A. Tschöpe and J. Y. Ying, Synthesis of nanostructured catalytic materials using a modified magnetron sputtering technique, Nanostructured Materials, vol.4, issue.5, p.617, 1994.
DOI : 10.1016/0965-9773(94)90071-X

A. Trovarelli, -Containing Materials, Catalysis Reviews, vol.29, issue.4, p.439, 1996.
DOI : 10.1016/0272-8842(94)90022-1

J. H. Lee, J. Kim, S. W. Kim, H. W. Lee, and H. S. Song, Characterization of the electrical properties of Y2O3-doped CeO2-rich CeO2???ZrO2 solid solutions, Solid State Ionics, vol.166, issue.1-2, p.45, 2004.
DOI : 10.1016/j.ssi.2003.10.001

J. H. Wang, M. L. Liu, and M. C. Lin, Oxygen reduction reactions in the SOFC cathode of Ag/CeO2, Solid State Ionics, vol.177, issue.9-10, p.939, 2006.
DOI : 10.1016/j.ssi.2006.02.029

S. Suda, M. Itagaki, E. Node, S. Takahashi, M. Kawano et al., Preparation of SOFC anode composites by spray pyrolysis, Journal of the European Ceramic Society, vol.26, issue.4-5, p.593, 2006.
DOI : 10.1016/j.jeurceramsoc.2005.07.038

G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone et al., Methanol gas-sensing properties of CeO2???Fe2O3 thin films, Sensors and Actuators B: Chemical, vol.114, issue.2, p.687, 2006.
DOI : 10.1016/j.snb.2005.06.062

W. Liu and M. Flytzani-stephanopoulos, Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts, Journal of Catalysis, vol.153, issue.2, p.304, 1995.
DOI : 10.1006/jcat.1995.1132

Y. Liu, Q. Fu, and M. F. Stephanopoulos, Catalysis Today, pp.93-95, 2004.

W. J. Zhang, S. Paldey, and S. Deevi, Effect of moisture on the active species in Cu???CeO2 catalyst, Applied Catalysis A: General, vol.295, issue.2, p.201, 2005.
DOI : 10.1016/j.apcata.2005.08.020

M. Luo, J. Ma, J. Lu, Y. Song, and Y. Wang, High-surface area CuO???CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation, Journal of Catalysis, vol.246, issue.1, p.52, 2007.
DOI : 10.1016/j.jcat.2006.11.021

M. Lundberg, B. Skårman, and L. R. Wallenberg, Crystallography and porosity effects of CO conversion on mesoporous CeO2, Microporous and Mesoporous Materials, vol.69, issue.3, p.187, 2004.
DOI : 10.1016/j.micromeso.2004.02.009

M. Chmielowska, A. Kopia, . Ch, S. Leroux, J. Saitzek et al., Solid State Phenomena, pp.99-100, 2004.

A. Pfau and K. D. Schierbaum, The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS, UPS and HREELS study, Surface Science, vol.321, issue.1-2, p.71, 1994.
DOI : 10.1016/0039-6028(94)90027-2

X. Yu and G. Li, XPS study of cerium conversion coating on the anodized 2024 aluminum alloy, Journal of Alloys and Compounds, vol.364, issue.1-2, p.193, 2004.
DOI : 10.1016/S0925-8388(03)00502-4

E. Paparazzo, G. M. Ingo, and N. Zacchetti, surfaces: An x???ray photoelectron spectroscopy study, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.9, issue.3, p.1416, 1991.
DOI : 10.1116/1.577638

H. Zhu, M. Shen, Y. Kong, J. Hong, Y. Hu et al., Characterization of copper oxide supported on ceria-modified anatase, Journal of Molecular Catalysis A: Chemical, vol.219, issue.1, p.155, 2004.
DOI : 10.1016/j.molcata.2004.04.032

J. H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, Journal of Electron Spectroscopy and Related Phenomena, vol.8, issue.2, p.129, 1976.
DOI : 10.1016/0368-2048(76)80015-1

D. Briggs and M. P. Seah, Practical Surface Analysis Auger and X-ray Photoelectron Spectroscopy, 1990.

G. Avgouropoulos, . Th, and . Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea???nitrate combustion method, Applied Catalysis A: General, vol.244, issue.1, p.155, 2003.
DOI : 10.1016/S0926-860X(02)00558-6

J. Xiaoyuan, L. Guanglie, Z. Renxian, M. Jianxin, and C. Yu, Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts, Applied Surface Science, vol.173, issue.3-4, p.208, 2001.
DOI : 10.1016/S0169-4332(00)00897-7

S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh et al., Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation, Journal of Applied Physics, vol.58, issue.8, p.3765, 1992.
DOI : 10.1139/p80-047

T. Itoh and K. Maki, Preferentially oriented thin-film growth of CuO(111) and Cu2O(001) on MgO(001) substrate by reactive dc-magnetron sputtering, Vacuum, vol.81, issue.7, p.904, 2007.
DOI : 10.1016/j.vacuum.2006.10.012

P. Smereka, X. Li, G. Russo, and D. J. Srolovitz, Simulation of faceted film growth in three dimensions: microstructure, morphology and texture, Acta Materialia, vol.53, issue.4, p.1191, 2005.
DOI : 10.1016/j.actamat.2004.11.013

W. H. Lee and P. Shen, Laser Ablation Deposition of CeO2???x Epitaxial Domains on Glass, Journal of Solid State Chemistry, vol.166, issue.1, p.197, 2002.
DOI : 10.1006/jssc.2002.9582

M. Nolan, S. C. Parker, and G. W. Watson, The electronic structure of oxygen vacancy defects at the low index surfaces of ceria, Surface Science, vol.595, issue.1-3, p.223, 2005.
DOI : 10.1016/j.susc.2005.08.015

G. C. Jernigan and G. A. Somorjai, Carbon Monoxide Oxidation over Three Different Oxidation States of Copper: Metallic Copper, Copper (I) Oxide, and Copper (II) Oxide - A Surface Science and Kinetic Study, Journal of Catalysis, vol.147, issue.2, p.567, 1994.
DOI : 10.1006/jcat.1994.1173

K. Nagase, Y. Zheng, Y. Kodama, and J. Kakuta, Dynamic Study of the Oxidation State of Copper in the Course of Carbon Monoxide Oxidation over Powdered CuO and Cu2O, Journal of Catalysis, vol.187, issue.1, p.123, 1999.
DOI : 10.1006/jcat.1999.2611