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A NEW CLASS OF COST FOR OPTIMAL TRANSPORT PLANNING

J-J. ALIBERT, G. BOUCHITTÉ, AND T.CHAMPION

Abstract. We study a class of optimal transport planning problems where the refer-
ence cost involves a non linear function G(x, p) representing the transport cost between
the Dirac mesure �

x

and a target probability p. This allows to consider interesting
models which favour multi-valued transport maps in contrast with the classical lin-
ear case (G(x, p) =

R
c(x, y) dp) where finding single-valued optimal transport is a

key issue. We present an existence result and a general duality principle which ap-
ply to many examples. Moreover, under a suitable subadditivity condition, we derive
a Kantorovich-Rubinstein version of the dual problem allowing to show existence in
some regular cases. We also consider the well studied case of Martingale transport
and present some new perspectives for the existence of dual solutions in connection
with �-convergence theory.

1. Introduction

In classical Optimal Transport theory, the primal problem is written in the Monge-
Kantorovich form

inf

⇢

Z

X⇥Y

c d� : � 2 ⇧(µ, ⌫)

�

(1.1)

where µ, ⌫ are given probability measures on X and Y , and c : X ⇥ Y ! R [ {+1}
is a cost function. Here the competitors are probability measures � on X ⇥ Y with
marginals µ and ⌫ respectively, called transport plans. The particular case where the
optimal transport plan � 2 ⇧(µ, ⌫) is carried by the graph of a map T : X ! Y has been
extensively studied since the transport map T then solves the original Monge problem.
We refer to the books [14, 16, 17] for a detailed presentation of the classical theory.

In the present work, we present a di↵erent point of view motivated by scenarios where
the optimal strategy favours multi-valued transport maps. As a first example, let us
describe a very simple toy model where, in a prescribed region ⌦ of the Euclidean space
Rd (a town), several competing agents (for instance web suppliers) operating in given
locations {x1, x2, . . . xN} can reach a prescribed ratio c

i

of potential customers. We have
then a given discrete measure µ =

P

c
i

�
x

i

and a target probability measure ⌫ = f dx
where f = f1 + f2 + . . . f

N

and f
i

represents the local density of customers supplied by
x
i

(c
i

=
R

⌦ f
i

dx and
P

i

c
i

= 1). Each agent x
i

aims to optimize its own commercial
impact by choosing f

i

to be spread as much as possible over ⌦, namely by maximizing
the variance var(⌫

i

) of the probability ⌫
i

of density f

i

c

i

. If the global criterium to be
maximized is

P

c
i

var(⌫
i

) , then as the variance is a concave function, the optimal
choice would be to take ⌫

i

= ⌫. In fact this trivial strategy is ruled out if we add a
classical transport cost involving the distance between the agent and the customer, say
R

⌦ c(x
i

, y) ⌫
i

(dy), with for instance c(x, y) = |x� y|↵ with ↵ � 1. In that case, we are
1
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led to a minimization problem of the kind

inf

(

X

i

c
i

G(x
i

, ⌫
i

) :
X

i

c
i

⌫
i

= ⌫

)

where G(x, p) :=

Z

X

c(x, y)p(dy)� var(p) .

To deal with a more general framework, it is convenient to associate with every transport
plan � 2 ⇧(µ, ⌫) the family of conditional probabilities �x such that

< �,' >=

Z

X

✓

Z

Y

'(x, y)�x(dy)

◆

µ(dx) ,

and to incorporate in problem (1.1) a general cost over �x as follows

inf

⇢

Z

X

G(x, �x) dµ :=

Z

X⇥Y

c d� +

Z

X

H(x, �x)dµ : � 2 ⇧(µ, ⌫)

�

(1.2)

where the function G(x, p) : X ⇥P(X) ! R[ {+1} is the sum of the usual linear cost
(x, p) 7! R

Y

c(x, ·)dp which appears in (1.1) and a given non-linear function H.

In fact the formulation (1.2) allows to make a connection with another direction in
probability theory which received an increasing attention in the recent years, in the
context of martingale optimal transport. This corresponds to the case where H(x, p) =
�[p]=x

is the indicator function of the linear constraint [p] = x being [p] the barycenter
of p (this is detailed in Example 2.1 below). A classical result due to Strassen [15] states
that the infimum in (1.2) is finite under the assumption that µ and ⌫ are in convex
order (see Remark 4.6 below). This problem was introduced in the one-dimensional case
X,Y ⇢ R in [12] for the special cost c(x, y) = � |x� y| and for more general costs in
[4] in the context of mathematical finance, to obtain robust model-independent bounds
on option prices : in both works the authors obtain existence for the primal problem
(1.2), give a dual problem whose formulation incorporates a Lagrange multiplier for the
martingale barycenter constraint, prove there is no duality gap and provide an example
for which there is no dual optimal solution (see Example 4.13 below). In [5], under some
specific regularity hypotheses on the cost c, the authors use the natural order on the real
line to prove that the optimal solutions, so called left-curtain coupling, have a special
monotone structure: this result is obtained through a variational characterization of the
optimal solutions (Lemma 2.1 therein); they also provide a decomposition of the couple
(µ, ⌫) in irreducible components for which they obtain the existence of dual maximizers
(see section §8 therein). Those seminal works have then been extended and precised
in several ways. The variational characterization for left-curtain couplings was used to
prove their stability with respect to the marginals (see [13]) and was extended for more
general constraints and spaces X,Y (see [3] and [18]). Also the precise formulation of the
associated dual problem and the existence of dual maximizers have received a particular
attention. In [7], the authors propose a quasi-sure formulation for the dual problem for
which they prove the existence of a maximizer, and also provide several examples and
counter-example. Still on the real line, [6] provides regularity hypotheses on the cost c
which ensure the existence of pointwise (as opposed to quasi-sure) minimizers for the
usual formulation of the martingale dual problem. The d-dimensional case for the cost
c(x, y) = ± |x� y| is addressed in the remarkable paper [10], where the existence of a
dual maximizer and the structure of the optimal martingale plans are described under
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the hypothesis that the measures µ and ⌫ are in subharmonic order. An alternative
approach relying on �� convergence is proposed in the section 7 of present work.

The paper is organized as follows. In section §2 we state our main hypotheses and
present the examples we shall consider in the following. In §3 we give an existence
proof for the primal problem (Theorem 3.1) which proof deeply relies on the lower-
semicontinuity result Lemma 3.5, and illustrates our main hypotheses. Section 4 is
devoted to the dual problem obtained via Fenchel conjugation, and the statement of
related optimality conditions : in particular we address the case of entropies depending
on the barycenter, and propose a possible relaxation in the set of upper-semicontinuous
functions for the dual problem. The last three sections deal with the existence issue for
dual maximizers. In §5 we propose a regularization by penalization and we extensively
study the variance case. In section 6 we tackle the generalization of the Kantorovich-
Rubinstein subbaditive cost to our setting, and then deduce a general existence result
for dual maximizers in the case where the cost G is regular. Finally in section 7 we
provide a new approach for the relaxation of the dual problem in the martingale case
that we hope may be fruitful for further work.

Before concluding this introduction, we point out the recent paper [11] where the
authors consider problem (1.2) in the case of general spaces X = Y , with the motivation
of obtaining weak versions of Talagrand’s transport-entropy inequality. The examples
of costs they consider are costs of Marton type (and its barycentric version) and Samson
type that we detail below in Example 2.2. In their study, a general formulation for the
dual problem is given and the absence of duality gap is established as well as a way
of recovering Strassen’s result (see 4.6 below). This work is the closest related to the
present article, since it gives a first insight on problems of the form (1.2) under general
hypotheses. The results obtained therein overlap with those of sections 3 and 4 of the
present paper, although the techniques of proofs slightly di↵er.

2. Problem setting

In this paper, X and Y are metrizable compact sets. Some of the proofs and results
below may hold for general Polish spaces, but we prefer to avoid additional technical
di�culties since the main examples we have in mind hold when X = Y is the closure of
a bounded open convex subset of Rd. The measures µ 2 P(X) and ⌫ 2 P(Y ) are Borel
probabilities over X and Y respectively. In the following P(·) will be endowed with the
weak star topology which, since X and Y are compact, is equivalent to the topology of
the tight convergence. As well known this space P(·) is compact metrizable.

We consider optimal transport problems of the form

F (µ, ⌫) = inf

⇢

Z

X⇥Y

c(x, y)�(dx, dy) +

Z

X

H(x, �x)µ(dx) : � 2 ⇧(µ, ⌫)

�

(P )

where

⇧(µ, ⌫) =
n

� 2 P(X ⇥ Y ) : ⇡x
]

� = µ , ⇡y
]

� = ⌫
o

is the set of transport plans � from µ to ⌫ (i.e. � has marginals µ and ⌫), and � = �x⌦µ
is the desintegration of � with respect to its first marginal µ. This last notation means



4 J-J. ALIBERT, G. BOUCHITTÉ, AND T.CHAMPION

that

8f 2 C(X ⇥ Y ), h�, fi =
Z

X

✓

Z

Y

f(x, y)�x(dy)

◆

µ(dx).

In classical optimal transport theory, H = 0 and a particular interest is given to trans-
port plans � induced by a transport map T , i.e. of the form � = (id ⇥ T )#µ. In our
context, this can also be written � = �

T (x) ⌦ µ, that is �x = �
T (x) for µ almost every x.

We shall make the following assumptions on the costs c and H :

(A1) the classical cost c : X ⇥ Y ! R [ {+1} is lower semicontinuous,
(A2) the entropy (or perturbation) cost H : X ⇥ P(Y ) ! R [ {+1} satisfies

• H is lower semicontinuous on X ⇥ P(Y ).
• for every x 2 X, p 7! H(x, p) is convex.

Here the entropy cost H is meant as a nonlinear perturbation of the classical mass
transport cost associated with c. In fact it is also convenient to rewrite (P ) by putting
c and H in the same global cost defined by

G : (x, p) 7! G(x, p) =

Z

Y

c(x, y)p(dy) +H(x, p) . (2.1)

Then our generalized transport problem reads

F (µ, ⌫) = inf

⇢

Z

X

G(x, �x)µ(dx) : � 2 ⇧(µ, ⌫)

�

(2.2)

Notice that the assumptions (A1)-(A2) imply that

G is lower semicontinuous in (x, p) and convex in p. (A3)

In the following, in order to simplify the presentation, we will prefer using this more
concise form, but if needed we will come back to the original formulation with c and H
as in the examples below.

Example 2.1. We shall in particular study the following cases :

• the Monge cost c(x, y) = |y � x| and the quadratic cost c(x, y) = |y � x|2 where
|·| is the Euclidean norm on Rd,

• the barycenter constraint case :

H(x, p) = H
bar

(x, p) := �[p]=x

=

⇢

0 if [p] = x
+1 otherwise

where [p] =

Z

Y

y p(dy) denotes the barycenter of p and �
A

is the characteristic

function of A. Note that in this case we assume that X = Y .
• the variance case, in the case Y is a compact subset of Rd :

H(x, p) = H
var

(x, p) := � var(p) = [p]2 �
Z

Y

|y|2 p(dy)

where we stress the fact that H
var

is indeed convex with respect to the variable

p since p 7! [p] and p 7!
Z

Y

|·|2 dp are linear in p.
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Example 2.2. In [11], in the case X = Y , the authors consider the following Marton
costs on X ⇥ P(X)

G
M

(x, p) = ↵

✓

Z

X

d(x, y)p(dy)

◆

and G̃
M

(x, p) = ↵ (x� [p])

and the Samson costs

G
S

(x, p) =

Z

X

↵

✓

d(x, y)
dp

d⇢

◆

⇢(dy)

where ↵ : R+ ! R \ {+1} is convex, d is the distance over X and ⇢ 2 P(X) is a
reference probability. Section 4.3 below is devoted to more general forms of entropies
depending on the barycenter than that of G̃

M

.

2.1. Around the barycenter constraint. As noted in [5], when one selects the
barycenter constraint H = H

bar

then the quadratic cost c(x, y) = |y � x|2 turns (P )
to an easy problem since the functional to be minimized is constant over the admissible
transport plans. Indeed one then has

Z

X⇥Y

|y � x|2 �(dx, dy) =

Z

Y

|y|2 ⌫(dy)� 2

Z

X

[�x] · xµ(dx) +
Z

X

|x|2 µ(dx)

=

Z

Y

|y|2 ⌫(dy)�
Z

X

|x|2 µ(dx)

for any � 2 ⇧(µ, ⌫) such that [�x] = x for µ-a.e. x. Therefore, as far as the barycenter
constraint H = H

bar

is considered, we shall further restrict ourselves to the study of
examples involving sub-quadratic costs like the Monge cost c(x, y) = |y � x|.
2.2. Around the variance case. Selecting the variance cost H = H

var

= � var in
problem (P ) favors the spreading of the measures �x so as to increase their variance
var(�x). For example if one takes c = 0, then the problem (P ) amounts to maximizing
Z

var(�x)dµ among transport plans � 2 ⇧(µ, ⌫), but then one may compute for any

admissible plan � that
Z

X

var(�x)dµ =

Z

X

|[�x]|2 dµ�
Z

X

✓

Z

Y

|y|2 �x(dy)
◆

dµ


�

�

�

�

Z

X

[�x]dµ

�

�

�

�

2

�
Z

Y

|y|2 ⌫(dy) = var(⌫)

so that the only optimal solution is � = µ⇥ ⌫, that is �x = ⌫ for a.e. x. Note that the
linear part

R

Y

|·|2 d�x of the variance has no impact on the global cost since it yields

to the second moment
R

Y

|·|2 d⌫ when integrated with respect to µ. We shall make an
extensive study of this case in §5.2.

3. Existence of an optimal solution for the primal problem

We first investigate the existence of an optimal solution for (P ). Our main result is
the following.
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Theorem 3.1. Let µ 2 P(X) and ⌫ 2 P(Y ) be such that F (µ, ⌫) < +1. Then under

the assumptions (A1) and (A2), the problem

F (µ, ⌫) = inf

⇢

Z

X⇥Y

c(x, y)�(dx, dy) +

Z

X

H(x, �x)µ(dx) : � 2 ⇧(µ, ⌫)

�

(P )

admits at least one minimizer.

In the above statement, the regularity hypothesis (A1) on c is rather standard in
optimal transport theory. The measurability and lower semicontinuity hypotheses (A2)
on H are also quite natural in the context of variational functionals over probability
spaces. The condition F (µ, ⌫) < +1 means that the class of competitors is non empty
: it will be discussed further in Section 4 in particular in the case where H(x, ·) takes
infinite values. The necessity of the convexity hypothesis (A2) on H(x, ·) is illustrated
in the next example.

Example 3.2. Let X = Y := [�1, 1] ⇥ [0, 1] and consider the problem (P ) which
corresponds to the choice

µ = H1b{0}⇥ [0, 1] and ⌫ =
1

2
H1b{�1, 1}⇥ [0, 1]

c(x, y) := |y � x|2 and H(x, p) = #(support(p))

where #(support(p)) denotes the cardinal of support(p) whenever it is finite and +1
otherwise. We shall denote

E(�) :=

Z

X⇥Y

|y � x|2 �(dx, dy) +
Z

X

#(support(�x))µ(dx).

It is known (see [14]) that the only optimal solution to the classical transport problem

m = inf

⇢

Z

X⇥Y

|y � x|2 �(dx, dy) : � 2 ⇧(µ, ⌫)

�

(3.1)

is the transport plan �
opt

for which �(0,t)
opt

= 1
2(�(�1,t) + �(1,t)) for a.e. t 2 [0, 1], and that

there exists a minimizing sequence (T
n

)
n

of tranport maps from µ to ⌫ such that

m = lim
n!+1

Z

X

|y � x|2 �
n

(dx, dy) with �
n

:= �
T

n

(x) ⌦ µ for all n.

Then one has : E(�
opt

) = m + 2, E(�) > m + 1 for any admissible � 6= �
opt

and
lim

n!+1E(�
n

) = m + 1. As a consequence, F (µ, ⌫) = m + 1 and the infimum is not
attained.

Example 3.3. The same argument as in the previous example also yields to a non-
existence result when the entropy/perturbation cost H = #(support) is replaced with
the more regular cost H(x, p) = var(p). In this case, one obtains F (µ, ⌫) = m (defined
in (3.1) above) and the infimum is not attained either.

In view of the definition of the global cost G (see (2.1)), Theorem 3.1 is a consequence
of Lemmas 3.4 and Lemma 3.5 below, which are stated in some more generality for
further use. We denote by M(X ⇥ Y ) the set of bounded non-negative Borel measures
on X ⇥ Y , and for � 2 M(X ⇥ Y ) we still denote by � = �x ⌦ µ the desintegration of
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� with respect to its first marginal µ : note that here µ need not be a probability, but
the measures �x are indeed probabilities on Y .

In the sequel, for every x 2 X, we denote by G⇤(x, ·) the Fenchel conjugate of the
convex functional G(x, ·) in the duality between M(Y ) and C(Y ) that is

8 2 C(Y ), G⇤(x, ·) :  7! G⇤(x, ) = sup

⇢

Z

Y

 dp�G(x, p) : p 2 P(Y )

�

.

It is convenient to introduce the real number

m
G

:= min{G(x, p) : (x, p) 2 X ⇥ P(Y )} (3.2)

where we note that m
G

> �1 by the lower semicontinuity property of G and the
compactness of X and Y . As a preliminary result we have:

Lemma 3.4. The following properties of G⇤
hold:

i) Let  2 C(Y ) and � 2 R. Then for every x 2 X it holds

G⇤(x, + �) = G⇤(x, ) + � (3.3)

G⇤(x, ) +m
G

 sup
Y

 (3.4)

ii) Let  2 C(Y ) and (x
n

)
n

be a sequence such that x
n

! x in X, then

lim sup
n!+1

G⇤(x
n

, )  G⇤(x, ),

iii) For every x 2 X,  1 2 C(Y ) and  2 2 C(Y )

|G⇤(x, 1)�G⇤(x, 2)|  sup
Y

| 1 �  2| .

Proof. i) Since
R

Y

�dp = � for every p 2 P(Y ), (3.3) follows. Now for every p 2 P(Y ) it
holds

Z

Y

 dp�G(x, p)  sup
Y

 �m
G

so (3.4) follows by taking the sup in p.
ii) From i) it comes that sup

n

G⇤(x
n

, ) < +1. Since P(Y ) is weak⇤ compact and G
is lower semicontinuous on X ⇥ P(Y ) , there exists a sequence (p

n

) in P(Y ) such that

8n, G⇤(x
n

, ) =

Z

Y

 dp
n

�G(x
n

, p
n

).

Moreover, there exists p 2 P(Y ) and an increasing sequence of integers (n
k

) such that

lim sup
n!+1

G⇤(x
n

, ) = lim
k!+1

G⇤(x
n

k

, ) and p
n

k

* p weak* in P(Y ).

Hence

lim sup
n!+1

G⇤(x
n

, ) = lim sup
k!+1

✓

Z

Y

 dp
n

k

�G(x
n

k

, p
n

k

)

◆

 lim
k!+1

Z

Y

 dp
n

k

� lim inf
k!+1

G(x
n

k

, p
n

k

)


Z

Y

 dp�G(x, p)  G⇤(x, ).
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iii) Let p2 2 P(Y ) be such that G⇤(x, 2) +G(x, p2) =
R

Y

 2 dp2. Then

G⇤(x, 2)�G⇤(x, 1) 
✓

Z

Y

 2 dp2 �G(x, p2)

◆

�
✓

Z

Y

 1dp2 �G(x, p2)

◆

 sup
Y

�

 2 �  1
�

.

⇤

Lemma 3.5. Assume that the sequence (�
n

)
n

= (�x
n

⌦µ
n

)
n

weakly conaverges in M(X⇥
Y ) to � = �x ⌦ µ, then the following holds

lim inf
n!+1

Z

X

G(x, �x
n

)dµ
n

�
Z

X

G(x, �x)dµ.

Proof. We recall from (3.2) that G is bounded from below, and without lost of generality
we shall assume that G is non-negative.

Let us fix a dense sequence ( 
k

)
k�0 in C(Y ). Then, as G(x, ·) is convex weakly lower

semicontinuous, one has for every (x, p):

G(x, p) = sup

⇢

Z

Y

 dp�G⇤(x, ) ,  2 C(Y )

�

= sup
k

⇢

Z

Y

 
k

dp�G⇤(x, 
k

)

�

(3.5)

where for the last equality we used the Lipschitz property of G⇤(x, ·) established in
Lemma 3.4. Accordingly, we associate with the probability family �x the following
sequences of Borel functions on X:

g
k

(x) :=

Z

Y

 
k

d�x �G⇤(x, 
k

) , bg
k

(x) = max{g0(x), . . . , g
k

(x)}

It can be checked from (3.2) and (3.4) that each g
k

is bounded from below. Moreover,
by (3.5), the sequence (bg

k

(x))
k�0 converges increasingly to G(x, �x) for µ-almost all x,

and it is also uniformly bounded from below by min
X

g0.
Let now the integer m � 0 be fixed, we denote by (B

k

)
km

a Borel partition of X
such that bg

m

= g
k

on B
k

for all k  m. For any k  m we denote by (K
k,p

)
p�0 a

non-decreasing sequence of compact subsets of B
k

such that

lim
p!+1

µ (B
k

\K
k,p

) = 0.

For any p � 0 let also (⌦
k,p

)
km

be a family of disjoint open sets such thatK
k,p

⇢ ⌦
k,p

for all k  m. Since G � 0, we have
Z

X

G(x, �x
n

)dµ
n

(x) �
m

X

k=0

Z

⌦
k,p

G(x, �x
n

)dµ
n

(x)

�
m

X

k=0

Z

⌦
k,p



Z

Y

 
k

(y)d�x
n

(y)�G⇤(x, 
k

)

�

dµ
n

(x)

=
m

X

k=0

"

Z

⌦
k,p

⇥Y

 
k

(y)d�
n

(x, y) +

Z

⌦
k,p

�G⇤(x, 
k

)dµ
n

(x)

#
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for any n, p. By Lemma 3.4 the function �G⇤(·, 
k

) is bounded from below and lower
semicontinuous for fixed k, and since the sets ⌦

k,p

are open we can take the lower limit
as n ! 1 and compute

lim inf
n!+1

Z

X

G(x, �x
n

)dµ
n

(x) �
m

X

k=0

"

Z

⌦
k,p

⇥Y

 
k

(y)d�(x, y) +

Z

⌦
k,p

�G⇤(x, 
k

)dµ(x)

#

=
m

X

k=0

Z

⌦
k,p

g
k

(x)dµ(x)

=
m

X

k=0

"

Z

K

k,p

bg
m

(x)dµ(x) +

Z

⌦
k,p

\K
k,p

g
k

(x)dµ(x)

#

�
m

X

k=0

"

Z

K

k,p

bg
m

(x)dµ(x) + µ(⌦
k,p

\K
k,p

)min
X

g
k

#

.

For each k  m one has

⌦
k,p

\K
k,p

= ⌦
k,p

\
[

0lm

K
l,p

⇢ X \
[

0lm

K
l,p

=
[

0lm

(B
l

\K
l,p

).

We thus get

8k  m, lim
p!+1

µ(⌦
k,p

\K
k,p

) = 0.

As a consequence, passing to the limit in p we obtain

lim inf
n!+1

Z

X

G(x, �x
n

)dµ
n

(x) �
m

X

k=0

Z

B

k

bg
m

(x)dµ(x) =

Z

X

bg
m

(x)dµ(x),

from which the claim follows by the monotone convergence theorem. ⇤

Proof of Theorem 3.1. For fixed probabilities µ, ⌫, the set of transport plans ⇧(µ, ⌫) is
compact for tight convergence in P(X ⇥ Y ). Then if (�

n

)
n

is a minimizing sequence
for (P ), we can extract a subsequence which weakly converges in P(X,Y ) to some
� 2 ⇧(µ, ⌫), and it results from Lemma 3.5 that � is an optimal solution of (P ). ⇤

Example 3.6. (Variance case with quadratic cost). We now illustrate the above exis-
tence result in the following simple framework : we take X = Y = [0, 1], µ = 1

2(�0+ �1),

⌫ = L1
b[0,1], for � � 0 we set c

�

(x, y) = � |y � x|2 and take H(p) = � var(p), so that (P )
reads

F
�

(µ, ⌫) = inf

⇢

�

Z

X

Z

Y

|y � x|2 �x(dy)dµ�
Z

X

var(�x)dµ : � 2 ⇧(µ, ⌫)

�

. (3.6)

Since an admissible transport plan � is such that �0 and �1 are absolutely continuous
with respect to L1

b[0,1] and satisfy the identity �0 + �1 = 2L1
b[0,1], one may rewrite the

above problem as

F
�

(µ, ⌫) = inf

⇢

[�0]2 + (�� 1)[�0] +
1

6
(1� �) : 0  �0  2L1

b[0,1] and

Z 1

0
d�0 = 1

�

.
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For � � 1
2 the solution is uniquely attained by �0 = 2L1

b[0, 12 ]
(for which [�0] = 1

4) which

corresponds to the usual monotone transport plan � between µ and ⌫ (which spreads
the mass at 0 onto [0, 12 ] and that at 1 onto [12 , 1]) : in this case, the cost c

�

appears to be
dominant over the perturbation H. On the other hand, for � 2 [0, 12 [ any admissible �0

such that [�0] =
1� �

2
yields to an optimal solution, and then F

�

(µ, ⌫) admits infinitely

many minimizers. Notice that the desintegrations �0 and �1 of such optimal solutions
� may be supported on the whole segment [0, 1] in this case.

4. Duality and optimality conditions.

4.1. The duality principle. Here we propose a general framework which rests upon
the convexity of the minimal value function F (µ, ⌫). Such a duality principle has been
obtained in some particular cases (see [4, 5, 18]) and in a more general setting in [11].
First we extend the definition of F to the set of bounded measures on X ⇥ Y as follows

F (µ, ⌫) =

8

>

<

>

:

inf
�R

X

G(x, �x)µ(dx) : � 2 ⇧(µ, ⌫)
 

if µ and ⌫ are non negative with
R

µ =
R

⌫

+1 otherwise

Recall that, for every x 2 X, G⇤(x, ·) denotes the Fenchel conjugate of the convex
function G(x, ·) in the duality between M(Y ) and C(Y ).

Lemma 4.1. The functional F defined above is positively one homogeneous and convex.

Its Fenchel conjugate in the duality between M(X) ⇥ M(Y ) and C(X) ⇥ C(Y ) is the

indicator function of the following subset K of C(X)⇥ C(Y ):

K := {(', ) 2 C(X)⇥ C(Y ) : '(x) +G⇤(x, )  0 8x 2 X.}
Proof. The first property is obvious by construction. In particular the one-homogeneity
of F implies that the Fenchel conjugate of F coincides with the indicator of the convex
subset

K̃ :=

⇢

(', ) 2 C(X)⇥C(Y ) :

Z

X

' dµ+

Z

Y

 d⌫  F (µ, ⌫) , 8(µ, ⌫) 2 M(X)⇥M(Y )

�

,

We need only to check that K = K̃. Let (µ, ⌫) such that F (µ, ⌫) < +1. Then by using
Fenchel inequality, we observe that for every  2 C(Y ) and every admissible � = �x⌦µ,
one has
Z

X

G(x, �x)µ(dx) �
Z

X

✓

Z

Y

 d�x �G⇤(x, )

◆

µ(dx) =

Z

Y

 d⌫ �
Z

X

G⇤(·, ) dµ
By taking the infimum in the left hand member with respect to all admissible �x , we
obtain that (', ) 2 K̃ whenever (', ) 2 K. To prove the converse implication, we
take µ to be the Dirac mass �

x

at an arbitrary x 2 X and ⌫ to be a probability measure
on Y such that G(x, ⌫) < +1. Then (', ) 2 K̃ implies that:

F (µ, ⌫) = G(x, ⌫) � '(x) +

Z

Y

 d⌫
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It follows that G⇤(x, ) = sup
⌫2P(Y )

⇢

Z

Y

 d⌫ �G(x, ⌫)

�

 �'(x), thus (', ) 2 K̃. ⇤

We are now in position to introduce the dual problem to (P ):

sup

⇢

Z

Y

 d⌫ �
Z

X

G⇤(x, )µ(dx) :  2 C(Y )

�

. (P ⇤)

As a direct consequence of previous Lemma 4.1, we obtain the equality inf(P ) = sup(P ⇤)
and the optimality conditions which caracterize an optimal (�, ).

Theorem 4.2. Under the assumptions (A1) and (A2), we have the following equality

F (µ, ⌫) = sup

⇢

Z

Y

 d⌫ �
Z

X

G⇤(x, ) dµ :  2 C(Y )

�

. (4.1)

In particular F (µ, ⌫) is finite if and only if the supremum in the right hand side above

is finite. Futhermore an admissible pair (�, ) is optimal for (P ) and (P ⇤) if and only

if it holds

G(x, �x) +G⇤(x, ) =

Z

Y

 d�x for µ-almost every x 2 X. (4.2)

Note that (4.2) can also be rewritten as

 2 @G(x, ·)(�x) for µ-almost every x 2 X.

where the subdi↵erential of G(x, ·) is intended in the sense of the duality between
bounded measures on Y and C(Y ).

Remark 4.3. In the particular case where H = 0, one has

�G⇤(x, ) = inf

⇢

Z

Y

(c(x, ·)�  ) dp : p 2 P(Y )

�

= inf {c(x, y)�  (y) : y 2 Y }

the latter expression being usually denoted  c(x) in the litterature (e.g. [16, 17]). We
then recover the classical dual problem:

sup

⇢

Z

Y

 d⌫ +

Z

X

 c dµ :  2 C(Y )

�

.

Proof of Theorem 4.2. By Lemma 3.5 , we can check easily that F is weakly*-lower
semicontinuous and proper on M(X) ⇥ M(Y ). Therefore, since F is also convex, it
coincides with its Fenchel biconjugate in the duality between M(X)⇥M(Y ) and C(X)⇥
C(Y ). By Lemma 4.1, we infer that it is the support function of the convex set K given
therein. i.e.

F (µ, ⌫) = sup
(', )2C(X)⇥C(Y )

⇢

Z

X

' dµ+

Z

Y

 d⌫ : '(x) +G⇤(x, )  0 in X

�

.

As, for every  2 C(Y ), the function G⇤(x, ) is bounded upper semicontinuous (see
Lemma 3.4), there exists a nondecreasing sequence ('

n

) of admissible functions in C(X)
such that sup

n

'
n

= �G⇤(x, ). Then passing to the limit in the identity above, we
are led to (4.1). Furthermore the optimality of a pair (�, ) for (P ) and (4.1) can be
checked by testing the equality
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Z

X

G(x, �x)µ(dx) =

Z

Y

 d⌫ �
Z

X

G⇤(x, )µ(dx)

=

Z

X

✓

Z

Y

 d�x
◆

µ(dx)�
Z

X

G⇤(x, )µ(dx)

which means that the non negative function ⇢(x) := G(x, �x) + G⇤(x, ) �
Z

Y

 d�x

vanishes as an element of L1
µ

(X), thus (4.2). The proof is complete. ⇤

Remark 4.4. In the recent paper [11], the authors obtain a similar result as Theorem 4.2
in the general case where X = Y is not necessarily bounded, under some mild regularity
hypotheses on the cost (x, p) 7! G(x, p) (in fact they prove Lemma 5.3 below, which
in turn yields Theorem 4.2). As in the above proof, their argument relies on convexity
and Fenchel conjugation, as well as on a lower-semicontinuity result (Proposition 9.3
therein) which is more restrictive than Lemma 3.5 since it applies to sequences (�

n

)
n

with fixed first marginal.

The equality (4.1) allows to derive a necessary and su�cient condition to have F (µ, ⌫) <
+1. To that aim let us introduce the recession function associated with G⇤(x, ·) (see
Theorem 2.5.4 in [2]):

(G⇤)1(x, ) = lim
t!+1

G⇤(x, t )

t
= sup

⇢

Z

Y

 dp : G(x, p) < +1
�

. (4.3)

Then (G⇤)1(x, ·) is convex , l.s.c. positively one homogeneous on C(Y ).

Corollary 4.5. A necessary condition to have F (µ, ⌫) < +1 is that

Z

X

(G⇤)1(x, )µ(dx) �
Z

Y

 d⌫ for all  2 C(Y ) . (4.4)

This condition is su�cient if there exists k 2 L1
µ

(X) such that G(x, p)  k(x) for every

p 2 dom(G(x, ·)).
Proof. Asssume that ↵ := F (µ, ⌫) < +1. Then, by (4.1), for every  2 C(Y ) and every
t > 0, one has

Z

X

G⇤(x, t )µ(dx) � t

Z

Y

 d⌫ � ↵.

Then, after dividing by t, we may pass to the limit t ! +1 taking into account (4.3)
and applying monotone convergence Theorem. The inequality (4.4) follows. Under the
additional assumption on G and by exploiting the second equality in (4.3), we derive
that:

G⇤(x, ) = sup

⇢

Z

Y

 dp�G(x, p)

�

� sup

⇢

Z

Y

 dp� k(x) : p 2 domG(x, ·)
�

= (G⇤)1(x, )� k(x) .

Therefore, under (4.4), we infer that F (µ, ⌫) = sup(P ⇤)  R

X

k dµ. ⇤
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Remark 4.6. In the case where X = Y and H is the martingale constraint i.e.
H(x, p) = �[p]=x

, we derive easily that (G⇤)1(x, ) = �(� )⇤⇤. Then condition
(4.4) amounts to say that for every convex l.s.c. function f (f = (� )⇤⇤), it holds
R

X

f dµ  R

X

f d⌫. We recover the convex order condition denoted µ 
c

⌫ appearing
in Strassen’s Theorem [15] : the fact that (4.4) is su�cient for F (µ, ⌫) < +1 (which
amounts here to the existence of a martingale transport plan) was already noted in
section 3 of [11].

4.2. A relaxed version of the dual problem. The existence of a solution  in C(Y )
or possibly in a suitable larger class is a di�cult issue that we will overcome under some
additional regularity assumption on the global cost function G(x, p) (see Sections 5 and
6). Before developing Theorem 4.2 in specific cases, we present now a straightforward
extension of dual problem in which we enlarge the class of competitors.

Let us denote by U(Y ) (resp. U(X)) the set of bounded and upper semicontinuous

functions on Y (resp. X). Then the map  2 C(Y ) ! G⇤(·, ) 2 U(X) (see assertion
ii) of Lemma 3.4) can be extended to a map from the U(Y ) to U(X) by setting

8x 2 X, G⇤(x, ) = inf {G⇤(x,') : ' 2 C(Y ), ' �  } .
Indeed

Lemma 4.7. For every  2 U(Y ), it holds

G⇤(x, ) = sup

⇢

Z

X

 dp�G(x, p) : p 2 P(Y )

�

= lim
n!+1

G⇤(x, 
n

) ,

for any sequence ( 
n

)
n

in C(Y ) decreasing to  . The map  2 U(Y ) 7! G⇤(x, ) 2 U(X)
satisfies the properties i) and ii) of Lemma 3.4.

Proof. let x 2 X and let us show that G⇤(x, ) = lim
n!+1

G⇤(x,'
n

) for any sequence

('
n

)
n

in C(Y ) decreasing to  . First we notice that lim inf G⇤(x,'
n

) � G⇤(x, ) since
('

n

) is decreasing to  . Then, for n � 1 consider p
n

2 P(Y ) such that

G⇤(x,'
n

) =

Z

'
n

dp
n

�G(x, p
n

) +
1

n

One may assume that p
n

* p1, then for any n � k � 1 we have G⇤(x,'
n

)  R

'
k

dp
n

�
G(x, p

n

) + 1
n

, and passing to the limit one gets

lim sup
n!+1

G⇤(x,'
n

) 
Z

'
k

dp1 �G(x, p1)

⇤
Eventually we deduce the following extended version of Theorem 4.2

Proposition 4.8. Under the assumptions (A1) and (A2), it holds

F (µ, ⌫) = sup(P ⇤) = sup

⇢

Z

Y

 d⌫ �
Z

X

G⇤(x, )µ(dx) :  2 U(Y )

�

. (4.5)

Moreover the necessary and su�cient optimality condition (4.2) for an optimal pair

(�, ) still holds.
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Proof. We first notice that for any  2 U(Y ) and � 2 ⇧(µ, ⌫) one has

8x 2 X,

Z

Y

 d�x �G⇤(x, )  G(x, �x)

and then integrating with respect to µ and taking the infimum in � it comes to

sup

⇢

Z

Y

 d⌫ �
Z

X

G⇤(x, )µ(dx) :  2 U(Y )

�

 F (µ, ⌫) = sup(P ⇤)

where the last equality follows from Theorem 4.2. The reverse inequality is straightfor-
ward as well as the validity of (4.2) for characterizing an optimal pair (�, ). ⇤

In the following, we shall still denote by (P ⇤) the right hand side of (4.5). Let us
remark that this extended version of the dual problem is useful when considering for
instance the example (4.13) where, in a precise range of parameter ↵, a solution exists
in U([0, 1]) while no bounded solution exists.

4.3. Case of entropies depending of the barycenter. We are going to particularize
Theorem 4.2 in the special case where X = Y is a compact convex subset of Rd and
the convex entropy H involved in the definition of G (see (2.1)) depends only on the
barycenter [p] of the probabilty measure p, typically:

H(x, p) = h(x, [p]) where h = h(x, z) is l.s.c. in (x, z) and convex in z. (4.6)

In this case the optimality conditions characterizing an optimal pair (�, ) for the primal-
dual problem reads as follows :

Theorem 4.9. Assume X = Y is a compact subset of Rd

and let � 2 ⇧(µ, ⌫) and

 2 C(Y ). Under the assumption (4.6) on H, the pair (�, ) is optimal for (P ) and

(P ⇤) if and only if

0 2 @
�

h(x, ·) + (c(x, ·)�  (·))⇤⇤�([�x]) for µ-almost every x 2 X (4.7)

where the bi-conjugate (c(x, ·) �  (·))⇤⇤ is the l.s.c. convex enveloppe for the function

c(x, ·)�  (·) extended to Rd \ Y by +1.

If moreover h(x, [�x]) 2 R for µ-almost every x 2 X then

(c(x, ·)�  (·))⇤⇤([�x]) =
Z

Y

(c(x, y)�  (y))�x(dy) µ� a.e. (4.8)

which in particular implies that c(x, ·)�  (·) is a�ne on the support of �x.

Proof. Let  2 C(Y ), we compute

�G⇤(x, ) = inf
p2P(Y )

⇢

h(x, [p]) +

Z

Y

�

c(x, y)�  (y))
�

p(dy)

�

= inf
z2Rd

⇢

h(x, z) + inf
[p]=z

⇢

Z

Y

�

c(x, y)�  (y)
�

p(dy)

��

= inf
z2Rd

�

h(x, z) +
�

c(x, ·)�  (·)�⇤⇤(z) 
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As a consequence, according to Theorem 4.2, a pair (�, ) 2 ⇧(µ, ⌫)⇥ C(Y ) is optimal
for (P ) and (P ⇤) if and only if for µ-almost every x 2 X one has

h(x, [�x]) +

Z

Y

�

c(x, y)�  (y)
�

�x(dy) = inf
z2Rd

�

h(x, z) +
�

c(x, ·)�  (·)�⇤⇤(z) (4.9)

Taking z = [�x] in the right hand term and then using Jensen inequality, we obtain

h(x, [�x]) +

Z

Y

�

c(x, y)�  (y)
�

�x(dy)  h(x, [�x]) +
�

c(x, ·)�  
�⇤⇤

([�x])

 h(x, [�x]) +

Z

Y

�

c(x, ·)�  
�⇤⇤

d�x

 h(x, [�x]) +

Z

Y

�

c(x, ·)�  
�

d�x

Thus the infimum in (4.9) is attained at [�x] and the proof is thus complete. ⇤

Example 4.10. (Variance case with null cost). Let us consider the simple example
already adressed in §2.2 : we take the variance cost H = H

var

= � var with c = 0. in
order to apply Theorem 4.9 above, we should in fact take H(p) = [p]2 � m2(⌫) where
m2(⌫) is the second order moment of ⌫ : as noted in §2.2, this yields to an equivalent
problem. We have already noticed that in this case the only optimal solution � for (P )
satisfies �x = ⌫ for µ a.e. x. Then by (4.8) an optimal solution  of (P ⇤) should be
a�ne on the support of ⌫, while (4.7) then implies that  (y) = 2[⌫] ·y+↵ on the support
of ⌫ for some constant ↵. Then the solutions of (P ⇤) are the functions of the form  +�
where � any non negative continuous function on Y satisfying � = 0 on the support of
⌫.

Example 4.11. (Variance case with quadratic cost). We get back to Example 3.6 : as
in Example 4.10 we stake H(p) = [p]2 �m2(⌫) = [p]2 � 1

3 instead of H(p) = � var(p).
Then the primal problem (3.6) reads

F
�

(µ, ⌫) = inf

⇢

Z

X

Z

Y

� |y � x|2 �x(dy)µ(dx) +
Z

X

⇣

|[�x]|2 �m2(⌫)
⌘

dµ : � 2 ⇧(µ, ⌫)

�

and setting G
�

(x, p) =

Z

Y

� |y � x|2 p(dy) +
⇣

|p|2 �m2(⌫)
⌘

the dual reads

sup

⇢

Z

Y

 d⌫ �
Z

X

G⇤
�

(x, )µ(dx) :  2 C(Y )

�

. (4.10)

Now if the pair (�, ) is optimal for (3.6) and (4.10) then according to (4.8) in Theorem
4.9 the functions �y2 �  (y) and �(y � 1)2 �  (y) should be a�ne respectively on the
supports of �0 and �1. For � � 1

2 this function should thus be a�ne on the segments [0, 12 ]
and [12 , 1], while for � 2 [0, 12 [ it should be a�ne on the whole [0, 1]. As a consequence
of (4.7) written at the barycenters [�0] and [�1], we obtain that the optimal potentials
are of the form

 
�

(y) = �y2 + (1� �)y + b
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whenever � 2 [0, 12 [ , while

 
�

(y) =

⇢

�y2 + 1
2y + b if y  1

2
�(y � 1)2 + 3

2y � 1
2 + b if y � 1

2

if � � 1
2 , where b 2 R.

Example 4.12. (Monge cost with barycenter constraint) Let X = Y := [�1, 1] and
consider problems (P ) and (P ⇤) corresponding to the choice

µ =
1

2
dxb[�1, 1] and ⌫ =

1

4
��1 +

1

2
�0 +

1

4
�1

c(x, y) := |y � x| and H
bar

(x, p) = h(x, [p]) = �[p]=x

We first solve problem (P ). Any � 2 ⇧(µ, ⌫) with
R

X

G(x, �x)µ(dx) < +1 is such
that �x must be a convex combination of ��1, �0, �1 with [�x] = x for µ-almost every
x 2 [�1, 1]. We are led to write

�x(dy) =
⇢(x)� x

2
��1(dy) + (1� ⇢(x))�0(dy) +

⇢(x) + x

2
�1(dy)

where ⇢ is a nonegative Borel regular function defined µ-almost everywhere and such
that |x|  ⇢(x)  1. In addition, the condition ⌫(dy) =

R

X

�x(dy)µ(dx) implies that
R 1
�1 ⇢(x) dx = 1. As a consequence, the unique martingale transport between µ and ⌫ is
given as above with ⇢(x) = |x|.

We now focus on problem (P ⇤). Let us define  2 C[�1, 1] by

 (y) := �(2|y|+ ↵)(1� |y|) + ay + b

If ↵  0, a 2 R, b 2 R then a direct computation shows that

�| ·�x|�  (·)�⇤⇤(x) = � (x) and �  (x) =

Z

[�1,1]

�|y � x|�  (y)
�

�x(dy)

According to Theorem 4.9,  is optimal for the dual problem (P ⇤). Note that the
optimal potential  is not unique up to an a�ne function (since one can play with the
parameter ↵).

Example 4.13. (The non existence example of [4] revisited)
Let X = Y := [0, 1] and consider problems (P ) and (P ⇤) corresponding to the choice

µ =
1
X

n=1

|I
n

|�
x

n

and ⌫ = dyb[0, 1]

c(x, y) := �|y � x| and H(x, p) = h(x, [p]) = �[p]=x

where {I
n

}
n�1 is a family of intervals which forms a partition of [0, 1], x

n

is the middle
point of I

n

and it is assumed that

(x
n

)
n�1 is an increasing sequence



A NEW CLASS OF COST FOR OPTIMAL TRANSPORT PLANNING 17

1
X

n=1

|I
n

| = 1 and
1
X

n=1

n|I
n

| = +1.

We first solve problem (P ). Any � 2 ⇧(µ, ⌫) with
R

X

G(x, �x)µ(dx) < +1 is such that
P

n�1 |In|�xn(dy) = dyb[0, 1] so that |I
n

|�xn(dy)  dyb[0, 1] for all n. We also have

|I1|
2

= x1 = [�x1 ] =

Z 1

0
y�x1(dy) =

Z 1

0
�x1([t, 1])dt

�
Z |I1|

0

�

1� �x1([0, t])
�

dt �
Z |I1|

0

✓

1� t

|I1|
◆

dt =
|I1|
2

.

Therefore one has |I1|�x1(dy) = dybI1 and by induction |I
n

|�xn(dy) = dybI
n

for every
n � 1. As a consequence, the unique martingale transport between µ and ⌫ is such that
: for every n � 1

�xn(dy) =
1
I

n

(y)dy

|I
n

|
and one has F (µ, ⌫) = �1

4

P

n�1 |In|2.

We now focus on problem (P ⇤). Assume that  2 C[0, 1] is optimal for the problem
(P ⇤). According to Theorem 4.9, for every n � 1

�� | ·�x
n

|�  (·)�⇤⇤(x
n

) =
1

|I
n

|
Z

I

n

�� |y � x
n

|�  (y)
�

dy.

By Jensen’s inequality, this is equivalent to y 7! �|y�x
n

|� (y) being a�ne and equal
to its convex enveloppe on I

n

. Hence  is optimal for (P ⇤) if and only if for all y 2 [0, 1]
one has

(

 (y) =
P

n�1

�

 (x
n

) + a
n

(y � x
n

)� |y � x
n

|�1
I

n

(y)

 (y)   (x
n

) + a
n

(y � x
n

)� |y � x
n

| for all n � 1
(4.11)

where a
n

|I
n

| :=  (x
n

+ |I
n

|
2 )�  (x

n

� |I
n

|
2 ). Therefore one has a

n+1 + 1  a
n

� 1 which
implies a

n

 a1 � 2(n� 1). A direct computation gives us

 (x
n

) =  (x
n

+ |I
n

|
2 ) +

1� a
n

2
|I
n

|

=  (0) +
n�1
X

k=1

a
k

|I
k

|+ a
n

+ 1

2
|I
n

|

  (0) +
n�1
X

k=1

(a1 + 2� 2k))|I
k

|+ 1

2
(a1 + 3� 2n)|I

n

|

Passing to the limit as n tends to +1 we obtain that  (1) �  (0)  �1. As a
consequence, the problem (P ⇤) has no continuous (thus bounded) solution.

On the other hand, if we assume in addition that

|I
n

| = 1

C

1

n↵
with 1 < ↵  2 with C :=

1
X

k=1

1

k↵
and a

n

= 2(1� n)
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then we obtain an upper-semicontinuous function  
↵

that satisfies (4.11). We now show
that this candidate dual maximizer is in L1

⌫

if and only if 3
2 < ↵  2. Indeed, we compute

Z

S
n

k=1 Ik

 
↵

(y)⌫(dy) =
n

X

k=1

Z

I

k

( 
↵

(x
k

) + a
k

(y � x
k

)� |y � x
k

|)dy

=
n

X

k=1

⇣

 
↵

(x
k

)|I
k

|� |I
k

|2
4

⌘

=
n

X

k=1

⇣⇣

 
↵

(0) +
k�1
X

i=1

a
i

|I
i

|+ a
k

+ 1

2
|I
k

|
⌘

|I
k

|� |I
k

|2
4

⌘

=
n

X

k=1

⇣

 
↵

(0)|I
k

|+
⇣5

4
� k

⌘

|I
k

|2 + 2
k�1
X

i=1

(1� i)|I
i

||I
k

|
⌘

=
n

X

k=1

⇣ 
↵

(0)

C

1

k↵
� 1

C2

1

k2↵�1
+

5

4C2

1

k2↵
+

2

C2

1

k↵

k�1
X

i=1

⇣ 1

i↵
� 1

i↵�1

⌘⌘

Since  
↵

is bounded from above by  
↵

(x1) =  
↵

(0)+ |I1|
2 , we obtain the claim. Also note

from the previous computation that any upper-semicontinuous function that satisfies
(4.11) with values 0 on @I1 is lower than  

↵

, so that when 1 < ↵  3
2 it does not belong

to L1
⌫

.

Remark 4.14. In the above example, if the cost function c(x, y) = �|y�x| is replaced
by the more usuel Monge cost c(x, y) = |y � x|, then it can be checked that the dual
problem (P ⇤) admits a solution  2 C[0, 1] namely:

 (y) :=
1
X

n=1

⇣

|y � x
n

|� |I
n

|
2

⌘

1
I

n

(y)

In fact the unique martingale transport map given in Example 4.13 realizes the Monge
distance W1(µ, ⌫) and  given above is the associated potential.

5. Existence results for the dual problem

We recall that, in the standard case (H = 0), the existence of an optimal solution can
be derived under very mild assumptions on the cost c and moreover the optimal pair
( , c) (see Remark 4.3), inherits some regularity from the cost c. In contrast, a general
existence result for the dual problem (P ⇤) in our general framework cannot be expected
as illustrated for instance in Example 4.13. In this section, we first show the existence
of Lipschitz solutions for a regularized version of (P ⇤). Then we focus on the variance
case with quadratic cost in which the existence of Lipschitz solutions is provided.

5.1. Existence for a penalized problem. The underlying idea stems from control
theory in which a penalization term is introduced allowing the final state to di↵er from
the target. In this analogy, the penalization term is taken to be the Monge distance to
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the target measure ⌫ and the primal problem F (µ, ⌫) is approximated by

F
k

(µ, ⌫) := inf {F (µ, ⌫̃) + kW1(⌫̃, ⌫) : ⌫̃ 2 P(Y )} (5.1)

for a possibly large scalar k > 0. By the lower semicontinuity of the Monge distance
with respect to the weak convergence of measures, it can be readily checked that the
infimum above is achieved under the standing assumptions on G made in Section 1.
Moreover F

k

(µ, ⌫) converges increasingly to F (µ, ⌫).

Theorem 5.1. Assume that Y is a metric space and let F
k

(µ, ⌫) be defined by (5.1).
Then:

F
k

(µ, ⌫) = max

⇢

Z

Y

 d⌫ �
Z

X

G⇤(x, ) dµ :  is k-Lipschitz on Y

�

In particular, if F (µ, ⌫) is finite, then the dual problem (P ⇤) admits a k-Lipschiz solution
if and only if F satisfies:

F (µ, ⌫)  F (µ, ⌫̃) + kW1(⌫̃, ⌫) , for all ⌫̃ 2 P(Y ) . (5.2)

Remark 5.2. A straightforward generalization of Theorem 5.1 can be optained by
substituting the Monge distance with any convex functional � : P(Y ) ! R such that
|�(⌫1)� �(⌫2)|  kW1(⌫1, ⌫2). In that case, the dual problem involves the Fenchel
conjugate �⇤ on C(Y ) whose domain consists of k-Lipschitz functions. Then the following
equality holds:

min {F (µ, ⌫̃) + �(⌫̃) : ⌫̃ 2 P(Y )} = max

⇢

��⇤(� )�
Z

X

G⇤(x, ) dµ :  2 C(Y )

�

,

where the right hand side stands for the dual problem whose solutions exist and are
k-Lipschitz.

Remark 5.3. As will be seen in Section 6, where X = Y and G satisfies a suitable sub-
additivity condition (see Theorem 6.8), the condition (5.2) is satisfied for when G(x, p) is
Lipschitz with respect to x. On the other hand, in the specific case considered in Exam-
ple 4.10 where G(x, p) = � var(p), it can be checked directly that the map ⌫̃ 7! F (µ, ⌫̃)
is Lipschitz on P(Y ). Indeed, as F (µ, ⌫̃) = � var(⌫̃), it holds

F (µ, ⌫)� F (µ, ⌫̃) =

Z

Y

y d(⌫ � ⌫̃) ·
Z

Y

y d(⌫ + ⌫̃)�
Z

Y

|y|2 d(⌫ � ⌫̃)

=

Z

Y

y · (⇠ � y) d(⌫ � ⌫̃)

where ⇠ =
R

Y

y d(⌫ + ⌫̃) is bounded by 2C where C is a bound for the compact Y : the
function y 7! y · (⇠ � y) thus has a Lipschitz constant independant of ⌫ and ⌫̃, so that
F (µ, ·) is indeed Lipschitz on P(Y ). The solutions of (P ⇤) are described in Example
4.10.

The proof of the above result relies on the following result, which is a corollary of
Theorem 4.2.
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Lemma 5.4. Under assumtions (A1) and (A2) we have

8 2 C(Y ), F ⇤
µ

( ) =

Z

X

G⇤(x, )µ(dx) (5.3)

where F
µ

is defined on P(Y ) by F
µ

(⌫) := F (µ, ⌫).

Proof. We infer from Theorem 4.2 that

8⌫ 2 P(Y ), F
µ

(⌫) = sup

⇢

Z

Y

 d⌫ �
Z

X

G⇤(x, )µ(dx) :  2 C(Y )

�

so that F
µ

is the Fenchel conjugate of the functional  7! R

X

G⇤(x, )dµ : it follows
directly from the definition of G⇤(x, ·) and from Lemma 3.4 iii) that this functional is
convex and l.s.c. on C(Y ), so that it is equal to its biconjugate, which concludes the
proof. ⇤
Proof of Theorem 5.1. We first note that the two extrema in the equality are attained
from direct compactness and lower semicontinuity arguments over C(Y ) and P(Y ) re-
spectively. Denoting by �

kLip

the characteristic function of the subset of k-Lipschitz
functions in C(Y ), we compute

sup

⇢

Z

Y

 d⌫ �
Z

X

G⇤(x, ) dµ :  is k-Lipschitz on Y

�

= sup

⇢

Z

Y

 d⌫ � F ⇤
µ

( )� �
kLip

( ) :  2 C(Y )

�

=
�

F ⇤
µ

+ �
kLip

�⇤
(⌫) = (F

µ

O(�
kLip

⇤))⇤⇤ (⌫)

where in the last equality the notation F
µ

O(�
kLip

⇤) stands for the inf-convolution of F
µ

and �
kLip

⇤ over M(Y ), and we have used that �
kLip

is convex l.s.c. on C(Y ) so that
�
kLip

= �
kLip

⇤⇤. We now compute that for any ⌫, ⌫̃ in P(Y ) we have

�
kLip

⇤(⌫ � ⌫̃) = sup

⇢

Z

Y

 d(⌫ � ⌫̃) :  is k-Lipschitz on Y

�

= kW1(⌫̃, ⌫)

where we use a well-known characterization of the 1-Wasserstein distance (e.g. see [16]).
We thus get

(F
µ

O(�
kLip

⇤)) (⌫) = inf {F (µ, ⌫̃) + kW1(⌫̃, ⌫) : ⌫̃ 2 P(Y )} .
The right hand side is convex and continuous (and even k-Lipschitz with respect to W1)
over P(Y ) so it is equal to its Fenchel biconjugate, which concludes the proof. ⇤

5.2. The variance case with a quadratic cost. Here we assume that X = Y is the
closure of a bounded convex subset of Rd. Let � > 0 be a real positive parameter. Then,
for every pair (µ, ⌫) 2 (M(X))2, we set

F
�

(µ, ⌫) := inf

⇢

�

Z

X

2
|x� y|2 d� �

Z

X

var(�x) dµ : � 2 ⇧(µ, ⌫)

�

As shown in the Lemma below, whose proof follows from the discussion in §2.2, F
�

(µ, ⌫)
as a function of ⌫ can be seen as an interpolation between the Wasserstein distance
W2(µ, ·) and the variance.
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Lemma 5.5. It holds F
�

(µ, ⌫) & � var(⌫) as �& 0, whereas

W 2
2 (µ, ⌫)�

var(⌫)

�
 F

�

(µ, ⌫)

�
 W 2

2 (µ, ⌫).

It is convenient to search solutions  to the dual problem associated with (P
�

) in the
form  = �'. After some subtle manipulations which will be detailed in the proof of
Theorem 5.6 below, it turns out that we are led to search ' solving:

sup

⇢

�
Z

X

'O�
2
|·|2 dµ�

Z

X

'⇤ d⌫ : ' convex continuous

�

(Q
�

)

where

'O�
2
|·|2 (x) := inf

z2X

⇢

'(z) +
�

2
|x� z|2

�

denotes the Moreau-Yosida transform of ' (implicitely extended by +1 for z /2 X).

Theorem 5.6. The supremum of (Q
�

) is achieved and

F
�

(µ, ⌫)

2�
= sup(Q

�

) + c
�

, c
�

=
m2(µ) +m2(⌫)

2
� 1

2�
m2(⌫) . (5.4)

Moreover a pair (�,') is optimal i↵ it holds for µ-a.e x

supp(�x) ⇢ @'
⇥

x� 1

�
[�x]

⇤

. (5.5)

Notice that, for � ! +1, we recover the well known optimality condition for the W2-
Wasserstein distance. Indeed if µ is absolutely continous, then an optimal transport is
obtained by taking T (x) = r'(x) (Brenier’s map) which by the convexity of ' is well
defined µ-a.e. In order to prove Theorem 5.6, we will need the following technical result:

Lemma 5.7. let ' : Rd ! (�1,+1) be a convex l.s.c. proper function. Then for

every x 2 Rd

and � > 0, the following identity holds

�

2
|x|2 � 'O�

2
|·|2 (x) = '⇤O 1

2�
|·|2 (�x) (5.6)

Proof. One has

�

2
|x|2 � 'O�

2
|·|2 (x) = sup

y2Rd

⇢

�

2
|x|2 � �

2
|y � x|2 � '(y)

�

= sup
y2Rd

(

�x · y �


'(y) +
�

2
|y|2

�2
)

=



'+
�

2
|·|2

�⇤
(�x).

The equality (5.6) follows by noticing that the convex continuous function '⇤O 1
2� |·|2

admits '+ �

2 |·|2 as Fenchel conjugate.
⇤
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Proof of Theorem 5.6. We compute

F
�

(µ, ⌫)

2�
= inf

�2⇧(µ,⌫)

(

Z

X

2

|x� y|2
2

d� +
1

2�

✓

Z

X

|[�x]|2 dµ�
Z

X

2
|y|2 �x(dy)µ(dx)

◆

)

=
m2(µ) +m2(⌫)

2
� 1

2�
m2(⌫) + inf

�2⇧(µ,⌫)

⇢

Z

X

�x · [�x] + 1

2�
|[�x]|2 µ(dx)

�

= c
�

+ inf
�2⇧(µ,⌫)

⇢

Z

X

G
�

(x, �x)µ(dx)

�

= c
�

+ sup

⇢

Z

Y

 d⌫ �
Z

X

G⇤
�

(x, ) dµ :  2 U(X)

�

(5.7)

where in the third line we set G
�

(x, p) := �x · [p] + 1
2� |[p]|2 , for every p 2 P(X) and

in the last line, we applied the duality formula (4.5). In this case the Fenchel conjugate
G⇤
�

can be determined as follows:

�G⇤
�

(x, ) = inf
p2P(X)

⇢

Z

� dp� x · [p] + 1

2�
|[p]|2

�

= inf
z2X

⇢

(� )⇤⇤(z) + 1

2�
|�x� z|2

�

� �

2
|x|2

=

✓

(� )⇤⇤O 1

2�
|·|2

◆

(�x)� �

2
|x|2

= �
✓

(� )⇤O�
2
|·|2

◆

, (5.8)

where for the last equality we applied the identity (5.6) to the convex l.s.c. function
' = (� )⇤. Noticing that �'⇤ = �(� )⇤⇤ �  , we infer from (5.7) that

F
�

(µ, ⌫)

2�
 c

�

+ sup

⇢

�
Z

X

'O�
2
|·|2 dµ�

Z

X

'⇤ d⌫ : ' convex

�

.

The converse inequality is straightforward by restricting the supremum in (5.7) to those
elements  2 U(X) which are concave functions. So far we have established the duality
formula (5.4).

The existence issue can be fixed by very similar arguments to those in [9]. Let {'
n

}
be a sequence of convex continuous functions on X which is maximizing for (Q

�

). Up to
adding a constant we assume that inf

X

'
n

= 0 so that '⇤
n

(0) = 0 ('
n

is extended by +1
over Rd \X). Let R > 0 such that X ⇢ B

R

. Then as '⇤
n

(y) = sup
x2X (x · y � '

n

(x)),
it is straightforward that

|'⇤
n

(y1)� '⇤
n

(y2)|  R |y1 � y2| 8y1, y2 22 Rd .

On the other hand, the non negative function defined by

'R

n

(x) := inf
y2X

{'
n

(y) +R |y � x|} , (5.9)

satisfies the following properties:

'R

n

 '
n

, 'R

n

(x)  2R2 , ('R

n

)⇤ = ('
n

)⇤ on B
R

, 'R

n

(x) 2 Lip
R

(X) . (5.10)
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Indeed, the first two inequalities in (5.10) follow from (5.9) by choosing y = 0 or such
that '

n

(y) = 0. The third relation holds since ('R

n

)⇤ = '⇤
n

+ �
B

R

on Rd whereas the
equi-Lipschitz property of 'R

n

is straightforward. It follows from Ascoli’s Theorem that
both 'R

n

and ('R

n

)⇤ are relatively compact in C(X). Thus, possibly after extracting a
subsequence, we may assume that 'R

n

! ', ('R

n

)⇤ ! '⇤ uniformly in X. Here we exploit
the classical fact that the two limits are convex conjugate to each other (see for instance
[1]). Similarly, as ('R

n

)⇤ + 1
2� |·|2 ! (')⇤ + 1

2� |·|2 uniformly in X, by passing to the

conjugates (which are still R-Lipschitz), we deduce that 'R

n

O�

2 |·|2 ! 'O�

2 |·|2 in C(X).
Therefore, by exploiting (5.10), we can conclude that the convex continuous function '
is optimal. Indeed:
Z

X

'O�
2
|·|2 dµ+

Z

X

' d⌫ = lim
n!1

✓

Z

X

('R

n

O�
2
|·|2) dµ+

Z

X

('R

n

)⇤ d⌫

◆

 lim sup
n!1

✓

Z

X

('
n

O�
2
|·|2) dµ+

Z

X

('
n

)⇤ d⌫

◆

= � sup(Q
�

) .

Now we turn to the optimality condition. Let (�,') be an admissble pair for (P
�

,Q
�

)
and let  = �'⇤. Then, in view of (4.2), (�,') is optimal if and only if the inclusion  2
@G

�

(x, �x) holds for µ-a.e x 2 X. In view of the definition of G
�

and of (5.8), denoting
by w : X ! X a Borel function such that 'O�

2 |·|2 (x) = '(w(x)) + �

2 |x� w(x)|2 , we
have:

G
�

(x, �x) +G⇤
�

(x, )� h�x, i = �x · [�x] + 1

2�
|[�x]|2 + 'O

✓

�

2
|·|2

◆

(x) + h�x,'i

=

Z

X

['(w(x)) + '⇤(y)� w(x) · y] �x(dy)

+
�

2

�

�

�

�

x� w(x)� 1

�
[�x]

�

�

�

�

2

.

Thus one has  2 @G
�

(x, �x) if and only if x�w(x) = 1
�

[�x] together with the condition
that y 2 @'(w(x)) holds �x a.e. This is exactly the requirement (5.5). ⇤

Example 5.8. Let us illustrate Theorem 5.6 in the setting of Example 3.6 : if '
�

is
convex continuous on [0, 1] and is an optimal solution for (Q

�

) then it should satisfy
support(�x) ⇢ @'

�

�

x� 1
�

[�x]
�

for x = 0 and x = 1, which yields that '⇤
�

is a�ne with
derivative x� 1

�

[�x] on support(�x) for x = 0 and x = 1. For � 2 ]0, 12 [ this gives

'⇤
�

(y) =
�� 1

2�
y + b

while for � � 1
2 one has

'⇤
�

(y) =

(

� 1
4�y +

1
2 � 1

4� + b if y  1
2

�

1� 3
4�

�

y + b if y � 1
2

Note that this form is not the same as that found in Example 4.11 where we solve the
dual problem (4.10). However we observe that the optimal potential  

�

found for the
latter one coincides up to an additive constant with � |·|2 � 2�'⇤

�

.
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6. The subadditive case

In this part we shall assume that X = Y and that X is the closure of a bounded
convex subset of Rd. In addition, we will assume that the function G(x, p) satisfies (A3)
and :

G(x, �
x

) = 0 for every x 2 X (6.1)

This amounts to say that F (µ, ⌫) = 0 whenever µ = ⌫.
In order to avoid multiple occurences of minus sign, it is convenient to reformulate

the relaxed dual problem appearing in (4.5) with the new unknown ' = � . Then
G⇤(x, ) = �'G(x) where we have set

8x 2 X , 'G(x) := inf

⇢

Z

X

' dp+G(x, p) : p 2 P(X)

�

. (6.2)

Accordingly, we can rewrite the dual problem as

sup(P⇤) = sup

⇢

Z

X

'Gdµ�
Z

X

' d⌫ : ' 2 S
b

(X)

�

where S
b

(X) denotes the set of bounded lower semicontinuous functions from X to R.
We will denote by G the following subclass of invariant functions

G = {' 2 S
b

(X) : ' = 'G} (6.3)

Lemma 6.1. For every ' 2 S
b

(X), the infimum in (6.2) is achieved (for all x) and

'G

belongs to S
b

(X). Moreover 'G  ' and the invariant set G is a convex subset of

S
b

(X).

Proof. The first statement is straightforward by using the lower semicontinuity of ' and
that of G on the compact set of X ⇥ P(X). The second one follows from (6.1) and of
the fact that (✓ '1 + (1 � ✓)'2)G � ✓ 'G

1 + (1 � ✓)'G

2 for every '1,'2 in S
b

(X) and
✓ 2 [0, 1]. ⇤

The next Lemma is motivated by the celebrated Kantorovitch-Rubinstein formulation
for (P⇤) which arises in the case where H = 0 and c is subadditive and vanishes on the
diagonal (we refer for instance to [16] for more details)..

Lemma 6.2. Assume that the transform ' 2 S
b

(X) 7! 'G 2 S
b

(X) is idempotent and

let G be defined by (6.3). Then

F (µ, ⌫) = sup(P⇤) = sup

⇢

Z

X

'dµ�
Z

X

'd⌫ : ' 2 G
�

, (6.4)

Proof. As G is a subset of S
b

(X), we clearly have that sup(P⇤) is larger than the right
hand side of (6.4). On the other hand, as 'G  ' for all ' 2 S

b

(X) (see Lemma above),
one has

sup(P⇤)  sup

⇢

Z

X

'Gdµ�
Z

X

'Gd⌫ : ' 2 S
b

(X)

�

 sup

⇢

Z

X

 dµ�
Z

X

 d⌫ :  2 G
�

where, in the last inequality, we used that {'G : ' 2 S
b

(X)} is a subset of G by the
idempotent property. ⇤
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Like in the Rubinstein case, we expect that the regularizing property of the operator
' 7! 'G will be a cornerstone to obtain the existence of a minimizer for (P ⇤). In the
sequel we will use the following definition

Definition 6.3. We say that the cost function G is idempotent if it holds :

'GG = 'G , for every ' 2 S
b

(X).

The link between the latter property and the subadditivity of the functional F (µ, ⌫)
is precised in the following key result:

Proposition 6.4. Assume that G satisfies (A3) and (6.1). Then the following asser-

tions are equivalent:

(i) F (µ, ⌫)  F (µ, p) + F (p, ⌫) , for every (µ, ⌫, p) 2 (P(X))3

(ii) For every (p, ⌫) 2 (P(X))2 and every p-measurable family {�y}
y2X , one has

G(x, ⌫)  G(x, p) +

Z

X

G(y, �y) p(dy) whenever ⌫ =

Z

X

�y p(dy). (6.5)

(iii) G is idempotent.

Proof. (i) ) (ii). Apply (i) for µ = �
x

, ⌫ =
R

�yp(dy). Then,

G(x, ⌫)  G(x, p) + F (p, ⌫)  G(x, p) +

Z

X

G(y, �y) p(dy) ,

where, in the last inequality, we use the definition of F (p, ⌫) as an infimum.

(ii) ) (iii). As 'GG  'G, it is enough to check that, for every (x, p) 2 X ⇥ P(X),
one has:

G(x, p) +

Z

X

'G(y) p(dy) � 'G(x) .

For every y 2 X, we chose a minimizer �y for 'G(y) (see (6.2)). In fact we can do this
in such way that the map y 2 X ! �y is p-measurable. Indeed we may use a selection
Theorem (e.g. Theorem III.30 in [8]) for the multifunction y 2 X 7! {q 2 P(X) :
G(y, q) +

R

X

'dq  'G(y)} whose graph is a Borel subset of X ⇥ P(X). Then setting
⌫(dz) =

R

X

�y(dz) p(dy), we obtain

G(x, p) +

Z

X

'G(y) p(dy) = G(x, p) +

Z

X

G(y, �y)p(dy) +

Z

X

2
'(z)�y(dz) p(dy)

� G(x, ⌫) +

Z

X

'(z) ⌫(dz)

� 'G(x)

where in the second line the inequality (ii) is used.

(iii) ) (i). For every ' 2 G, one has
Z

X

'dµ�
Z

X

'd⌫ =

✓

Z

X

'dµ�
Z

X

'dp

◆

+

✓

Z

X

'dp�
Z

X

'd⌫

◆

 F (µ, p) + F (p, ⌫)

Assuming (iii), we can apply Lemma 6.2 so that the supremum of the left hand member
above with respect to ' 2 G is equal to F (µ, ⌫). ⇤
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Remark 6.5. By the characterization given in 6.4(ii), it follows immediately that if
G1, G2 are two idempotent functions, so is the sum G1 +G2. On the other hand, as the
condition 6.4(i) is stable by passing to a supremum, we deduce that sup

i

G
i

is idempotent
for any family {G

i

, i 2 I} of idempotent functions.

Remark 6.6. It follows from 6.4(i) that G(x, p) =
R

X

c(x, y)p(dy) satisfies the idem-
potent property if and only if the function c is subadditive in the usual sense (i.e.
c(x, z)  c(x, y) + c(y, z)). In that case, the idempotent property can be extended to
cost functions of the kind (see subsection 4.3) G(x, p) =

R

X

c(x, y)p(dy) + h([p] � x)
provided h : Rd ! R [ {+1} is a convex, l.s.c subadditive function. In particular we
may consider h(z) = �

z=0 which corresponds to the martingale constraint. Alterna-
tively the martingale constraint can be penalized by taking h(z) = � |z| where � is a
large positive parameter. A slightly more general case of idempotent entropy H(x, p) is
presented in the next Lemma 6.7 showing thus that G(x, p) =

R

X

c(x, y) p(dy)+H(x, p)
is idempotent as well.

Lemma 6.7. Let { 
k

: 1  k  N} be a finite subset of C(X) and let L : P(X) !
RN

be the linear map defined by L(p) =
�R

X

 
k

dp
�

1kN

. Then the entropy given by

H(x, p) := h (L(p)� L(�
x

)) is idempotent for every convex, l.s.c subadditive function

h : RN ! R [ {+1}.
Proof. We are done if H satisfies the condition (6.5) of Proposition 6.4. Let ⌫, p 2 P(X)
and {�x} a p� measurable family such that ⌫ =

R

X

�y p(dy). By the linearity of L we
infer that L(⌫)� L(p) =

R

X

(L(�y)� L(�
y

)) p(dy). Thus by Jensen inequality:

h (L(⌫)� L(p)) 
Z

X

h (L(�y)� L(�y)) p(dy) =

Z

X

H(y, �y) p(dy) .

The required inequality (6.5) follows then thanks to the subadditivity property of h:

H(x, ⌫) = h (L(⌫)� L(�
x

))  h (L(p)� L(�
x

)) + h (L(⌫)� L(p))

 H(x, p) +

Z

X

H(y, �y) p(dy) .

⇤
We conclude this Section by an existence result for the dual problem which generalizes

the case considered by Kantorovich and Rubinstein where G(x, p) =
R

X

c(x, y) p(dy)
being c a continous metric on X (see [16, Thm 1.14]). In particular we may apply next
Theorem when G(x, p) =

R

X

c(x, y) p(dy) + � |[p]� x| where � > 0 acts as a Lagrange
multiplier for the martingale constraint [�x] = x.

Theorem 6.8. Let G(x, p) be an idempotent cost such that the family of functions

F
G

:= {G(·, p) : p 2 P(X)} is equicontinuous. Then the dual problem (P⇤) admits a

solution in C(X). If F
G

is equi-Lipschitz, then (P⇤) admits a Lipschitz solution.

Proof. By Lemma 6.2, we are reduced to show that the supremum in the right hand
side of (6.4) is achieved by an element of G. Let ('

n

)be a maximizing sequence in G. As
we can add to every '

n

a constant c
n

without changing the value of
R

'
n

dµ� R

'
n

d⌫

and since ('
n

+ c
n

)G = 'G

n

+ c
n

= '
n

+ c
n

, we may assume that inf
X

'
n

= 0 for every n
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(note that the latter infimum is actually a minimum since '
n

is l.s.c and X is compact).
On the other hand, recalling that 'G

n

(x) = inf{R '
n

dp + G(x, p)}, it holds for every
(x, y) 2 X2:

�

�'G

n

(x)� 'G

n

(y)
�

�  sup{G(x, p)�G(y, p) : p 2 P(X)} := !(x, y) ,

where, by the (uniform) equicontinuity assumption , !(x, y)  "(|x� y|) for a suitable
continuous function ✏(t) on R+ vanishing at t = 0. As '

n

= 'G

n

, we deduce that {'
n

} is
an equicontinuous and uniformly bounded family in C(X). By Arzelà-Ascoli Theorem,
it follows that a subsequence of ('

n

) (still denoted by the same symbol) converges
uniformly to an element '1 2 C(X). Observe that this function '1 is Lipschitz in case
the family F

G

is assumed to be equi-Lipschitz. Let us show that ' solves (P⇤). Since
Z

'1 dµ�
Z

'1 d⌫ = lim
n!1

✓

Z

'
n

dµ�
Z

'
n

d⌫

◆

= sup(P⇤) ,

it is enough to check that '1 2 G. To that aim, we pass to the limit n ! 1 in
the inequality

R

'
n

dp + G(x, p) � 'G

n

(x) = '
n

(x). We then obtain the inequality
R

'1 dp+G(x, p) � '1(x) holding for every (x, p) 2 X⇥P(X). Thus 'G

1(x) � '1(x),
hence 'G

1 = '1. ⇤

7. Some perspectives for martingale transport

Here we focus on the case where X = Y is a convex compact subset of Rd and

G(x, p) =

Z

X

c(x, y) p(dy) + �[p]=x

, (7.1)

being c : X2 ! R a continuous function. We denote by MT (µ, ⌫) the non empty subset
of ⇧(µ, ⌫) consisting of martingale transport plans i.e. such that [�x] = x µ-a.e. Recall
that the transport cost F (µ, ⌫) = inf{R

X

2 c d�, � 2 MT (µ, ⌫)} is finite i↵ µ 
c

⌫ in the
sense of convex order (see Remark 4.6). From now on we assume that

µ 
c

⌫ , X = co(supp(⌫)) . (7.2)

We observe that assuming the second condition is not restrictive since µ 
c

⌫ implies that
supp(µ) ⇢ co(supp(⌫)) and that any transport plan � 2 MT (µ, ⌫) satisfies supp(�x) ⇢
supp(⌫) for µ-a.e. x 2 X.

The existence issue for the dual problem in the case of (7.1) is a major problem.
The di�culty arises with the lack of compactness of maximizing sequences and even the
absence of bounded solutions can be demonstrated for very specific cost functions (see
Example 4.13 where in some cases unbounded solutions do exist in L1

⌫

). In fact, except
in the one dimensional case (see [5, 6, 7]), very few results are known about the existence
of continuous solutions and, related to this, we point out the recent contribution [10],
where the achievement for the dual problem is proved in Rd in the case of the cost
c(x, y) = ± |x� y| under the additional assumption:

Z

' dµ 
Z

' d⌫ for every subharmonic function ' on Rd .
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The aim of this Section is to provide an alternative approach for existence in the case
of (7.1) for c being a continuous function. We will make use of the function

!(x, y) := sup{|c(x, z)� c(y, z)| : z 2 X} (7.3)

which is continuous on X2 and vanishes on the diagonal. Moreover, we will denote
shortly by '̂ the G transform of a function ' (defined in (6.2)) in the case of G defined
by (7.1), that is

'̂(x) := inf
[p]=x

⇢

Z

X

(c(x, y) + '(y)) p(dy)

�

= (c(x, ·) + ')⇤⇤(x) . (7.4)

(note that here the Fenchel conjugates defined on Rd are computed assuming that ' =
+1 in Rd\X). With these notations, we may rewrite the dual problem and the equality
inf(P ) = sup(P ⇤) of Theorem 4.2 as

F (µ, ⌫) = sup(P⇤) = sup

⇢

Z

X

'̂ dµ�
Z

X

' d⌫ : ' 2 S
b

(X)

�

, (7.5)

where S
b

(X) is the set of l.s.c. and bounded functions already introduced in subsection
6. Moreover, in a similar way as in (4.8), we have the following necessary and su�cient
optimality for an admissible pair (�,') in MT (µ, ⌫)⇥ S

b

(X):

'̂(x) =

Z

Y

(c(x, y) + '(y)) �x(dy) µ� a.e. (7.6)

The novelty of our approach is that we are going to relax the maximization problem
above using the topology of �-convergence. To that aim we need to allow unbounded
l.s.c. competitors and accordingly we first enlarge the admissible class S

b

(X) used in
(7.5) as follows:

S(X) := {' : X 7! R [ {+1} : ' l.s.c. and dom' 6= ; } .

We point out that elements of S(X) reach a finite minimum on the compact set X and
that their Fenchel biconjugate '⇤⇤ are convex proper. On the other hand, we deduce
easily from (7.4) that, for every ' 2 S(X), '̂ belongs to S(X) and satisfies

'⇤⇤ +m  '̂  '⇤⇤ +M for every ' 2 S(X) , (7.7)

wherem,M are respectively a lower bound and an upperbound for c onX2 (in particular
every element ' in the invariant set G (see ((6.3)) is such that '� '⇤⇤ is bounded).

Let us now recall the definition and the main features of �-convergence in our finite
dimensional context. For every sequence ('

n

) in S(X), we define for every x 2 X:

��lim inf
n!1

'
n

(x) := inf
x

n

!x

n

lim inf
n!1

'
n

(x
n

)
o

, ��lim sup
n!1

'
n

(x) := inf
x

n

!x

⇢

lim sup
n!1

'
n

(x
n

)

�

.

We say that '
n

�-converges to ' (denoted '
n

�! ') if �� lim inf
n!1 '

n

= ��
lim sup

n!1 '
n

= ' holds on X. Notice that in general ' is not proper unless we assume
that the infimum of '

n

does not blowup to infinity. If it is the case then ' 2 S(X) (a
�-limit is always l.s.c.) and, as X is compact, it holds inf

X

'
n

! inf
X

'. Another useful
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property is the following generalization of Fatou’s Lemma holding for any sequence ('
n

)
of nonnegative functions in S(X) and any probability measure p 2 P(X):

'
n

� 0 and '
n

�! ' ) lim inf
n

Z

X

'
n

dp �
Z

X

' dp . (7.8)

(this can be deduced by noticing that ' = lim
n

g
n

where g
n

is the lower semicontinuous
enveloppe of g

n

:= inf
m�n

'
m

).
Eventually we recall that by Kuratowski’s Theorem, every sequence ('

n

) admits a
�-convergent subsequence (we refer for instance to [1] for further details about these
notions and the possibility to construct a metrizable topology associated with the �-
convergence.

The following stability result holds:

Proposition 7.1. Let ('
n

) a sequence in S(X) such that |inf
X

'
n

|  C and '
n

�! '.
Then:

i) ' 2 S(X) and '⇤⇤
n

�! '⇤⇤

ii) It holds '̂
n

�! '̂. In particular if '
n

2 G for every n, then ' = '̂.

Proof. i) By the upper bound hypothesis, it holds : sup
n

|'⇤
n

(0)| < +1. On the
other hand, if R denotes the diameter of the compact subset X and since '⇤

n

(y) :=
sup

x2X {x · y � '
n

(x)}, we derive that:

|'⇤
n

(y)� '⇤
n

(z)|  R |y � z| , for all (y, z) 2 X2 .

Thus the family {'⇤
n

} is relatively compact in C(X). Let us show that '⇤ is the unique
cluster point. In fact by the property of �-convergence, one has for every y 2 X:

�'⇤
n

(y) = inf
x2X

{'
n

(x)� x · y} ! inf
x2X

{'(x)� x · y} = �'⇤(y) ,

where we used that X is compact and the fact that '
n

� (·|y) �! '� (·|y). In particular
for y = 0, we obtain that '⇤(0) = lim

n

'⇤
n

(0) is finite , thus inf ' 2 R and ' belongs

to S(X). Now it is a consequence of [1, Corollary 3.13, pp 286 ] that '⇤
n

�! '⇤ and

'⇤⇤
n

�! '⇤⇤.

Let us now prove ii). We show first that if (x
n

) is a sequence in X converging to x,
then lim inf

n

'̂
n

(x
n

) � '̂(x). To that aim, it is enough to apply the assertion i) to the
sequence ( 

n

) in S(X) where  
n

:= '
n

+ c(x
n

, ·). Indeed the continuity of c implies

that c(x
n

, ·) ! c(x, ·) uniformly in X so that one deduces easily that  
n

�!  with
 := ' + c(x, ·). On the other hand, as |inf  

n

� inf '
n

|  M , the sequence (inf  
n

)
remains bounded. Recalling (7.4) we conclude that

lim inf
n

'̂
n

(x
n

) = lim inf
n

 ⇤⇤
n

(x
n

) �  ⇤⇤(x) = '̂(x) .

It remains to show that for every x 2 X, we can find a sequence (x
n

) converging to x
such that lim sup

n

'̂
n

(x
n

)  '̂(x). We may assume that '̂(x) < +1. In a similar way

as above, by applying the assertion i) to �
n

:= '
n

+ c(x, ·), we obtain that �⇤⇤
n

�! �⇤⇤

where � := ' + c(x, ·). In particular this implies the existence of a sequence x
n

! x
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such that �⇤⇤
n

(x
n

) ! �⇤⇤(x). We observe that '
n

+c(x
n

, ·)  �
n

+!(x, x
n

), thus passing
to the biconjugate, we have

'̂
n

(x
n

) = ('
n

+ c(x
n

, ·))⇤⇤(x
n

)  �⇤⇤
n

+ !(x, x
n

).

Therefore, it holds lim sup '̂
n

(x
n

)  lim sup�⇤⇤
n

(x
n

) = �⇤⇤(x) = '̂(x) and the claim
follows.

⇤

The regularization e↵ect induced by the transform '! '̂ is summarized in the next
result:

Lemma 7.2. Let ('
n

) a sequence in S(X) such that |inf
X

'
n

|  C and '
n

�! '.
Assume that the convex subset D

'

:= {'⇤⇤ < +1} has non empty interior. Then

'̂
n

is continuous and converges uniformly to '̂ on every compact subset K ⇢⇢ D
'

.

Furthermore if ! given by (7.3) satisfies !(x, y)  K |x� y|, then ' is locally Lipschitz

on D
'

.

Proof. By Ascoli-Arzela’s Theorem, we are done if we show that, for every x0 in the
interior of D

'

, we can find r > 0 such that {'̂
n

} is equi-continuous (resp. equi-Lipschitz)
in the ball B(x0, r). To show this claim, we consider any simplex ⌃ = co{a0, a1, . . . , a

d

}
such that ⌃ ⇢ D

'

and ⌃ contains x0 in its interior. Then we choose r so small that

B(x0, 3r) ⇢ ⌃. By the assertion i) of Proposition 7.1, we have '⇤⇤
n

�! '⇤⇤, there exists
a
i,n

! a
i

such that lim sup
n

'⇤⇤
n

(a
i,n

)  '⇤⇤(a
i

) < +1. As ⌃
n

= co{a0,n, a1,n, . . . , a
n,d

}
is arbitrary close to ⌃ for large n, it contains a smaller ball B(x0, 2r) so that, by the
convexity of '⇤⇤

n

, we have:

lim sup
n!1

sup
B(x0,2r)

'⇤⇤
n

 C := max{'⇤⇤(a
i

) , 0  i  d} . (7.9)

Accordingly {'⇤⇤
n

} is equi-Lipschitz on the smaller ball B(x0, r). Let us now consider
for every x, the convex function fx

n

:= (c(x, ·) + '
n

)⇤⇤. For every x, y 2 X, it holds

|fx

n

� fy

n

|  !(x, y) , fx

n

 '⇤⇤
n

+M , '̂
n

(x) = fx

n

(x) .

Then we deduce the following inequality:

|'̂
n

(x)� '̂
n

(y)|  |fx0
n

(x)� fx0
n

(y)|+ !(x0, x) + !(x0, y) . (7.10)

Furthermore, by the estimate (7.9), the family of convex functions {fx0
n

} is uniformly
majorized on B(x0, 2r) (by a constant a little larger than C +M). Thus it is also equi-
Lipschitz on B(x0, r). The equi-continuity (resp. equi-Lipschitz) property of the family
{'̂

n

, n 2 N} on B(x0, r) that we claimed follows then from (7.10). ⇤

Remark 7.3. By a careful reading of the proof, it is possible to show that, even if D
'

has an empty interior, the uniform convergence of ('̂
n

) still holds on every compact set
K

R

:= {'⇤⇤  R}. Indeed the arguments developed there apply on the relative interior
of the possibly lower dimensional convex subset D

'

.
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We are now in position to define our relaxed version for the dual problem (P ⇤). Let
us define the functional E : S(X) ! R [ {+1} by

E(') =

(

R

' d⌫ � R

'̂ dµ if ' 2 S
b

(X)

+1 otherwise

It can be easily checked that E is a convex lower bounded functional and it holds:
inf{E(') : ' 2 S(X)} = �F (µ, ⌫). We consider the �-lower semicontinuous enveloppe
defined by

E(') := inf
n

lim inf
n!1

E('
n

) : '
n

�! '
o

.

and define the relaxed dual problem as:

inf
�

E(') : ' 2 S(X)
 

(Q)

Thanks to the compactness argument due to Kuratowski, we deduce immediately

Lemma 7.4. The relaxed problem (Q) admits a (possibly unbounded) solution and we

have

�F (µ, ⌫) = inf{E(') : ' 2 S(X)} = min{E(') : ' 2 S(X)} .

Proof. Since E thus E are invariant by addition of a constant function, we can choose a
minimizing sequence ('

n

) in S(X) such that inf '
n

= �'⇤
n

(0) = 0. By Kuratowski

compactness Theorem (and since X is compact), we have '
n

k

�! ' for a suitable
subsequence where ' is an element of S(X) (such that inf ' = 0). We infer that
E(') = inf{E(') : ' 2 S(X)} = inf{E(') : ' 2 S(X)}. ⇤

In order to make this abstract existence result meaningful, we need now to identify
E(') and in particular the subset {' 2 S(X) : E(') < +1}. This central issue is
partially achieved only and we present here some recent progress. In the next Theorem
7.5, we will show that:

E(') =

Z

' d⌫ �
Z

'̂ dµ for every ' 2 S(X) \ L1
µ+⌫ , (7.11)

thus in particular E = E on S
b

(X). Notice that by (7.7) , it holds '̂ 2 L1
µ

whenever

' 2 L1
⌫

. In order to indentify E(') for elements ' which are not in L1
⌫

, we set:

I
�

(') :=

Z

X

✓

Z

X

' d�x � '̂(x)

◆

µ(dx) ,

for every � 2 MT (µ, ⌫). Notice that by (7.7) and since [�x] = x, we have:

g
'

(x) :=

Z

X

' d�x � '̂(x) � �M µ� a.e. (7.12)

so that I
�

(') > �1. In view of (7.11), we see that, for ' 2 S(X) \ L1
⌫

, it holds
E(') = I

�

(') for every � 2 MT (µ, ⌫). The issue of the next result is to extend this
equality to a suitable subclass of S(X). We define

�0(X) =

(

' =
k=1
X

k=0

 
k

,  
k

convex continuous on X

)

. (7.13)
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In the one dimensional case, it is shown in [7, Lemma 4.1] that �0(X) coincides with
the set of all convex l.s.c. functions on X. We believe that it is still the case when X
is a compact convex subset of Rd. As a consequence of Proposition 7.1 and Lemma 7.2,
we have

Theorem 7.5. Assume (7.2) and let ' 2 S(X) be such that that µ ({'⇤⇤=+1}) = 0.
Then it holds

E(') � I
�

(') , for all � 2 MT (µ, ⌫) . (7.14)

Assume furthermore that ' is of the form ' = u + f with u 2 S(X) \ L1
µ+⌫ and f 2

�0(X). Then E(') = I
�

(') (and I
�

(') is independent of the choice of � 2 MT (µ, ⌫)).
In particular, it holds (7.11).

Proof. Let ' 2 S(X) such that µ ({'⇤⇤=+1}) = 0 , � 2 MT (µ, ⌫) and g
'

as defined
in (7.12). We have to prove that E(') � R

X

g
'

dµ. To that aim we consider an arbitrary

sequence ('
n

) in S
b

(X) such that '
n

�! ' to which we associate the sequence (g
'

n

)
in L1

µ

where g
'

n

(x) :=
R

X

'
n

d�x � '̂
n

(x) . We are then reduced to show the following
claim: lim inf

n

R

X

g
'

n

dµ � R

X

g
'

dµ. Without loss of generality, we may assume that
'
n

is nonnegative. Then by the �-convergence of '
n

, we know already (see (7.8)) that
lim inf

R

X

'
n

d�x � R

X

'd�x. On the other hand, by Lemma 7.2 (and remark 7.3), '̂
n

is
continuous and converges uniformly to '̂ on K

R

:= {'⇤⇤  R} for every R. It follows
in particular that '̂

n

! '̂ on {'⇤⇤ < +1} that is µ-a.e. according to our assumption.
Thus we deduce that lim inf

n

g
'

n

� g
'

holds µ� a.e. and the claim follows by applying
Fatou’s Lemma. Thus we have proved that E(') � R

X

g
'

dµ.

Let us now show that the reverse inequality holds when ' = u+ f with u 2 S(X) \
L1
µ+⌫ and f 2 �0(X). It is not restrictive to assume that u � 0 and

R

X

g
'

dµ <
+1. We consider a non decreasing sequence of non negative (u

n

) in S
b

(X) such that
sup

n

u
n

= u. Let ( 
k

) be a sequence associated to f through the definition (7.13) and
set f

n

:=
P

n�1
k=0  k

. Then (f
n

) is a non decreasing sequence of convex functions in
S
b

(X) such that f = sup f
n

and f
n+1 � f

n

=  
n

is convex continuous. Let us define

'
n

:= u
n

+ f
n

. Clearly it holds '
n

�! ' since ('
n

) is monotone non decreasing. By

the assertion ii) of Proposition 7.1, we infer that '̂
n

�! '̂. As ('̂
n

) is nondecreasing we
deduce that '̂

n

! '̂ pointwise. All in all we have proved that g
'

n

(x) ! g
'

(x) for µ�
almost all x 2 X. As E(')  lim sup

n

R

X

g
'

n

dµ, we are done if we can establish that
g
'

n

! g
'

in L1
µ

.
By dominated convergence Theorem, it is enough that g

'

n

(recall g
'

n

� �M) satisfies
the upperbound g

'

n

 � for a suitable function in L1
µ

. In fact, by (7.7), we have
'̂
n

� (u
n

+ f
n

)⇤⇤ +m � f
n

+m so that:

g
'

n

(x) 
Z

X

u
n

�x(dy) + h
n

(x)�m where h
n

(x) =

Z

X

f
n

d�x � f
n

(x) .

Here we use the same trick as in [7], namely that by the convexity f
n+1 � f

n

=  
n

, it
holds

h
n+1(x)� h

n

(x) =

Z

X

 
n

d�x �  
n

(x) � 0 .



A NEW CLASS OF COST FOR OPTIMAL TRANSPORT PLANNING 33

Thus u
n

 u and h
n

 h where h(x) :=
R

X

f d�x � f(x). We are led to g
'

n

 � where
� :=

R

X

u d�x + h(x). Let us show that the non negative function � belongs to L1
µ

. By
(7.7), we have '̂  '⇤⇤ +M  '+M so that g

'

� � � u�M . Thus:
Z

X

� dµ 
Z

X

g
'

dµ+

Z

X

u dµ+M

The conclusion follows since we assumed that g
'

and u belong to L1
µ

. ⇤

Remark 7.6. As E(') coincides with E(') when ' is bounded, the functional E is
lower semicontinuous on S

b

(X) with respect to the �� convergence and E is actually
an extension of E from S

b

(X) to S(X). Coming back to the original dual problem (P ⇤)
and exploiting the characterization of E on S(X) \ L1

µ+⌫ , we deduce that:

sup(P⇤) = sup

⇢

Z

X

'̂ dµ�
Z

X

' d⌫ : ' 2 S(X) \ L1
µ+⌫

�

As a consequence of Theorem 7.5, we obtain two corollaries:

Corollary 7.7. Assume that there exists a maximizing sequence ('
n

) for (P ⇤) such that

�

�

�

�

inf
X

'
n

�

�

�

�

+ k'
n

k
L

1
µ+⌫

 C. (7.15)

Then the dual problem admits a solution ' 2 L1
µ+⌫ .

Proof. We can assume that inf '
n

= 0 and, possibly after extracting a subsequence,

that '
n

�! ' where ' 2 S(X). Thus by Lemma 7.4, ' solves the relaxed problem (Q)
meaning that: �E(') = sup(P ⇤) = F (µ, ⌫). In view of the last assertion of Theorem
7.5 (see Remark 7.6), it remains to show that ' 2 L1

µ+⌫ . As ('
n

) is assumed to be
nonnegative and bounded in L1

µ+⌫ , by applying (7.8), we get:
Z

X

' d(µ+ ⌫)  lim inf
n

Z

X

'
n

d(µ+ ⌫) < +1.

⇤

We notice that under the subharmonic order condition used in [10], every maximizing
sequence ('

n

) will be uniformly bounded in X so that the condition (7.15) holds. Thus
our Corollary 7.7 can be used providing an alternative proof for existence. Unfortunately
it was not possible to establish the upperbound estimate (7.15) in a general case.

Corollary 7.8. Let � 2 MT (µ, ⌫) and let ' be of the form ' = u + f with u 2
S(X)\L1

µ+⌫ and f 2 �0(X). Then � is optimal for (P ) and ' is optimal for the relaxed

dual problem (Q) if and only the condition (7.6) is satisfied.

Proof. By Lemma 7.4, the pair (�,') is optimal if and only if one has:
Z

X

2
c d� + E(') = 0.
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As by Theorem 7.5, it holds E(') = I
�

(') =
R

X

�R

X

' d�x � '̂(x)
�

, the latter condition
can be rewritten as:

Z

X

✓

Z

X

(' + c(x, ·))d�x � '̂(x)

◆

dµ = 0 ,

which is equivalent to (7.6) since, by (7.4), the quantity integrated with repect to µ is
non negative .

⇤
Remark 7.9. The example 4.13 fits very well to illustrate the successive steps we
performed to enlarge the class of admissible competitors in the dual problem. We found
a solution  

↵

= �'
↵

where '
↵

2 C([0, 1]) for ↵ > 2 and where '
↵

2 L1
⌫

\ S([0, 1]) for
3
2 < ↵  2. For 1 < ↵  3

2 , we have merely that '
↵

2 S([0, 1]) with {'
↵

< +1} = [0, 1)
and µ({1}) = 0. By checking the optimality condition (7.6), we then deduce from
Corollary 7.8 that '

↵

is still a solution of dual problem , but in its relaxed form (Q)
since '

↵

/2 L1
⌫

. Notice that, in that case and adopting the notations of example 4.13,
we have '

↵

= u+ f with u 1-Lipschitz given by u(y) =
P

n�1

�|y � x
n

|� 1
2 |In|

�

1
I

n

(y)
and f 2 �0([0, 1]) given by

f(y) =
X

n�1

✓

1

2
|I
n

|�  
↵

(x
n

)� a
n

(y � x
n

)

◆

1
I

n

(y)

We conclude this Section with a challenging open issue: what can we say about the
domain of E(') and does it exist alternative expressions for representing E(') when for
instance µ({'⇤⇤ = +1}) > 0 ?
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