a space of intrinsic parameters of a low-level controller for
locomotion.

III. BIOINSPIRED NEURAL CONTROL FOR LOCOMOTION

Biological evidence suggests that locomotion is mainly
generated at the spinal cord, by a combination of a
CPG and reflexes receiving adjustment signals from the
brain, particularly from the cerebrum and the cerebellum
[43]–[45]. Locomotion is the result of the dynamic interaction
between the CPG and the connected feedback mechanisms.
It has been shown that the CPG is able to generate basic
locomotor patterns according to the descending pathways that
can control the locomotion tasks [46]. The feedback that
dynamically adapts the locomotor pattern to the environment
originates from muscles and skin afferents, as well as from
the basic senses (vision, audition, vestibular). The CPG is a
neural mechanism that can produce rhythmic patterned outputs
without rhythmic sensory or central inputs [47], [48]. It can
generate periodic motor commands for rhythmic movements
such as locomotion [49]. Studies also have shown that the
CPGs are localized in the lower thoracic and lumbar regions of
the spinal cord [50]. These aforementioned studies have been
taken into account in the designing of the robot’s locomotion
gait in order to realize a mechanism for robust locomotion,
especially on legged robots [38], [51]–[54]. Different models
of neural oscillators are widely used to generate rhythmic
motion [55]–[59]. Such oscillations generated by two mutually
inhibiting neurons are described by a set of differential equa-
tions (e.g., a Matsuoka oscillator [55]). Rowat and Selverston’s
[60] model of rhythmic neuron can generate different types of
patterns, not only oscillatory ones. The membrane currents of
the neuron in this model are separated into two classes, fast and

(a) (b)

Fig. 6. Model of one joint controller and its motion patterns. (a) Model’s
scheme. CPG with three levels: rhythm generator, pattern formation, and
motor neuron level. (b) Different intrinsic behaviors observed on a joint
according to parameters of rhythmic neuron (σs , σ f ): quiescence (Qui), almost
an oscillator (A-Osc), oscillator (Osc), and plateau (Pl).

slow, in accordance with their time responses. The sum of all
fast currents is modeled by a single fast signal, and a single
slow current is used to model the sum of all slow signals.
This model has two differential equations: one for membrane
potential V , derived from current’s conservation; and one for
lumped slow current q , derived from current’s activation, as

τm .
dV

dt
= −(fast(V , σ f ) + q − iinj ) (7)

τs .
dq

dt
= −q + q∞(V ) (8)

where τm is the membrane time constant for the fast current,
and τs is the time constant for the slow current. The ratio of
τs to τm is about 20 as in [60]. In this paper, τm = 0.05,
and τs = 1 for all rhythmic neurons. The injected current is
iinj . An idealized current–voltage curve for the lumped fast
current is given by fast(V , σ f ) = V − A f .tanh((σ f /A f )V ).
A f is the width of the N-shape in the fast current–voltage
curve. The fast current can represent the sum of a leak current
and an inward Ca++. The dimensionless shape parameter for
current–voltage curve is given by σ f = (gCa/gL). gL is a
leak conductance and gCa is the calcium conductance. q∞(V )
is the steady-state value of the lumped slow current, which
is given by q∞(V ) = σs(V − Es). q∞(V ) is linear in V
with a reversal potential Es . σs is the potassium conduc-
tance gK normalized to gL . σs is given by σs = (gK /gL).
q and iinj have the dimension of an electrical potential. A
true current is obtained by multiplying the model current by a
leak conductance gL . V, Es , iinj, and q are given in millivolts
while τs and τ f are expressed in milliseconds. With different
values of the modeling parameters, different intrinsic behaviors
can be achieved: quiescence, almost an oscillator, endogenous
oscillator, depolarization, hyperpolarization, and plateau. In
this paper, as we are interested in bipedal walking, which is
periodic, only oscillatory patterns will be used, but different
behaviors in the activity of these neurons can be used in robot’s
locomotion to achieve different locomotion tasks such as
asymmetrical gaits. Fig. 6(a) shows the wiring diagram for one
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Fig. 7. Coupling circuitry between rhythm generator neurons. F stands for
flexion neuron and E for extension neuron. RS-P and LS-P are right and left
pitch shoulder rhythmic neurons. LH-P and LH-R are pitch and roll rhythmic
neurons for the left hip.

robot’s joint. It can be separated into three layers: 1) rhythm
generation neurons (RG); 2) pattern formation neurons (PF);
and 3) motor neurons (MN). Sensory feedback shapes the
activity of these neurons. In the analytical study, after observ-
ing the phase relationship of a joint while altering σs and σ f in
the rhythm generator neurons, different motion behaviors were
observed at the joint. Fig. 6(b) shows the distribution of motion
patterns in space of σs and σ f . Varying σs and σ f in the RG of
a joint will change its motion pattern. The four detected basic
motion patterns can lead the robot to achieve some complex
movements depending on synaptic circuits between joint CPGs
[1]. Walking gaits can be composed from basic synchronized
patterns. The synchronization between patterns is ensured by
coupling the joints’ CPGs. Fig. 7 shows the proposed coupling
circuits between the rhythm generator neurons for the hip pitch
and roll, the knee pitch, and the ankle pitch and roll, and the
shoulder pitch joints of a NAO humanoid robot. With such
simple coupling, the robot can carry out walking task from
basic oscillatory patterns. With different coupling circuits,
another task can be achieved. The principle of our proposed
circuit for walking is described by the activity between the
CPGs, which is regulated by excitatory synaptic connections
[see Fig. 7]. For example, the RG neuron extensor in the left
hip pitch (LH-P E) excites the RG neuron flexor in the right
hip pitch (RH-P F), and inhibits the RG neuron extensor in
the left hip roll (LH-R E) and the RG neuron extensor in the
left shoulder pitch (LS-P E).

IV. LEARNING TO WALK

In this section, we apply the architecture proposed in the
previous sections, as conceptually presented in Fig. 1, in order
to learn efficient walking for a bipedal humanoid robot, i.e.,
NAO.

A. Walking Efficiency

We used success–failure learning with QARL to learn in a
space of intrinsic parameters of the CPG controller (motor

neuron gain in pitch, motor neuron gain in roll, and the
dynamics of rhythmic generator neurons represented by σs ).
The optimization of walking efficiency was studied in term of
energy as in [61].

Most of biomechanics studies on human movement focus on
the efficiency of movement [61]. During flexion and extension
of the joints, muscles release and absorb mechanical energy.
When a muscle is exerting an active force and is being
lengthened by external forces at the same time, the mechanical
energy is absorbed, and muscle is said to do negative work. It
is said to do positive work when the muscle is shortening as it
develops a force. The efficiency with which a muscle operates
is defined in [61] by

efficiency = mechanical work done

metabolic energy consumed
(9)

where the mechanical work done on the muscle is considered
as negative, while that done by the muscle is positive. The
metabolic energy consumed by a muscle is generally defined
as the entirety of its chemical processes [62]. This paper is
also generalized from a muscle to whole body movements
like walking and running [63], [64].

Inspired by biomechanical studies, the efficiency of walking
for a humanoid robot can be described in a similar fashion. In
this case, the mechanical work done is the robot’s displacement
energy during walking while the metabolic energy consumed
can be represented by the energy consumed by actuators as
in (9).

B. QARL in Humanoid Walking

Our objective is to simultaneously learn and optimize walk-
ing. The robot learns to walk a 1.5-m trajectory with start
and end lines. In case of successful trials, the trainer sends
a reward signal to the robot by caressing the head equipped
with electrostatic sensors. Electric power is calculated at each
instant as

P(t) =
n∑

i=1

Ri .I
2
i (10)

where n is the number of electric motors. Ii and Ri are the
electric current and the electric resistance for motor number i .
The required electric Ee energy for all the trajectory is
expressed as

Ee =
∫ T

t=t0
P(t).dt (11)

where t0 is the trial start time, and T is the trial end time, i.e.,
when the robot reaches the finish line. The kinetic energy of
a trial is given by {

Ek = 1
2 .m.v2

a

va = �d
�t

(12)

where va is the average velocity for the entire trajectory, �d is
the trajectory length, �t is the time difference between start
and end of a trial, and m is the robot’s mass. The walking
efficiency is calculated for each trial as

η = Ek

Ee
. (13)
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(a) (b) (c) (d)

Fig. 8. Successful trials’ reward related to walking efficiency for learning success map. w1 is motor neuron gain in pitch, w2 is motor neuron gain in roll,
and w3 is σs which is related to the oscillation frequency. (a) Reward after fourth success. (b) Reward after 50 trials. (c) Reward after 150 trials. (d) Reward
after 500 trials.

The introduction of the efficiency for success map learning
will shift the neurons of this map into the area in which
the walking efficiency is high. This is done by using the
concept of QARL. Fig. 8 shows the QARL for success map in
the beginning of learning (after four successful trials) and at
the end of learning. Each sphere corresponds to a successful
trial whose diameter represents the reward of this trial in the
success map. It is to be noticed that the trial corresponding
to the maximum reward at the start of learning, indicated by
a circle, will have a small reward at the end of learning.
The interest of using this technique is to make success–
failure learning search for new trials in the space area where
walking efficiency in term of energy is high. In other words,
this leads to learn and optimize in a defined space. Fig. 9
shows success maps after learning to walk on flat terrain with
and without the technique of qualitative adaptive reward. In
Fig. 9(a), the success map learns all successful trials with the
same opportunity, i.e., with the same reward. In Fig. 9(b),
the success map learns successful trials in accordance with
their qualitative adaptive rewards. Trials with high reward
influence success map neurons more than trials with low
reward. Therefore, the success map will be attracted to the area
where the reward is high. This is influenced by the differences
between highest and lowest rewards (scaling range limits:
[ρmin, ρmax]), see (5). In this paper, ρmin and ρmax are set to 0.1
and 2.5. The application of QARL influences the success map
neurons to match more efficient patterns in the studied space.
Some walking patterns represented by success map neurons
learned without QARL show less efficient walking. These
effects were reduced when QARL was applied. Regarding
the learning frameworks with and without the application of
QARL shown in Fig. 9, performance was increased by 60%
after applying QARL. This was calculated by the ratio of
the highest efficiency neurons in both success maps (with
and without QARL). The ratio of the lowest efficiency of the
neurons of success maps has increased by 40%. In order to
provide sufficient precision in the network for our task, we
have empirically selected a 5 × 5 × 5 dimensional network
space to represent the success and failure maps. Learning
occurred with 500 trials for each case. Without applying the

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

w
1

w
2

w
3

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

w
1

w
2

w
3

(a) (b)

Fig. 9. Effect of QARL on success map. (a) Success map after learning with
the same reward for all successful trials. (b) Success map after learning with
adaptive reward. Gray spots represent successful trials reward. Note that the
map on the right moves into the area where rewards are high (representing
high efficiency).

auto-adjustable vigilance technique, the number of successful
trials has increased 16% after applying QARL. Computa-
tionally, all the processing of this learning framework in
simulations as well as on the real robot can be performed in
real time, thus making our approach feasible for training on the
real robot. Within the same cycle, joint angle commands are
calculated in real time and sent to joint motor circuit boards
of NAO every 10 ms. This is done inside a high-priority
thread on the robot. Physically, each trial requires about 3
min, which includes learning and the experimental setup. A
complete learning session in the robot usually takes about one
week.

Both learning frameworks shown in Fig. 9 start from
scratch. After 200 trials, we noticed that the rate of success to
failure when applying QARL is higher than without it. How-
ever, the rate of success can be increased by controlling the
threshold of vigilance. This is the objective of the next section.

C. Adaptive Vigilance in Humanoid Walking

The vigilance threshold is auto-adjusted in order to have
the same experience for success as for failure according to
Algorithm 1.
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Algorithm 1 Vigilance Adaptation
∀Svig ∈ [−D,+D] (initialization)
if (Ns > N f ) then take risks : Svig = Svig − step
elseif(Ns < N f ) then avoid risks : Svig = Svig + step
else no change
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Fig. 10. Success to failure ratio with and without adaptive vigilance in
learning to walk on flat terrain.

Here, Ns and N f denote the number of successful and failed
trials, respectively. step describes the change of vigilance
threshold to have a desired behavior for risks. It is defined
by training, step = 0.01 in this paper. D is the diameter of
the space (D = √

3 in the 3-D unit space).
When the success to failure ratio is always less than 1,

the threshold of vigilance will gradually increase until a new
threshold value that leads to EWS activity for all randomly
generated vectors (in our experiment after 1000 samples have
been rejected sequentially), i.e., no more vectors can realize
the condition in the decision making phase when applied
on the robot. As a consequence, the threshold of vigilance
decreases a step, and then starts the search with random vectors
in the space. Decreasing Svig will find executable samples in
the space that can be applied on the robot to achieve a trial.

Fig. 10 shows the rate of success and the rate of failure
in learning to walk on flat terrain with and without vigilance
adaptation. It is to be noted that the success to failure ratio
Ns/N f shows unpredicted changes in the beginning of learn-
ing. After 100 learning trials, due to the vigilance threshold
adaptation this ratio stays around 1, which contributes to
the convergence of the success and failure maps. In case of
nonadaptive vigilance, Svig was fixed experimentally to −0.15,
and the ratio stabilizes at 0.65. Adapting the vigilance ensures
the same size of training sets to learn success map and failure
map, because both maps have the same number of neurons
(clusters).

V. LEARNING TO WALK ON SLOPED TERRAIN

In this paper, the transfer of learning between different
walking situations is not addressed. We assume that there
is a success map and a failure map for each situation. Two
stages of learning have been implemented on 10° upward slope
and 10° downward slope. For each condition, learning starts
from scratch. Vigilance adaptation and QARL concepts are
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Fig. 11. Success map after learning with reward on sloped terrain. (a) 10°
downward slope. (b) 10° upward slope.
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Fig. 12. Success to failure ratio with and without adaptive vigilance in
learning to walk on 10° upward slope.

used. The initial angular positions have the same values for
all learning stages. Only the ankle pitch joint is initialized
from stance position in order to keep the torso pitch around
10° vertically during walking.

Fig. 11 shows success maps after learning to walk downhill
on the left, and uphill on the right. The two maps and the
map responsible for walking on flat terrain [Fig. 9(b)] occupy
different areas in the learning space. It is to be noted that the
success map for walking downhill occupies a greater area in
the state space than the area occupied by the success map for
walking uphill. However, that difference in size does not mean
the result is much better; it is mostly related to the complexity
of the task (e.g., walking uphill being more difficult than
walking downhill, the pattern space for uphill condition is
smaller than the pattern space for the downhill condition).

Fig. 12 shows the rate of success and the rate of failure in
learning to walk on inclined uphill terrain with and without
vigilance adaptation.

A. Vigilance Adaptation

Vigilance is auto-adjusted in order to have the same expe-
rience for success as for failure (Ns = N f ). This ensures
that each map has enough data for training. In case of fixed
vigilance Svig = −0.15, the ratio stabilizes around 0.1. This
leads only the failure map to converge unlike the success map.
The difference between this steady value and that with walking
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Fig. 13. Walking on different sloped terrains. Switching occurs between
success map neurons in order to adapt to the new situation. (a) Torso pitch
angle during walking from flat ground to upward slope, with and without
the switching. (b) Walking from flat ground to upward slope with switching
between success maps neurons. (c) Torso pitch angle during walking from
downward slope to flat ground, with and without switching. (d) Walking from
downward slope to flat ground with switching between success maps neurons.

on flat terrain proves that learning to walk uphill is more
difficult than learning to walk on flat ground. To guarantee
success map convergence without vigilance adaptation, too
many learning trials are needed. Therefore this delays the
convergence. Due to the vigilance adaptation, this ratio looks
moving toward 1, and even some more learning trials are
needed to reach the wanted ratio. A current development in
the proposed algorithm for vigilance adaptation will lead to
improvement in the convergence speed of success to failure
ratio into the desired value.

VI. SWITCHING BETWEEN DIFFERENT SLOPED

TERRAINS—EXPLOITING LEARNED EXPERIENCES

This part shows how to walk on different terrain slopes
and to switch between them, by exploiting previously learned

experiences. Inertial sensors are used to detect the change
of terrain slope during walking. When detection occurs, the
walking pattern switches from a success map related to the
walk on previous terrain slope to a success map related to
the walk on the new terrain slope.

The inertial sensor is also used to adjust the center of
oscillation of ankle joints in order to keep the robot torso
close to the vertical with a small inclination in the walking
direction. For the NAO robot, we keep this angle close to 10°
with the vertical direction.

Fig. 13(a) shows torso pitch angle during the walk on dif-
ferent slopes, switching from flat ground to an uphill inclined
terrain. Without using this technique the robot falls (indicated
by the dashed line). As a compensation technique, switching
occurs between a neuron in the success map responsible for
walking on flat terrain into a neuron of another success map
responsible for walking on inclined terrain. Therefore, the
robot succeeds to continue walking on the new uphill terrain.
Fig. 13(c) shows the torso pitch angle during switching from
downhill to flat terrain. When the torso pitch angle reaches
a predefined threshold, switching occurs gradually between a
neuron of success map responsible for walking on downhill
and a neuron of success map responsible for walking on
flat terrain. Fig. 13(b) and (d) shows snapshots of a NAO
humanoid robot achieving the walking task on different terrain
slopes and switching between them (a video is available on:
http://web.ics.ei.tum.de/ nassour/naowalking.wmv.).

VII. CONCLUSION

This paper proposed a neurobiological-inspired learning
algorithm. The notion of qualitative adaptive reward was intro-
duced in order to simultaneously learn and optimize the task.
The objectives of the mechanism were to learn from mistakes
and to avoid making them again. This was done by building
on experiences of past mistakes and successes. We showed
how these two experiences could build themselves through
the stages of evaluation, decision, and then trials. Learning
successful trials with reward related to walking efficiency
makes success map match trials where the efficiency is high.
The adaptive vigilance technique allows having an experience
to success as to failure. It can be said that the negative
reward is as important as positive reward. This mechanism
was implemented and validated on an NAO humanoid robot,
which allowed it to learn to walk on flat ground as well as
sloped terrain.
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