
HAL Id: hal-01723827
https://univ-tln.hal.science/hal-01723827v1

Submitted on 18 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A contribution for virtual prototyping of mechatronic
systems based on real-time distributed high level

architecture
Hassen Hadj-Amor, Thierry Soriano

To cite this version:
Hassen Hadj-Amor, Thierry Soriano. A contribution for virtual prototyping of mechatronic systems
based on real-time distributed high level architecture. Journal of Computing and Information Science
in Engineering, 2011, 12 (1), �10.1115/1.3647868�. �hal-01723827�

https://univ-tln.hal.science/hal-01723827v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Contribution for Virtual Prototyping

of Mechatronic Systems Based on

Real-Time Distributed High

Level Architecture

H. J. Hadj-Amor
e-mail: hassen.hadj-amor@supmeca.fr

T. Soriano
e-mail: thierry.soriano@supmeca.fr

LISMMA—Supmeca Toulon,

Maison des Technologies, Place Georges,

Pompidou, 83000 Toulon, France

Mechatronics is the integration of different sciences and techni-
ques of mechanical engineering, automatic control, electronics,
and informatics. The rapid evolution of the market competitors
requires the reduction of development time of a product while
increasing the quality and performance. It is, therefore, necessary
to increase the efficiency of the design process. To meet this need,
simulation and, especially, virtual prototyping have become a key
technology. It is difficult to find simulation tools are able to ana-
lyze multidependent systems of different areas. However, an envi-
ronment that allows a simulation integrating multidisciplinary
mechatronic systems is necessary. This paper describes a method
of design and simulation of mechatronic systems. First, we iden-
tify the behavior model and its associated 3D geometric model.
The behavior model is seen as a dynamic hybrid system of two
coupled hybrid automata (operative part and control part). Then,
we present OpenMASK and OpenModelica simulators, the
IEEE1516 standard HLA and work related to this distributed
architecture for simulation. In a top-down approach, we present
our method and experiments to integrate HLA functionalities in
these simulators and to distribute the modeling elements of
mechatronic systems. Also, we propose extensions to integrate
real-time for interactive simulations. Finally, we apply our
approach on a representative example of a mechatronic system.
[DOI: 10.1115/1.3647868]

1 Introduction

A mechatronic system is the combination of several compo-
nents from different domains (mechanics, automatic control, elec-
tronics, and embedded control software). This combination makes
possible the generation of small and powerful systems which inte-
grate functions and ability for decisions. However, their design
can be difficult and the development period of such complex sys-
tems has to be as short as possible. Especially, analyzing the
behavior is a difficult task. To face this problem, virtual prototyp-
ing of mechatronic systems can be a good solution. Indeed, virtual
prototypes can help manufacturers to predict behavior so they can
make better design, manufacturing, and business decisions. Vir-
tual prototyping involves a 3D geometric simulation and MULTI-

PHYSICS simulation. A first solution consists in coupling subsystem
models within the same environment. This is cosimulation as
described in Ref. [1]. Cosimulation is one of the possible techni-
ques to enable closer interaction between existing submodels into
a more complete model. The most common environment that sup-

plies as a cosimulation framework is SIMULINK. Many environ-
ments that support MULTIPHYSICS simulations, such as DYMOLA [2]
or MULTIBODY, and dynamic systems, such as MSC.ADAMS [3],
provide specific modules for running such cosimulations. Many
methods are used for coupling of dynamic simulations. One
method earlier used is transmission lines modeling (TLM). The
TLM is based on physically motivated time delays and TLM ele-
ments to separate the components in time and enable efficient
cosimulation. This technique was implemented for coupling dif-
ferent subsystems [4–6]. However, these tools are not specialized
in the 3D animation. To keep the accuracy and precision of 3D
graphic simulation, we are going to use two specialized environ-
ments of simulation. Our contribution is situated in the definition
and the implementation of normalized exchanges and synchroni-
zation between two highly efficient open source simulators, one of
them specialized in virtual reality. The goal here is to simulate a
complete environment with many different actors and tools. The
main concerns are not simulation methods but instead standards
and protocols that allow tools to communicate.

In this paper, we present a method based on the high level
architecture (HLA) to make communication possible between the
3D OpenMASK (Modular Animation and Simulation Kit) virtual
prototyping simulator [7] and the MULTIPHYSICS OpenModelica [8]
simulator. HLA is situated in continuation of the works on cosi-
mulation with respect to disclosing proprietary information about
the subsystem models by introducing a standardized layer to
exchange data without requiring an integrator environment [1].
Using this method, we can facilitate simulating and analyzing
mechatronic systems in a multidisciplinary workgroup. An
approach for modeling and simulation of mechatronic systems is
described in Sec. 2. Section 3 presents the HLA and some related
works. Sections 4 and 5 present briefly OpenMASK and OpenMo-
delica simulators. Section 6 presents solutions to integrate HLA
services in both simulators. Section 7 deals with time manage-
ment. Then, we present an application to test out our approach in
Sec. 8. Lastly, we present a brief discussion in Sec. 9 to improve,
in the future, the accuracy and efficiency of the framework envi-
ronment obtained.

2 Modeling and Simulation for Mechatronics in a

Distributed Architecture

From the functional point of view, a mechatronic system can be
seen as a collaboration of two major parts:

— A control part: It consists of electronic, automatic, and com-
puter technologies. It can be a closed-loop or open-loop
control.

— An operative part: It consists of mechanical and electrome-
chanical parts.

The distinction of the control and operative parts does not only
mean to separate them and understand them independently but
also to understand the links between them. The complexity of
mechatronic systems is due to the integration of several disci-
plines. Accordingly, the behavior of these systems with various
technologies is difficult to model. The control of a mechatronic
system often uses discrete states, and the behavior of the operative
part consists of discrete jumps between continuous states. This
type of behavior is typically that of hybrid dynamic systems. We
choose the hybrid automata formalism for a unique and homoge-
neous modeling of the operative part and the control part. Behav-
iors of the control part and the operative part are modeled by
different hybrid automata, which can be coupled jointly following
the method provided in Ref. [9]. The simulation of a mechatronic
system, thus, has to support, on the one hand, the dynamic
evolution represented by hybrid automata carrying in particular
electromechanical equations and, on the other hand, its graphic
representation. The global behavior is then modeled by hybrid
automata which are implemented in OpenModelica using the

1



HybridAutomataLib [10]. On the other hand, the role of Open-
MASK is to animate 3D physical objects representing the system.
The communication between both simulators is maintained by the
HLA RTI (real-time infrastructure).

In the HLA terminology, we mean by the term “federate,” each
elementary simulator, and by the term “federation” a group of
intereffective federates. Notions of federate and RTI will be
developed in Sec. 3.1.

We identified two federates: one federate for the animation of
3D objects and one behavioral federate, which represents the con-
trol and operative parts of the mechatronic system (Fig. 1). The
first federate is implemented within OpenModelica; the second
one is implemented within the OpenMASK virtual environment
(Fig. 2).

3 HLA

3.1 Definitions and Terminology. HLA is defined under the
IEEE standard 1516 for the architecture of interoperable distrib-
uted simulations. The HLA was proposed by the Defense Model-
ing and Simulation Office, instigated by Department of Defence
[11–13].

In France, the ministry of defense and, in particular, the navy
ministry is also interested in this standard.

This architecture has got three objectives:

— making the reuse of elementary simulator easier
— making interoperability between the distributed simulators

easier
— reducing simulation and modeling costs.

The HLA is described by some specifications composed of:

— a series of rules that specifies the responsibilities of the fed-
erates and the federation

— an object model template
— specifications concerning the application programming

interface (API).

The software elements of an HLA federation are composed of
an implementation of the RTI and some federates. A federation is
a set of federates having a common object model. It is the repre-
sentation of a set of interoperating simulators. The first function
of the federation object model is to specify, in a common and
standard format, the nature of the data exchanged among federates
in the federation. These data include an enumeration of all objects
and interaction classes as well as a specification of the attributes
and parameters characterizing theses classes. A simulation object
model is a specification of the types of information that an indi-
vidual federate could provide to HLA federation as well as the in-
formation that an individual federate can receive from other
federates in HLA federation.

HLA is a specification and not an implementation. There are
several softwares relating to HLA; RTI is the tool for the design
of federation. We were interested in the open source RTIs. We
chose the CERTI tool developed at ONERA [14,15].

3.2 Related Works. HLA was developed mainly for military
distributed simulations. There are few applications to integrate
HLA in commercial and academic simulators. Difficulties arise
when trying to make these simulators HLA compliant. Military
simulators have been developed as specific tools where HLA
functions may be implemented at the beginning of the develop-
ment. However, HLA functions are not planned to integrate non-
military simulators. Four solutions have been identified to
integrate HLA in simulators in Ref. [16].

In the field of manufacturing systems, we find in Ref. [17] an
environment based on HLA to integrate some simulators. In the
field of control systems, the hybrid simulator AnyLogic integrated
HLA services [17]. Many approaches were proposed to integrate
HLA with MATLAB. Most of these approaches use wrapper pro-
grams and external libraries to communicate MATLAB with the
RTI. The implementation of this interface was presented in Ref.
[18]. The project is called the HLA TOOLBOX. In the field of 3D
CAD software, we found an approach proposed in Ref. [18] to
make a 3D simulator HLA compatible. In the field of virtual pro-
totyping, we found an approach presented in Ref. [19] to link the
oRis platform with the RTI. We did not find any application
involving a 3D simulator and a MULTIPHYSICS simulator and inte-
grating real-time aspects.

4 OpenMASK

OpenMASK is an open source platform for modular applica-
tions development and execution in animation, simulation, and
virtual reality fields. OpenMASK has modular architecture [20].
A simulation with OpenMASK is composed of modules con-
nected to a data bus. Each module can represent an elementary 3D
object or can be a pure behavioral object. The way to program the
behavior of an object is completely left to the user. An Open-
MASK module can also contain inputs=outputs for the exchange
of data. OpenMASK modules can exchange events directly or by
means of the OpenMASK’s bus.

5 OpenModelica

Modelica is an object-oriented language. Its goal is to model
complex physical systems including electric, mechanical, hydrau-
lic, and thermal components [21]. OpenModelica is a free envi-
ronment of modeling, compilation, and simulation, based on a
BSD (Berkeley Software Distribution) license. The current ver-
sion of the OpenModelica environment allows the interactive exe-
cution of most of the expressions, the algorithms and the parts of
Modelica functions as well as the generation of an effective C
code from the models of equations and the Modelica functions.
The C code generated is combined with a library of useful func-
tions, a run-time library and a digital solver differential algebraic
equations. The default integration method for OpenModelica is
the DASSL code as defined by Brenan et al. [22]. In order to inte-
grate event handling in the compiler and run-time system, the
front-end must produce crossing functions and handlers for the

Fig. 1 A HLA federation

Fig. 2 Global approach

2



events; the actual search for zero crossings is left to the solver
[23].

6 Integration of HLA Services in Simulators

6.1 Design of the Federation. A mechatronic system is
made up of several mechatronic subsystems that are composed by
elementary components of various domains. It is possible to
describe every component by an HLA object. Given that we are
only interested in the dynamic state variables, we describe every
mechanical component by an HLA object. Attributes of these
objects are dynamic state variables of the global system. The
OpenModelica federate has to publish attributes of its HLA
objects before the beginning of the simulation. The OpenMASK
federate has to subscribe to all attributes of HLA objects of the
OpenModelica federate. During the simulation, the OpenModelica
federate updates its HLA object attributes by calling the publish
service or by sending interaction. Thereby, the RTI reflects these
attributes to the OpenMASK federate.

6.2 Integration of HLA Services in OpenModelica. We
propose a wrapper, which has to communicate with the simulator
through sockets. This wrapper is implemented in Cþþ and so we
are able to integrate the HLA services to exchange data with the
RTI [24]. It is possible to call functions implemented in C or FOR-

TRAN language from a Modelica program [25]. We use this Model-
ica property to exchange data with a wrapper by using sockets. A
socket is a unique identifier representing an address on the net-
work. The socket address is specified by the host name and the
port number. We use the TCP-IP protocol to assure data transport
(packages) between the process server (the wrapper) and the client
(the simulation under OpenModelica).

6.2.1 Interface From OpenModelica to the RTI Communication
from OpenModelica to the wrapper. The wrapper is implemented
as a TCP server. The simulation calls the external C functions to
connect to the wrapper and exchange data with it. Once the con-
nection is established, the simulation sends information to the
wrapper server. This last one can also send back information to
the simulation. We developed five basic functions for the commu-
nication process: Function createSocket() to exchange the simula-
tion data, function sendMessage() to send a message, function
receiveMessage() to receive a message, function recMsgBlock()
to freeze OpenModelica, and function clean() to close the connec-
tion socket. We created a Modelica library that we called Commu-
nicationLib. This library contains a socket class as well as the
wrapped functions using the external functions defined in C. The
socket class is customizable. We can modify the IP address and
the port. In our case, we use the localhost address because Open-
Modelica and its wrapper have to run on the same machine. We
choose a fixed time step to send and receive data. The wrapper
representing the TCP server is implemented in Cþþ (Fig. 3). A

socket server is created and is listening for connection requests.
When a connection request is received, a connection is established
and the wrapper can receive the data from the simulation under
OpenModelica. Each value received is decrypted. The name of
the variable is extracted as well as its value. For that, we devel-
oped a general Modelica module that we called RemoteController
(Fig. 3). This module represents a connection point between
OpenModelica and any external program using a TCP server.

Every hybrid automaton represents a component of the global
system. An hybrid automaton of the operative part contains a vec-
tor of state variables. Each hybrid automaton of the operative part
is represented by an object in the wrapper. The attributes of this
object are the state variables of the corresponding hybrid automa-
ton. Once the wrapper receives values of the state variables of an
hybrid automaton, it allocates them to the attributes of the corre-
sponding objects.

Communication from the wrapper to the RTI. As the OpenMo-
delica wrapper is implemented in Cþþ, we chose that it calls
directly the functions of the libRTI library, which includes the
HLA services, to join the federation, to publish and=or subscribe
to attributes, etc. More specifically, all requests sent by a federate
to the RTI take the form of methods calls to the object RTIAmbas-
sador within libRTI.

6.2.2 Interface From the RTI to OpenModelica. Another task
that the wrapper has to carry out is the implementation of the fed-
erate ambassador class to provide callbacks functions. This last
one is responsible in each federate for all the data received from
the RTI. Any data received by the FederateAmbassador object can
be sent to the simulation under OpenModelica through sockets.
The RTI sends messages to the wrapper by calling functions.
These functions are called callbacks and they are defined in the
wrapper.

6.3 Integration of HLA Services in OpenMASK. An Open-
MASK simulation is a set of Cþþ modules that interact. These
modules are compiled before being executed. The idea is to inte-
grate the HLA services in one or more of these modules before
they are compiled. As the HLA RTI (CERTI) used is a Cþþ library,
we have no problem of compatibility.

An OpenMASK simulation is organized in a tree simulation
composed of modular elements called the simulation modules.
These modules are connected to a bus which allows them to
exchange messages and=or signals. An OpenMASK module has a
predefined architecture. It is a Cþþ class, which can contain
generic methods: Init(), compute(), processEvent(), etc. Our
approach to integrate HLA services in an OpenMASK simulation
is to create an overall module that we called HLAC (HLA com-
munication). This latter invokes HLA services to communicate
with the HLA RTI. The HLAC module can also contain
inputs=outputs for the data exchange. At each step of simulation,
the general module can read all the state variables of each visual
module to allocate new values by exchanging events or signals
through OpenMASK proper bus.

6.3.1 The HLAC Module. The HLAC module is composed of
three parts: A first part to detect events, to catch objects attributes
from the simulation model, and to transform them into calls of
RTIAmbassador functions (Fig. 4). This part is called LRC (local
RTI component). The second part catches messages and updates
from RTI using callbacks functions declared in the class Federa-
teAmbassador. This part is called FedCode (federate code). The
third part is the internal simulation model which sends updates to
other OpenMASK modules and receives events from them.

LRC. The Init() method is called one time like the constructor
to initialize the attributes of the HLAC object. We use this method
to invoke some HLA services to create and=or join a federation,
to get handles of HLA items (HLA objects, HLA interactions,
object attributes, interaction parameters, etc.) and to publish andFig. 3 OpenModelica wrapper

3



subscribe to some HLA items. In our approach, to create a federa-
tion, the LRC calls the createFederationExecution() function. To
join the federation, the LRC calls the joinFederationExecution()
function with three parameters (federate name, federation name,
and a pointer to the class implementing the federate callbacks).
Before a federate can produce any data, it must declare its intent
to publish. Interaction between a user and the simulation or colli-
sion detection is represented by an HLA interaction class. To
receive values for instance attributes, the federate must first sub-
scribe to the desired class attributes. To receive interactions of a
certain class, the federate must subscribe to that class of interac-
tions. The actions carried out by a federate only once are inte-
grated in the Init() method. Dynamic actions “performed in a
cyclical manner” are implemented in the compute() method.
Indeed, the compute() method is executed at a frequency attrib-
uted to each OpenMASK module at the beginning of the simula-
tion. During the simulation, the HLAC module sends data to the
RTI on updating its attributes or sending interactions. Collision
detection during the simulation or an interaction with the user trig-
gers an event. Due to this, the HLAC module can send interac-
tions to other federates or update some of its attributes to inform
other federates about the interaction or the collision. Once the end
of simulation reached, it calls the resignFederationExecution()
service to leave the federation.

FedCode. The FedCode part catches events and updates from
the RTI using callback functions declared in the FederateAmbas-
sador class. To use them, HLAC class must inherit from the Fed-
erateAmbassador. These callback functions are implemented in
the HLAC module and outside the generic methods. The attribute
values received through the callbacks are used to animate the 3D
objects in OpenMASK. Each 3D object is represented by an
OpenMASK module (visual module). It receives updates from the
HLAC module via messages through the OpenMASK bus (see
Fig. 4).

6.3.2 Communication Sequence Between the OpenMask
federate (HLAC) and the RTI. We identified six steps of commu-
nication between the HLAC module and the RTI: Create and=or
join federation, initialization, publication and subscription, syn-
chronization, update attributes, and advancing in time and the last
step is the simulation end (Fig. 5). The OpenMASK federate
begins by joining the federation if it was already created. Other-
wise, it can create the federation and join it. Then, the federate
gets the handles of HLA items by sending requests to the RTI.
The returned handles are unique between the RTI and the federate.
The federate can at this stage declare its intent to publish or sub-
scribe. After that, the federate requests to synchronize its execu-
tion with other federates. Once all federates are synchronized, the

Fig. 4 The HLAC module

Fig. 5 A generic sequence diagram for every simulation

4



simulation starts. The simulation loop is implemented in the com-
pute() method. The HLAC module receives values from the RTI
and sends them via events to other OpenMASK modules to ani-
mate their 3D objects.

7 Synchronization and Real-Time Management

7.1 Simulators Synchronization at the Beginning of the
Simulation. We propose a method to synchronize the beginning
of the execution of the simulators. This solution is based on the
HLA Time Management service. It consists in starting the execu-
tion of the two federates without defined order. The creator feder-
ate requests to the RTI to deliver a synchronization point to the
federates. Then, the RTI deliver to both federates a synchroniza-
tion point. The two federates invoke the tick() service and wait
until the reception of the federationSynchronized() callback. Once
this callback received, both federates start execution simultane-
ously. This method is simpler to implement within OpenMASK
than within OpenModelica federate. Indeed, the OpenModelica
wrapper must convert all the RTI callbacks to TCP requests to the
OpenModelica internal simulation model. For that purpose, we
have defined the procedure which is following.

In the OpenModelica wrapper, we declare the OpenModelica as
a creator federate. The wrapper sends a TCP request to the Open-
Modelica simulation to freeze it. For this, it sends the word “stop”
via the TCP request. During the simulation, the function recei-
veMsg() developed in the simulation internal model is listening to
TCP requests from the wrapper. When the word stop is received,
an internal Modelica event is generated and the function
recMsgBlock() is activated. This function freezes the simulation
until the reception of the word “wake.” It is based on blocking
socket. Then, the wrapper requests a synchronization point from
the RTI and waits until reception of the callback announceSynch-
ronizationPoint() by invoking the tick() service. Once both feder-
ates synchronized, the global simulation can be launched by
pressing a key on the keyboard or by creating a timer in the crea-
tor federate. Once the user presses a key or the timer is elapsed,
the wrapper must order to the OpenModelica simulation to resume
its execution. This is done by sending a TCP request containing
the word wake.

7.2 Degree of Involvement of Federates and Real-Time
Module

7.2.1 Degree of Involvement of Federates. Time in the feder-
ate can be represented by points along a time axis of the federa-
tion. Each federate can then advance along this axis during the
execution. The time management service provides mechanisms
making it possible to control the advance of the federates in order
to guarantee a causal order between the various emitted events.
The perception of the current time can be different according to
the federate, but the advance of time is coordinated by the federa-
tion. There are three kinds of federates: regulating federate, con-
strained federate, or both. A federate that creates an event or
sends a message with a time stamp to other federates is called a
regulating federate. A constrained federate is a federate that
receives events or messages with time stamps from other feder-
ates. The time advance of a constrained federate depends on that
of regulating federates.

The simplest approach to manage logical time in a simulation is
to advance time in equal steps [26]. Each of the OpenMASK fed-
erate and the OpenModelica federate can be regulator or con-
strained or both. Also, at each step, the federate can send
interactions and receive data from other federates. Both federates
must be involved in time management and each one may choose
its degree of involvement. The OpenModelica federate is a behav-
ior federate. Its object attributes are used by the graphical Open-
MASK federate to animate the 3D model. In another way, the
OpenModelica federate must keep the lid on the OpenMASK fed-
erate to provide a smooth simulation. For that reason, we choose

OpenModelica as a time-regulating federate and OpenMASK as a
time-constrained federate, whose advance of logical time is con-
strained by the regulator federate. So, the OpenModelica federate
which is regulator and not constrained, paces the rest of the feder-
ation but is not constrained by it. As for the OpenMASK federate,
it is constrained but not regulator. It allows the rest of the federa-
tion to regulate its logical time, but it cannot affect the other fed-
erates. This is recommended for display or passive federates.

The HLA time management coordinates the advance of
logical time among all federates in a federation. The RTI prevents
time-constrained federates from running off without respect to
time-regulating federates. Since the OpenModelica federate is regu-
lator, we choose to make its real-time execution. In this case, the
advance of OpenMASK time is constrained by the time advance of
OpenModelica. So, the federation will advance its time together in
synchronicity with wallclock time. In the next part, we present a
module to make OpenModelica execution real time.

7.2.2 Real-Time Module for OpenModelica. The progression
of simulation time during the execution of a simulation may
have or not a relationship with the progression of wallclock
time. With analytic simulations where human and external mate-
rials do not interact during the execution, the simulation time
progression is often not synchronized with wallclock time. These
simulations are sometimes referred to as as-fast-as-possible sim-
ulations because they are executed as quickly as possible. This is
the case of OpenModelica. With the real-time simulations, a
mapping function to translate wallclock time to simulation time
can be used [26].

Ts ¼ f ðTwÞ ¼ Tstart þ Scale�ðTw � TwStartÞ

where Tw is a value of wallclock time, TStart is the simulation time
at which the simulation begins, TwStart is the wallclock time at the
beginning of the simulation, and Scale is the scale factor.

To gain real-time execution, we augmented OpenModelica
with a mechanism to pace its execution with wallclock time. The
pacing mechanism simply introduces a waiting mechanism to pre-
vent the simulation from advancing simulation time ahead of
wallclock time. We applied this mechanism in the RealTime mod-
ule for OpenModelica. RealTime is a Modelica model, which can
be instantiated in other Modelica models that are then synchron-
ized with real time. This feature is useful in hardware-in-the-loop
simulations and for the use of interface human machine within
OpenModelica simulator [10]. The basic idea of the RealTime
module is to test at equal small steps if the wallclock time is
greater than the simulation time. In this case, the OpenModelica
simulation is frozen until the wallclock time is equal to simulation
time. Sometimes, the simulation gets stuck for a while due to, for
example, too many events. The lost time simulation is regained
then as fast as possible by simulating as fast as possible. This can
lead to incoherence execution with the external program or user
interacting with the simulation because signals and values will be
exchanged extremely fast in the regain phase. By limiting the sim-
ulation speed, this behavior can be avoided. The algorithm used
for this module is presented in Fig. 6.

7.3 Time Evolution of the Global Simulation. The Remote-
Controller module in OpenModelica sends values of simulation at
each fixed time step to the wrapper (see Fig. 3). The time step is a
parameter in the RemoteController module that can be modified.
The wrapper plays the role of the OpenModelica federate. It does
the usual cycle of TIME ADVANCE REQUEST (labeled
«TAR») and TIME ADVANCE GRANT (labeled «GRANT»).
On the other hand, the OpenMASK federate does the same cycle
to advance its logical time. It is constrained by the advance of the
OpenModelica time. This means that it is frozen when OpenMo-
delica does not update its attributes or it is waiting to synchronize
with wallclock time. More explicitly, when OpenModelica is

5



waiting to synchronize with wallclock time, it does not send simu-
lation values to the wrapper. The latter requests to advance its log-
ical time only if it receives a new value from OpenModelica via
sockets. As the wrapper is time-regulating and the OpenMASK
federate is time-constrained, this latter cannot advance its logical
time and it is frozen when OpenModelica is synchronizing with
wallclock time.

8 Experimentation

After the integration of the HLA services in both simulators,
we applied our global approach to a mechatronic system. We
chose a simple but significant example. At the end, we obtained a
virtual prototype of the system. We chose a linear drive system to
test out our approach. The linear drive is controlled by a controller
module which delivers the dc motor supply voltage according to
the position x of the linear drive. The specification of the control-

ler is such as follows: start and drive to left then run ten times
between left and right end positions. Finally, pause 3 s, afterward
continues.

The physical system model of the linear drive, depicted in
Fig. 7, is composed of a dc motor, a threaded rod, and a threaded
mass.

The dynamic equations of the global system are [27]

ðJ þ mp2Þ€hþ b _h ¼ ki and x ¼ ph (1)

L
di

dt
þ Ri ¼ V � k _h (2)

The behavior of the global system is represented by an hybrid au-
tomaton (Fig. 8). This one is implemented under OpenModelica
using our HybridAutomataLib [10]. a and b represent transitions
coupling. If a transition is fired in the control part, its correspond-
ing transition is fired at the same time in the operative.

We instantiated the RealTime module and inserted it in the
global model to synchronize the time execution with the wallclock
time. We performed tests and measured the time difference along
the simulation between wallclock time and simulation time is
shown in Fig. 9. The result is that the time difference is on the order
of 10�2 s.

A 3D model was created and inserted in OpenMASK. This 3D
model was inserted in the generic OpenMask simulation tree
needed for execution. The RTI is running in a first Linux terminal.
OpenMASK is running in a second terminal. OpenModelica wrap-
per is running in a third terminal (Fig. 10). Once the OpenMASK

Fig. 6 Algorithm for RealTime Modelica module

Fig. 7 Drive guide system

Fig. 8 Hybrid automaton of the drive guide system

6



federate is launched, it displays the 3D objects with initial attrib-
utes. Finally, in a fourth terminal OpenModelica starts to simulate
the hybrid automaton. Once the OpenModelica simulation starts,
variables are communicated to OpenMASK via the RTI to ani-
mate the 3D objects.

9 Discussion

In the case of large models, efficiency problems can arise. We
require making sure that all of the computations associated with a
single integration step are completed within the allowed time slot
[28]. Indeed, the computations that need to be performed in each
integration step of the simulation can vary greatly. A summary of
issues on the integration algorithms related to the special demands
of real-time simulation can be found in Ref. [28]. Methods in
available literature on simulation speed-up are mentioned in this
book. A distributed simulation in multiple machines in our case
could be a solution to avoid the problem of overrun. As the Open-
Modelica simulator is HLA compatible, large models can be dis-
sociated and executed by different instances of OpenModelica.

Another aspect is to make the simulation more reactive refer-
ring to events. We propose to manage external events as interac-
tions with haptic interfaces and internal events as collision
detection into the OpenMASK simulator. In this research, we
have not yet addressed this aspect. A reform of the time advancing
strategy of the global simulation is required. We propose two
ways of improvement. The first one is to define each simulator as
constrained and regulator at the same time. Thus, OpenMask will
not be only a passive federate because it will interact with the
user. The second way is linked to the accuracy in the case of bi-
directional communication where events from OpenMASK serve
as inputs for OpenModelica. In this case, stepped time synchroni-
zation must be avoided because it can result in significant errors
linked to undetected events inside a time step. But in addition to
the time-stepped pattern, another typical pattern of time manage-

ment is the event-driven pattern [26]. Instead of using TIME
ADVANCE REQUEST, as does a time-stepped federate, the
event-driven federate uses NEXT EVENT REQUEST to request
an advance of its clock. The federate specifies with the request the
logical time of the next event on its internal queue. The simulation
proceeds by processing its next event, that is, the known event
with the smallest future logical time [13].

10 Conclusion

In this paper, we presented an open source approach for model-
ing and simulating mechatronic systems based on the HLA. Gen-
eral methods for integrating HLA services in simulators are
presented and applied on the OpenMASK and OpenModelica sim-
ulators. Synchronizing the different simulators is achieved by
using the HLA time management services. To make the global
simulation real-time, we proposed an approach based on real-time
techniques and HLA time management services. All open source
modules developed are available in our laboratory and will be
officially registered on the Modelica site. In the future work, we
will treat the extension presented especially in Sec. 9. We plan to
manage events taken into account by OpenMASK and benefits
from its interactive feature.

References
[1] Gu, B., and Asada, H., 2004, “Co-Simulation of Algebraically Coupled

Dynamic Subsystems Without Disclosure of Proprietary Subsystem Models,”
ASME J. Dyn. Syst., Meas., Control, 126(1), pp. 1–13.

[2] http://www.3ds.com/products/catia/portfolio/dymola/
[3] http://www.mscsoftware.com/Products/CAE-Tools/Adams.aspx
[4] Krus, P., 1999, “Modelling of Mechanical Systems Using Rigid Bodies and

Transmission Line Joints,” Trans. ASME J. Dyn. Syst. Meas., Control., 121(4),
pp. 606–612.

[5] Krus, P., and Jansson, A., 1990, “Distributed Simulation of Hydromechanical
Systems,” Third Bath International FluidPower Workshop, Bath, United
Kingdom.

[6] Pulko, S. H., Mallik, A., Allen, R., and Johns, P. B., 1990, “Automatic Time-
stepping in TLM Routines for the Modelling of Thermal Diffusion Processes,”
Int. J. Numer. Model., 3, pp. 127–136.

[7] http://www.irisa.fr/bunraku/OpenMASK/
[8] http://www.ida.liu.se/�pelab/modelica/OpenModelica.html
[9] Sghaier, A., and Soriano, T., 2008, “Using High Level Models for Modelling

Industrial Machines in a Virtual Environment,” Int. J. Interact. Des. Manuf., 2,
pp. 99–106.

[10] Hadj-Amor, H. J., 2008, “Contribution au Prototypage Virtuel de Systèmes
Mécatroniques Basé sur une Architecture Distribuée HLA. Expérimentation
sous les Environnements OpenModelica—OpenMASK,” Ph.D. thesis, Univer-
sité du Sud Toulon Var, France.

[11] IEEE1516-2000, 2000, IEEE Standard for Modeling and Simulation High Level
Architecture (HLA)—Framework and Rules.

[12] IEEE1516.1-2000, 2000, IEEE Standard for Modeling and Simulation High
Level Architecture (HLA)—Federate Interface Specification.

[13] Kuhl, F., Dahman, J., and Weatherly, R., 1999, Creating Computer Simulation
Systems: An Introduction to the High Level Architecture, Prentice Hall PTR,
Piscataway, NJ.

[14] http://www.cert.fr/CERTI/
[15] Bréholée, B., and Siron, P., 2002, “CERTI: Evolutions of the ONERA RTI Pro-

totype,” 2002 Fall Simulation Interoperability Workshop, Orlando.

Fig. 9 Time difference between wallclock time and simulation time inside OpenModelica

Fig. 10 A print screen of the global simulation

7



[16] Straßburger, S., Schulze, T., Klein, U., and Henriksen, J. O., 1998, “Internet-
Based Simulation Using Off-The-Shelf Simulation Tools And HLA,”
Proceedings of 30th Conference on Winter Simulation, Washington, DC, pp.
1669–1676.

[17] Borchshev, A., Karpov, Y., and Kharitonov, V., 2002, “Distributed Simulation
of Hybrid Systems With AnyLogic and HLA,” FGCS, Future Gener. Comput.
Syst., 18(6), pp. 829–839.

[18] Kanai, S., and Shimizu, T., 2003, “HLA=RTI-Based ScalableDistributed Vir-
tual Prototyping Environment for Embedded System Design,” Proceedings of
Virtual Concept 2003, Biarritz, France, pp. 100–107.

[19] Raulet, V., 2003, “Prototypage Interactif et Collaboratif. Vers une Architecture
de Communication pour une Interactivité Coopérante Dynamique dans les
Environnements Virtuels Distribués,” Ph.D. thesis France, Université de Bre-
tagne Occidentale, France.

[20] Margery, D., Arnaldi, B., Chauffaut, A., Donikian, S., and Duval, T., 2002,
“OpenMASK: Multi-Threaded or Modular Animation and Simulation Kernel
or Kit: A General Introduction,” VRIC 2002 Proceedings, Laval, France,
pp. 101–110.

[21] Fritzon, P., 2003, Principles of Object-Oriented Modeling and Simulation With
Modelica 2.1, IEEE Press=Wiley-Interscience, New York.

[22] Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1989, Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations, Elsevier, New York.

[23] Lundvall, H., Fritzson, P., and Bernhard, B., 2008, “Event Handling in the
OpenModelica Compiler and Runtime System,” Technical Reports in Computer
and Information Science.

[24] Hadj-Amor, H., and Soriano, T., 2008, “Integrating OpenModelica Simulator
With HLA,” 7th France-Japan (5th Europe-Asia) Congress on Mechatronics,
IEEE Mecatronics2008.

[25] Fritzon, P., Lundvall, H., Fritzson, P., and Bachmann, B., 2007, “OpenModelica
System Documentation,” Preleminary Draft, 2007-06-20 for OpenModelica 1.4.3.

[26] Fujimoto, R. M., 2000, Parallel and Distributed Simulation Systems
(Wiley Series on Parallel and Distributed Computing), Albert Y. Zomaya, ed.

[27] Aublin, M., Boncompain, R., Boulaton, M., and Caron, D., 1992, Systèmes
mécaniques, théorie et dimensionnement, Dunod, Paris.

[28] Cellier, F. E., and Kofman, E., 2006, Continuous System Simulation, Springer-
Verlag, New York.

8


	s1
	s2
	l
	s3
	s3A
	s3B
	s4
	s5
	F1
	F2
	s6
	s6A
	s6B
	s6B1
	s6B2
	s6C
	s6C1
	F3
	s6C2
	F4
	F5
	s7
	s7A
	s7B
	s7B1
	s7B2
	s7C
	s8
	E1
	E2
	F6
	F7
	F8
	s9
	s10
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	F9
	F10
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28



