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Some results on optimal control of stochastic systems
with state chance constraints

Zahia Bouabbache1, Eric Busvelle2 and Mohamed Aidene1

Abstract— We consider a continuous-time control problem
with random initial condition and chance constraints. We solve
this problem by discretizations and we prove that the discrete-
time problem is convex and can be solved by the method of
the logarithmic barrier function. Then we prove that when the
discretization step goes to zero, the cost of the solutions of
the discrete-time problems converge to the optimal cost of the
continuous-time problem.

I. INTRODUCTION
In this paper, we consider a feedforward optimal control

problem with stochastic initial state and stochastic constraints
(called in many papers ”chance constraints”, see [1] for an
excellent review or [2] for some results related to our works).

Chance constraints in optimal control problems are a
powerful formalism to deal with realistic constraints. In many
cases, constraints are inherently stochastic constraints, see
[3]–[5]. Moreover, chance constraints are less binding than
deterministic constraints and may encourage more smooth
control (see our example for instance).

In order to solve numerically this problem, we present
a finite-dimensional stochastic problem which is closely
related to the continuous time version. This problem belongs
to a class of stochastic optimal control problem which is
more general than the continuous-time problem but that
can be solved easily with a standard method (Logarithmic
Barrier Function Method – SUMT, see [6], [7]), adapted
to a convex optimization problem. Therefore, we will prove
that our problem is convex. One of the main originality of
this work comes from the fact that we consider a degenerate
normal distribution, which is not absolutely continuous w.r.t.
Lebesgue measure. We show that despite this, our problem
remains convex and we describe a numerical method to solve
this problem.

Our main objective in this work is to deal with continuous-
time optimization problem. Thererfore, in the second part of
this paper, we present the continuous-time version of our
optimization problem and we show that the solution can
be approximated by solving the discrete-time problem as
explained in the first part.

Let us remark that our optimal control problems are fixed
final time problems. This is a suitable approach when one
want to consider finite-horizon stochastic model predictive
control problems ( [3]–[5], [8]).

In the last part, we present a short example to illustrate
the method.
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II. DISCRETE-TIME PROBLEM

A. Statement of the problem

We consider the following linear discrete-time optimal
control problem:

J(u) = E

[
1

2
x(N)′Cx(N) + cx(N)

]
−→ minu

x(n+ 1) = A(n)x(n) +B(n)u(n) +D(n)W (n)

x(0) = X

P({∀n = 1, . . . , N ; H(n)x(n) ≤ g(n)}) ≥ α
u− ≤ u(n) ≤ u+

(1a)

(1b)
(1c)
(1d)

(1e)

for a given integer N , n = 0 to N , where matrices have
the following dimensions : A ∈ Rnx×nx , B ∈ Rnx×nu ,
D ∈ Rnx×nx , C ∈ Rnx×nx , c ∈ R1×nx , H ∈ Rnc(n)×nx of
rank nc(n) ≤ n, g ∈ Rnc(n), J(u) is the objective function.
The number of constraints nc may depend of n (as in Section
V).
x(n) ∈ Rnx in eq. (1b) is the state of a controlled system

and u(n) ∈ Rnu is the control. The control function u(n)
is assumed to be a measurable and bounded function with
lower bound u− and upper bound u+. In this paper, vector
inequalities have the usual interpretation, hence eq. (1e)
means that u−j ≤ uj(n) ≤ u+

j for j = 1, . . . , nu. The vector
inequality H(n)x(n) ≤ g(n) is also defined component by
component in Rnc(n).
X is a random variable and it is the only stochastic

parameter in this problem. X is supposed to be normally
distributed X ∼ N (µ,Σ) and this gaussian distribution may
be degenerated (Σ is not supposed definite positive), see
Section II-B. W is a white noise process, independent from
X (W (n) ∼ N (0, I) and W (j) is independent from W (k)
if j 6= k).

This problem is an optimal linear control problem in
discrete time with chance constraints. In the following, we
suppose that the set of solutions is not empty.

B. Degenerated Gaussian law

Matrices Σ, D(n) and H(n) are not supposed to be
invertible. For instance, the deterministic case is a partic-
ular case of our settings. If Σ is a singular matrix, the
corresponding problem is a stochastic problem with initial
condition belonging to a submanifold of Rnx . It may also
happen that D(n) = 0 (no state noise) or H(n) = 0 except
for n = N which correspond to a final chance constraint.
Anyway, even if these matrices are invertible, our method
to solve the problem will consist in some linear change



of variables which is not necessarily invertible. Therefore,
in order to prove some convexity results concerning our
problem, it is necessary to clearly define degenerate Gaussian
laws.

We use the extension of Gaussian density function to
the degenerate case as explained in [9]. Briefly, let Y be
a degenerate Gaussian random variable with mean m and
covariance matrix Q.

Let us write Q =
∑n
i=1 µiUiU

T
i the spectral expan-

sion of Q where µi and Ui are respectively the eigen-
values and the eigenvectors of Q ( [10]). Let us denote
Q− =

∑r
i=1 µ

−1
i UiU

T
i its Moore-Penrose inverse where

µr+1, . . . , µn are the eigenvalues equals to zero. Then the
distribution of Y may be written:

f(Y ) = (2π)−
r
2

(
r∏
i=1

µi

)− 1
2

exp

(
−1

2
(Y −m)TQ−(Y −m)

)
n∏

i=r+1

δ
(
(Y −m)TUi

)
(2)

Therefore, this distribution is supported by the set E =⋂n
i=r+1{Y ∈ Rn ; (Y −m)TUi = 0} and the probability

of a subset A ⊂ Rn if equal to

PY (A)

=
1

D

∫
A∩E

exp

(
−1

2
(Y −m)TQ−(Y −m)

)
dλ/EY

def.
= PY /E(A ∩ E) (3)

where λ/E is the Lebesgue measure restricted to E. D is the
normalization factor explicitly written in (2), and fE(Y ) =
1
D exp

(
− 1

2 (Y −m)TQ−(Y −m)
)

is the Radon-Nikodym
derivative of PY /E w.r.t. λ/E which exists since PY /E �
λ/E . PY /E is a non degenerate Gaussian distribution and fE
its density function.

Let us remark that E is an affine subspace of Rn.

III. RESOLUTION

A. Problem transformation

As usual for linear time-dependent system, eq. (1b) can
be written for 0 ≤ n ≤ N :

x(n) = φ(n, 0)X +

n−1∑
k=0

φ(n, k + 1)B(k)u(k)

+

n−1∑
k=0

φ(n, k + 1)D(k)W (k) (4)

where φ(n, k) = A(n−1)A(n−2) · · ·A(k) or by recurrence
: {

φ(n+ 1, k) = A(n)φ(n, k)

φ(k, k) = Id
(5)

Using eq. (4) for n = N , thanks to the fact that W is a
white noise independent from X , eq. (1a) can be rewritten
as a quadratic expression in u:

J(u) =
1

2
ū′C̄ū+ c̄ū+ constant (6)

where1

• ū = (u(0); · · · ;u(N − 1))
• c̄ = c+ b
• C̄ = b′Cb

and b = (φ(N, 1)B(0); · · · ;φ(N,N)B(N − 1)).
Using eq. (4), one can rewrite eq. (1d) explicitly:

P({B̄ū ≤ ḡ − ĀX − D̄W̄ }) ≥ α (7)

where
• W̄ = (W (0), . . . ,W (N − 1))′

• ḡ = (g(1); . . . ; g(N))
• Ā = (H(1)φ(1, 0); . . . ;H(N)φ(N, 0))′

• B̄ (respectively D̄) is a block lower triangular
matrix where each block is defined as B̄n,k =
H(n)φ(n, k)B(k − 1) for n, k = 1, · · · , N (resp.
D̄n,k = H(n)φ(n, k)D(k − 1)

Then, using eq. (6) and eq. (7), the problem eq. (1a) to
eq. (1e) becomes

J(ū) =
1

2
ū′C̄ū+ c̄ū −→ minu

P({B̄ū ≤ Y }) ≥ α
ū− ≤ ū ≤ ū+

(8a)

(8b)

(8c)

where ū− = (u−; · · · ;u−) and same for ū+, and where Y =
ḡ − ĀX − D̄W̄ is a possibly degenerate Gaussian random
variable (indeed, even if X is a non-degenerate Gaussian
random variable, it may not be the case for Y ).

Let PY denote the probability of Y , which is defined as
in Section II-B.

B. Convexity

We claim that our optimization problem is a convex
optimization problem.

First of all, the function to minimize is the sum of a
convex quadratic function and a linear function and therefore
is convex. In the following, we will denote this function J(ū)
and the method can be applied to any convex function J(ū).

We want to prove that the set of admissible controls
(satisfying our constraints) is a convex subset of RN .

Lemma 1: The probability measure PY is log-concave.
Proof: We want to show that PY (αA+ (1− α)B) ≥

PY (A)αPY (B)1−α for any convex subsets A,B ⊂ Rn and
any 0 ≤ α ≤ 1. But PY (αA + (1 − α)B) = PY /E(αA ∩
E + (1 − α)B ∩ E). Moreover PY /E if a non-degenerate
Gaussian distribution and its density function is log-concave
and therefore PY /E is log-concave (see for instance [6]

1(M(0); · · · ;M(N)) where M(n) are matrices (or vectors), each of
them having the same number of columns, is the block-matrix (or vector)
built by stacking each matrix in a single column (as in Matlab notation)



Theorem 2.1). Since A ∩ E and B ∩ E are convex as the
intersection of convex subsets of Rn, PY /E(αA∩E+ (1−
α)B ∩ E) ≥ PY /E(A ∩ E)αPY /E(B ∩ E)1−α and this
concludes the proof since PY /E(A ∩ E) = PY (A) and
PY /E(B ∩ E) = PY (B).

Remark 1: Our Lemma 1 is a generalization of Theorem
2.1 in [6] to a probability which is not absolutely continuous
w.r.t. Lebesgue measure.

Theorem 1: The minimization problem described by
eq. (8a) to eq. (8c) is convex.

Proof: J being convex, the set u− ≤ ū ≤ u+ being a
convex subset of RN , it suffices to prove that the constraint
{G(ū) ≥ α}, where G(ū) = P({B̄ū ≤ Y }), induces a
convex constraint on u.

In [6], it is shown (Theorem 2.1) that if Y is a ran-
dom variable that has logconcave probability distribution
and g(u,y) is a concave (or quasi-concave) function of the
variables u ∈ Rnu and y ∈ Rny then the function G(u) =
P({g(u,Y ) ≥ 0}), u ∈ Rnx is logconcave. Thanks to this
theorem and lemma 1, G(ū) is logconcave and so it is also
quasi-concave. Therefore, {G(ū) ≥ α} = G−1([α,+∞[) is
convex. This proves that our optimization problem is convex.

IV. NUMERICAL RESOLUTION

Our optimization problem is convex but G(ū) = P({B̄ū ≤
Y }) have no continuous gradients (and may be not continu-
ous). However, since G(ū) is a logconcave function, a suit-
able method in this case is to use a sequential unconstrained
minimization technique (SUMT) using a logarithmic barrier
function, as described in [6] and [7].

Let us describe briefly the logarithmic barrier function
method. First of all, the problem is converted to the following
problem:

min
ū
J(ū)− θ log (G(ū)− α)

subject to u− ≤ ū ≤ u+ (9)

Since J is convex, G is logconcave, and the domain is a
bounded set, the objective function 9 is convex for any θ.
Moreover, the solution ūθ of this problem is such that

lim
θ→0

ūθ = ū∗

where ū∗ is the solution of our problem ( [7]).
The main difficulty in the resolution of this problem is

the estimation of the probability P({B̄ū ≤ Y }) for a
degenerated normal distribution. We used a Monte-Carlo
method to estimate this integral with Sobol pseudo-random
numbers over [0, 1]r, r being the dimension of the linear
subspace E = supp(P). We used Box-Muller method to
simulate the Gaussian law and we estimate P({B̄ū ≤ Y })
by the frequency of pseudo-random realizations satisfying
B̄ū ≤ Y .

V. CONTINUOUS-TIME PROBLEM

A. Statement of the problem

We consider the following linear fixed-final-time optimal
control problem on the interval [t0, T ]

J(u) = E[cx(T )] −→ minu
ẋ(t) = Ax(t) +Bu(t)

x(t0) = X

P({Hx(T ) ≤ g}) ≥ α
u− ≤ u(t) ≤ u+

(10a)
(10b)
(10c)
(10d)
(10e)

where matrices have the same dimensions as in eqs. (1a)
to (1e). Besides the fact that this problem is in continuous
time, the main differences between this optimization problem
and its discrete-time counterpart are:
• The cost to minimize in eq. (10a) is linear,
• There is no more state noise, the only random variable

is X ∼ N (µ,Σ) where Σ is supposed to be definite
positive,

• There is no more chance constraints along the trajectory,
the chance constraint concerns only the state at fixed
final time T .

We didn’t try to generalize the continuous-time problem to a
broad class of problems since our objective is to compare this
approach to a new approach which is currently in preparation
and which concerns a method devoted to this particular case
of continuous-time problems.

Let us simplify the problem eqs. (10a) to (10e). First of
all, one can write

x(T ) = eATX +

∫ T

0

eA(T−s)Bu(s)ds (11)

so that eq. (10a) and eq. (10d) may be rewritten

J(u) = ceATµ+ cF (u) (12)

and
P(HF (u) ≤ g −HeATX) ≥ α (13)

respectively, where F (u) is the linear functional

F (u) =

∫ T

0

eA(T−s)Bu(s)ds (14)

Let Ω(u) = {F (u) ; u ∈ L∞([u−, u+])}. The set Ω(u) ⊂
Rnx is the accessibility set starting from x(t0) = 0 and
driven by eq. (10b).

The problem described by eqs. (10a) to (10e) is clearly
equivalent to the two following subproblems:

1) minimize c ξ over ξ ∈ Ω(u) and under the constraint
P(Hξ ≤ g −HeATX) ≥ α

2) and then find u such that F (u) = ξ.
Let ξ∗ denotes a solution to the first problem and J∗ =

ceATµ+ c ξ∗ the corresponding optimal cost. Therefore, the
second problem is just a control problem (find u to send x(t)
from x(t0) = 0 to x(T ) = ξ∗). So J(u∗) = J∗ and one can
assume u piecewise continuous.



B. Link to the discrete-time problem

In the following, we denote Φ(u) the nonlinear function
Φ(u) : u 7→ P(HF (u) ≤ g −HeATX).

We consider a collection of discrete-time problems corre-
sponding to discretizations of eqs. (10a) to (10e). Indeed, let
us choose a discretization step Tk = T

Nk
for k = 1, 2, . . .,

Nk being a growing unbounded sequence of integers. Let us
denotes Ak and Bk the two matrices corresponding to the
discretization of eq. (10b), that is

Ak = eATk

Bk =

∫ Tk

0

eA(Tk−s)Bds

(15)

(16)

and set A(n) = Ak, B(n) = Bk and D(n) = 0 in the
discrete-time dynamic system eq. (1b). We set C = 0 in
eq. (1a) and H(n) = 0, g(n) = 0 in eq. (1d) except H(Nk)
and g(Nk) which are equals to H and g respectively (Nk is
the sample corresponding to time NkTk = T ).

Theorem 2: For any ε > 0 and η > 0, let us denotes u∗k
an optimal solution of the discrete-time problem:

J(u) = E [cx(Nk)] −→ minu
x(n+ 1) = Akx(n) +Bku(n)

x(0) = X

Φ(u) ≥ α− ε
u− ≤ u(n) ≤ u+

(17a)
(17b)
(17c)
(17d)

(17e)

then for k large enough,

J(u∗k) ≤ J(u∗) + η (18)
Remark 2: In fact, the solution of this problem is a

sequence of Nk control values u(n). u∗k(t) is the piecewise
constant function defined canonically from this sequence :
u∗k(nTk) = u(n).

Remark 3: This theorem claims that the solution of the
discrete-time problem is an approximate solution of the
continuous-time problem.

Proof: Let us denotes uk the discretized version of u∗,
that is to say uk is a piecewise constant function uk(t) =
u(nTk) if nTk ≤ t < (n+ 1)Tk.

Since P is supposed to be absolutely continuous with
respect to Lebesgue measure, Φ is a continuous function
of u. Therefore, for k large enough, Φ(uk) ≥ α − ε. since
uk

k→∞−→ u∗ in L2([0, T ]) and Φ(u∗) ≥ α. Therefore, uk
satisfies constraints eq. (17d) and eq. (17e), and so J(u∗k) ≤
J(uk). But J(uk)

k→∞−→ J(u∗) and therefore, for k large
enough, J(u∗k) ≤ J(u∗) + η.

VI. APPLICATION

Let us consider for instance the following linear system
in R2:

ẋ(t) =

(
0 1
0 −1

)
x(t) +

(
0
1

)
u(t)

where x(0) is a Gaussian variable N (0, σ2).

Our objective is to maximize E[x1(T )] (equivalently
E [−x1(T )] −→ minu) where T is a given finite time such
that

P(−ε ≤ x2(T ) ≤ ε) ≥ α

If σ = 0, that is to say if the problem is a deterministic
problem, one can solve the problem explicitly using the
maximum principle of Pontryagin. It is easy to prove that
(if ε is not too large) there exists a time 0 < τ < T such
that the optimal control is bang-bang and equal to one from
t = 0 to τ and is equal to minus one from τ to T . More
precisely, one can calculate explicitly τ = ln

(
1+ (1+ε)eT

2

)
and the cost is equal to x1(T ) = 2 τ−ε−T . On Figure 1, we
plotted the solution of the problem with T = 3 and ε = 1

6
(x1(t) in red, x2(t) in blue and u(t) in black). In this case,
the previous formula gives us τ ≈ 2.5 and x2(3) ≈ 1.84.

We solve the probabilistic case with σ = 10−4 and α =
0.9. We use the method described in Section IV. We calculate
the discrete-time solution for N1 = 30 and N2 = 300.

The result for N1 = 30 is plotted on Figure 2. One can
verify that x(t) have almost the same behavior as in the
deterministic case because σ is small and α is close to 1.
We have verified that statistically, when we simulate a large
number of realization, the probability for x2(T ) to be in the
interval [−ε,+ε] is equal to α = 0.9.

When N2 = 300, u300 becomes a good approximation of
u∗. The result is shown on Figure 3.

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 1: Deterministic case, T = 3

VII. CONCLUSION

We presented a method to solve both discrete-time and
continuous-time problems with chance constraints. We didn’t
suppose that Gaussian distribution is absolutely continuous
w.r.t. Lebesgue measure. Therefore, we had to prove that,
first of all, the problem remained convex and secondly, a
numerical method could be applied to estimate the probabil-
ity using a Monte Carlo method. We then used the discrete-
time problem to solve a continuous-time optimization prob-
lem with chance constraints. We proved that the discrete-
time solution converges to the continuous-time solution. We
provided a very simple example to illustrate the method.
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Fig. 2: Discrete problem, N = 30
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Fig. 3: Discrete problem, N = 300

In future works (in preparation), we will propose a new
method to solve directly the continuous-time problem and
we will compare this new method to the method presented
in this paper.
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