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Abstract

We prove existence of weak solutions to the compressible Navier-Stokes equations in barotropic
regime (adiabatic coefficient γ > 3/2, in three dimensions, γ > 1 in two dimensions) with large ve-
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1 Introduction

We consider the problem of identifying the non steady motion of a compressible viscous fluid driven
by general in/out flux boundary conditions on general bounded domains. Specifically, the mass density
% = %(t, x) and the velocity u = u(t, x), (t, x) ∈ I × Ω ≡ QT , I = (0, T ) of the fluid satisfy the
Navier–Stokes system,

∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (1.2)

S(∇xu) = µ
(
∇xu +∇t

xu
)

+ λdivxuI, µ > 0, λ ≥ 0, (1.3)

in Ω ⊂ Rd, d = 2, 3, where p = p(%) is the barotropic pressure. The system is endowed with initial
conditions

%(0) = %0, %u(0) = %0u0. (1.4)

We consider general boundary conditions,

u|∂Ω = uB, %|Γin
= %B, (1.5)

where
Γin =

{
x ∈ ∂Ω

∣∣∣ uB · n < 0
}
, Γout =

{
x ∈ ∂Ω

∣∣∣ uB · n > 0
}
. (1.6)

We concentrate on the inflow/outflow phenomena, we have therefore deliberately omitted the con-
tribution of external forces %f . Nevertheless, all results of this paper remain valid also in the presence
of external forces.

Investigation and better insight to the equations in this setting is important for many real world
applications. In fact this is a natural and basic abstract setting for flows in pipelines, wind tunnels,
turbines to name a few concrete examples. In spite of this fact the problem in its full generality resists
to all attempts of its solution for decades. To the best of our knowledge, this is the first work ever
treating this system for large boundary data in a very large class of bounded domains.

Indeed, the only available results on the existence of strong solutions in setting (1.1-1.6) are on a
short time interval or deal with small boundary data perturbations of an equilibrium state, see e.g.
Valli, Zajaczkowski [23].

The only results on the existence of weak solutions for large flows for system (1.1-1.6) with large
boundary data are available in papers by Novo [16] (where the domain is a ball and the incom-
ing/outgoing velocity field is constant) or by Girinon [13], where the domain is more general but the
inflow boundary has to be convex set included in a cone, and the velocity at the inflow boundary has
to satisfy so called no reflux condition.

In the steady case, the problem with large boundary conditions is open for barotropic flows. It
was solved only recently for the constitutive law of pressure of so called hard sphere model (when
lim%→% p(%) =∞ for some % > 0), see [10]. There are several results dealing with data close to equilibrium
flows, see Plotnikov, Ruban, Sokolowski [20], [21], Mucha, Piasecki [15], Piasecki [18], Piasecki and
Pokorny [19] among others.
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Our goal is to establish the existence of a weak solution (%,u) to problem (1.1–1.6) for general large
boundary data %B, uB in an arbitrary bounded sufficiently smooth domain with no geometric restrictions
on the inflow boundary. Such general result requires a completely different approach to the construction
of solutions than the approach employed by Novo or Girinon. We suggest a new (spatially local) method
of construction of solutions via regularization of the continuity equation by a specific non homogenous
parabolic boundary value problem, instead of using transport equation based approximation as in [16]
or [13]. This approach allows to remove the restrictions imposed on the domain and data.

Another novelty with respect to the two above mentioned papers is the fact that we include in our
investigation the pressure laws that may be non monotone on a compact portion of interval [0,∞), in
the spirit of [8]. (It is to be noticed that a method allowing non monotone pressure laws on a non
compact portion of [0,∞) was recently suggested in [1], but this method does not work if growth of p
(expressed through coefficient γ) is less than 9/5 and it is not clear whether it would work with the non
homogenous boundary conditions.)

The paper is organized as follows. In Section 2 we define weak solutions to the problem and state the
main theorem (Theorem 2.4). In Section 4 the approximated problem (including two small parameters
ε > 0 and δ > 0) is specified and its solvability is proved. Limit ε → 0 is performed in Section 5 and
limit δ → 0 in Section 6. At each stage of the convergence proof from the approximate system to the
original system (ε → 0 and δ → 0, respectively) our approach follows closely the Lions approach [14]
(for ε → 0) and Feireisl’s approach [11] (for δ → 0). This includes the main tools as effective viscous
flux identity, oscillations defect measure and renormalization techniques for the continuity equation.
The first two tools are local, and remain essentially unchanged (with respect to their use in the case
of homogenous Dirichlet boundary conditions), while the third tool - the renormalization technique for
the continuity equation introduced in Di Perna-Lions [6] (in the case of squared integrable densities)
and in Feireisl [11] (in the case of non squared integrable densities) - has to be essentially modified in
order to be able to accommodate general non homogenous boundary data. This topic is investigated in
Section 3 (and applied in Sections 5.4 (for the limit ε→ 0)) and 6.5 (for the limit δ → 0)). Besides the
original approximation presented in Section 4 (that allows to treat the outflow/inflow problem in full
generality, without geometric restrictions on the form and position of the inflow/outflow boundaries, in
contrast with all previous treatments of this problem) the content of Sections 3, 5.4, 6.5 represents the
main novelty of this paper. The results on the renormalized continuity equation formulated in Lemmas
3.1, 3.2 are of independent interest within the context of the theory of compressible fluids.

2 Main result

In order to avoid additional technicalities, we suppose that the boundary data satisfy

uB ∈ C2(∂Ω;Rd), %B ∈ C(∂Ω). (2.1)

In agreement with the standard existence theory in the absence of inflow/outflow, we assume for pressure

p = p− p, p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, (2.2)
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∀% > 0,p′(%) > max{0, a1%
γ−1 − b}, p(%) ≤ a2%

γ + b,

p ∈ C2
c [0,∞), p ≥ 0, p′(0) = 0,

where γ > 1 and a1, a2, b > 0. We allow, in general, a non-monotone pressure p. If p = 0 then the
pressure is monotone p = p and conditions (2.2) includes the isentropic pressure law p(%) = a%γ, a > 0,
γ > 1 which can be taken as a particular case. In general the splitting (2.2) to strictly increasing and
bounded negative compactly supported functions complies with pressure laws that obey assumptions

a1%
γ−1 − b ≤ p′(%), p(%) < b+ a2%

γ, p(0) = 0,

where p(%) ≥ 0 in a (small) right neighborhood of 0. We notice that the very latter condition (or
p′(0) = 0) is not needed in the homogenous case, cf. Feireisl [8], [7]; it is specific for the non-homogenous
problem. It enters into the game only in order to treat signs of the boundary terms arising from the
non-zero boundary conditions in the a priory estimates (see Section 4.3.3 for more details).

For further convenience, it will be useful to introduce Helmholtz functions:

H(%) = %

∫ %

0

p(z)

z2
dz, H(%) = %

∫ %

0

p(z)

z2
dz, H(%) = −%

∫ %

0

p(z)

z2
dz (2.3)

and relative energy functions

E(%|r) = H(%)−H ′(r)(%− r)−H(r), E(%|r) = H(%)−H′(r)(%− r)−H(r), (2.4)

E(%|r) = H(%)− H′(r)(%− r)− H(r).

We begin with the definition of weak solutions to system (1.1–1.6).

Definition 2.1 [Weak solutions to system (1.1–1.6)]
We say that (%,u) is a bounded energy weak solution of problem (1.1–1.6) if:

1. It belongs to functional spaces:

% ∈ L∞(0, T ;Lγ(Ω)), 0 ≤ % a.a. in (0, T )× Ω, u ∈ L2(0, T ;W 1,2(Ω;Rd)), u|I×∂Ω = uB; (2.5)

2. Function % ∈ Cweak([0, T ], Lγ(Ω))1 and the integral identity∫
Ω

%(τ, ·)ϕ(τ, ·) dx−
∫

Ω

%0(·)ϕ(0, ·) dx =

∫ τ

0

∫
Ω

(
%∂tϕ+%u ·∇xϕ

)
dxdt−

∫ τ

0

∫
Γin

%BuB ·nϕ dSxdt

(2.6)
holds for any τ ∈ [0, T ] and ϕ ∈ C1

c ([0, T ]× (Ω ∪ Γin)).

1We say that f ∈ Cweak([0, T ], Lp(Ω)) iff
∫

Ω
fϕ dx ∈ C[0, T ] for all ϕ ∈ Lp′

(Ω)
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3. Function %u ∈ Cweak([0, T ], L
2γ
γ+1 (Ω;Rd)), and the integral identity∫
Ω

%u(τ, ·) ·ϕ(τ, ·) dx−
∫

Ω

%0u0(·)ϕ(0, ·) dx (2.7)

=

∫ τ

0

∫
Ω

(
%u · ∂tϕ+ %u⊗ u : ∇xϕ + p(%)divxϕ− S(∇xu) : ∇xϕ

)
dxdt

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× Ω;Rd).

4. There exists a Lipschitz extension u∞ ∈ W 1,∞(Ω;Rd) of uB whose divergence is non negative in a
certain interior neighborhood of ∂Ω, i.e.

divu∞ ≥ 0 a.e. in Û−h ≡ {x ∈ Ω | dist(x, ∂Ω) < h}, h > 0 (2.8)

such that the energy inequality∫
Ω

(1

2
%|u− u∞|2 +H(%)

)
(τ) dx+

∫ τ

0

∫
Ω

S(∇x(u− u∞)) : ∇x(u− u∞) dxdt (2.9)

≤
∫

Ω

(1

2
%0|u0 − u∞|2 +H(%0)

)
dx−

∫ τ

0

∫
Ω

p(%)divu∞ dxdt−
∫ τ

0

∫
Ω

%u · ∇xu∞ · (u− u∞) dxdt

−
∫ τ

0

∫
Ω

S(∇xu∞) : ∇x(u− u∞) dxdt−
∫ τ

0

∫
Γin

H(%B)uB · ndSxdt−H
∫ τ

0

∫
Γout

uB · ndSxdt

holds. In inequality (2.9),
H = inf

%>0
H(%) > −∞. (2.10)

Remark 2.1. 1. An extension u∞ of uB verifying (2.8) always exists, due to the following lemma (see
[13, Lemma 3.3]).

Lemma 2.2. Let V ∈ W 1,∞(∂Ω;Rd) be a Lipschitz vector field on the boundary ∂Ω of a bounded
Lipschitz domain Ω. Then there is h > 0 and a vector field

V∞ ∈ W 1,∞(R3) ∩ Cc(Rd), divV∞ ≥ 0 a.e. in Ûh (2.11)

verifying V∞|∂Ω = V, where

Ûh = {x ∈ R3 | dist(x, ∂Ω) < h}.

2. A brief inspection of formula (2.10) gives the estimate of value H,

H ≥ − sup
%∈(0,1)

p(%)− % sup
%>1

p(%) > −∞

provided suppp ⊂ [0, r], where r > 1 without loss of generality.
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3. Equation (2.6) implies the total mass inequality∫
Ω

%(τ) dx ≤
∫

Ω

%0 dx−
∫ τ

0

∫
Γin

%BuB · ndSxdt (2.12)

for all τ ∈ [0, T ]. To see it, it is enough to take for test functions a convenient sequence ϕ = ϕδ,
δ > 0 (e.g. the same as suggested in (5.27)) and let δ → 0.

Definition 2.2 We say that the couple (%,u) ∈ Lp(QT )×L2(0, T ;W 1,2(Ω, Rd)), p > 1 is a renormalized
solution of the continuity equation if b(%) ∈ Cweak([0, T ];L1(Ω)) and if it satisfies in addition to the
continuity equation (2.6) also equation∫

Ω

(b(%)ϕ)(τ) dx−
∫

Ω

b(%0)ϕ(0) dx = (2.13)

∫ τ

0

∫
Ω

(
b(%)u · ∇xϕ− ϕ (b′(%)%− b(%)) divxu

)
dxdt−

∫ τ

0

∫
Γin

b(%B)uB · nϕ dSxdt

for any ϕ ∈ C1
c ([0, T ]× (Ω∪Γin)), and any continuously differentiable b with b′ having a compact support

in [0,∞).
Weak solution to problem (1.1–1.6) satisfying in addition renormalized continuity equation (2.13) is

called renormalized weak solution.

Remark 2.3. It can be shown easily by using the Lebesgue dominated convergence theorem that the
the family of test functions b in the previous definition can be extended to

b ∈ C[0,∞) ∩ C1(0,∞), zb′ − b ∈ C[0,∞), |b(z)| ≤ c(1 + z5p/6), |zb′(z)− b(z)| ≤ c(1 + zp/2). (2.14)

Our main result is the following theorem.

Theorem 2.4. Let Ω ⊂ Rd, d = 2, 3 be a bounded domain of class C2. Let the boundary data uB, %B
satisfy (2.1), where min %B ≡ %

B
> 0. Assume that the pressure satisfies hypotheses (2.2) with γ > d/2

and the initial data are of finite energy∫
Ω

(1

2
%0u

2
0 +H(%0)

)
dx <∞, 0 ≤ %0,

∫
Ω

%0 dx > 0. (2.15)

Then for any Lipschitz extension u∞ of uB verifying (2.8) problem (1.1–1.6) possesses at least one
bounded energy renormalized weak solution (%,u).

Remark 2.5. 1. Theorem 2.4 holds regardless the (d − 1)−Hausdorff measure of Γin or Γout is zero.
If the Hausdorff measure |Γin|d−1 = 0 then all conditions on %B become irrelevant. The standard
theory developed in [11, Theorem 1.1] (see also monographs [14], [7],[17], [9]) covers the case
u|(0,T )×∂Ω = 0 (which is covered by Theorem 2.4 as well) and the case u ·n|(0,T )×∂Ω = 0 completed
with the Navier conditions-eventually with friction- (which is not covered by Theorem 2.4).
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2. Theorem 2.4 still holds provided one considers in the momentum equation at its right hand side
term %f corresponding to large external forces, provided f ∈ L∞(QT ) (modulo necessary changes
in the weak formulation in order to accommodate the presence of this term).

3. Conditions on the regularity p, p, %B and uB in Theorem 2.4 could be slightly weakened, up
to p continuous on [0,∞), locally Lipschitz on [0,∞) instead of p ∈ C[0,∞) ∩ C1(0,∞), p
Lipschitz differentiable with compact support on [0,∞) instead of p ∈ C2

c [0,∞), %B ∈ L∞(∂Ω),
uB ∈ W 1,∞(∂Ω), at expense of some additional technical difficulties.

We shall perform the proof in all details in the case d = 3 assuming tacitly that both Γin and Γout

have non zero (d− 1)-Hausdorff measure. Other cases, namely the case d = 2 is left to the reader as an
exercise.

3 Renormalized continuity equation with non homogenous

data

3.1 The case of squared integrable density

In this section we generalize the Di-Perna, Lions transport theory [6] to the continuity equation with
non homogenous boundary data. The main result reads:

Lemma 3.1. Suppose that Ω ⊂ Rd, d = 2, 3 be a bounded Lipschitz domain and let (%B,uB) satisfy
assumptions (2.1). Assume that the inflow portion of the boundary Γin is a C2 open (d−1)-dimensional
manifold. Suppose further that couple (%,u) ∈ L2((0, T )×Ω)×L2(0, T ;W 1,2(Ω;R3)) satisfies continuity
equation in the weak sense (2.6).

Then (%,u) is also a renormalized solution of the continuity equation (2.6), meaning that it verifies
equation (2.13) with any ϕ ∈ C1

c ([0, T ]× (Ω∪ Γin)), and any continuously differentiable b with b′ having
compact support in [0,∞).

Proof of Lemma 3.1
We define open set

U+
h (Γin) ≡ {x0 + zn(x0) | 0 < z < h, x0 ∈ Γin} ∩ (Rd \ Ω) (3.1)

and extend the vector field uB to U+
h (Γin),

ũB(x) = uB(x0), x = x0 + zn(x0) ∈ U+
h (Γin). (3.2)

If Γin ∈ C2, such extension always exists and ũB ∈ C1(U+
h (Γin), cf. Foote [12]. Consider now the flow

generated in U+
h (Γin) by the field −ũB defined on U+

h (Γin),

X′(s,x0) = −ũB(X(s,x0)), X(0) = x0 ∈ U+
h (Γin) ∪ Γin, for s > 0, X(s; x0) ∈ U+

h (Γin). (3.3)
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Let
Ũ+
h (Γin) =

{
x ∈ U+

h (Γin)
∣∣∣ x = X(s,x0) for a certain x0 ∈ Γin and 0 < s < h

}
.

Employing the local Cauchy-Lipschitz theory for ODEs to equation (3.3) and evoking the differentiability
properties of its solutions with respect to the ”initial” data (see e.g. the book of Taylor [22, Chapter 1]
or of Benzoni-Gavage [2]), we infer that:

1. For any x0 ∈ U+
h (Γin), there is unique T (x0) > 0 and T (x0) > 0 such that the map X ∈

C1((−T (x0), T (x0)); U+
h (Γin)) is a maximal solution of problem (3.3). If x0 ∈ Γin, then there

is unique T (x0) > 0 such that the map X ∈ C1([0, T (x0));U+
h (Γin) ∪ Γin) is a maximal solution.

2. For any compact K ⊂ U+
h (Γin) ∪ Γin, TK ≡ infx0∈K T (x0) > 0 and for any compact K ⊂ U+

h (Γin),
TK ≡ infx0∈K T (x0) > 0.

3. For any z ∈ Ũ+
h (Γin) there is an open ball B(z) centered at z and δz > 0 such that X ∈ C1([−δz, δz]×

B(z)).

In particular, item 1. in the above list implies that the set Ũ+
h (Γin) is not empty. With points 2.

and 3. at hand, we are ready to show that Ũ+
h (Γin) is an open set. Indeed, let z0 = X(s0; x0),

s0 ∈ (0, T̃ ), T̃ = min{h, T (x0)} with x0 = γ(0), where γ : B′(0) → Rd, γ(σ) = x0 + O(σ, a(σ))T with
a ∈ C2(B′(0);R+) representing the local description of Γin in the vicinity of x0. In the above O is a
fixed orthonormal matrix, B′(0) is a d− 1 dimensional ball centered at 0, and we may suppose, without
loss of generality, that ∇σa 6= 0 in B′(0). We may now consider the map

Φ : (−TK , TK)×B′(0) 3 (s, σ) 7→ z ∈ Φ
(

(−TK , TK)×B′(0)
)
⊂ Ũ+

h (Γin),

z = Φ(s, σ) = X(s; X(s0; γ(σ))), K = {X(s0, γ(σ) |σ ∈ B′(0)}.

We have clearly Φ(0, 0) = z0. It is a cumbersome calculation to show that

det
(
∂sΦ,∇σΦ

)
(0, 0) 6= 0,

see [13, Section 3.3.6]. We may therefore apply to this map the implicit function theorem and conclude
that there is an open set (0, 0) ∈ U ⊂ (−TK , TK) × B′(0), open set z0 ∈ V ⊂ Rd, and a map

Ψ ∈ C1(V ;U) such that Φ ◦Ψ(z) = z for any z ∈ V . In particular, V ⊂ Φ
(

(−TK , TK)×B′(0)
)

.

We may therefore extend the boundary data %B to Ũ+
h (Γin) by setting

%̃B(X(s,x0)) = %B(x0)exp
(∫ s

0

divũB(X(z,x0))dz
)
. (3.4)

Clearly, %̃B ∈ W 1,∞(Ũ+
h (Γin)) and

divx(%̃BũB) = 0 in Ũ+
h (Γin), %̃B|Γin

= %B. (3.5)
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Now we put
Ω̃h = Ω ∪ Γin ∪ Ũ+

h (Γin)

and extend (%,u) from (0, T ) × Ω to (0, T ) × Ω̃h by setting (%,u)(t, x) = (%̃B, ũB)(x), (t, x) ∈ (0, T ) ×
Ũ+
h (Γin). Conserving notation (%,u) for the extended fields, we easily verify that (%,u) ∈ L2((0, T ) ×

Ω̃h)× L2(0, T ;W 1,2(Ω̃h;R
d)), and that it satisfies the equation of continuity (1.1), in particular, in the

sense of distributions on (0, T )× Ω̃h.
Next, we use the regularization procedure due to DiPerna and Lions [6] applying convolution with a

family of regularizing kernels obtaining for the regularized function [%]ε,

∂t[%]ε + divx([%]εu) = Rε a.e. in (0, T )× Ω̃ε,h, (3.6)

where

Ω̃ε,h =
{
x ∈ Ω̃h

∣∣∣ dist(x, ∂Ω̃h) > ε
}
, Rε ≡ divx([%]εu)− divx([%u]ε)→ 0 in L1

loc((0, T )× Ω̃h) as ε→ 0.

The convergence of Rε evoked above results from the application of the refined version of the Friedrichs
lemma on commutators, see e.g. [6] or [9, Lemma 10.12 and Corollary 10.3].

Multiplying equation (3.6) on b′([%]ε), we get

∂tb([%]ε) + divx(b([%]ε)u) + (b′([%]ε)[%]ε − b([%]ε)) divxu = b′([%]ε)Rε

or equivalently, ∫
Ω̃h

b([%]ε(τ))ϕ(τ)dx−
∫

Ω̃h

b([%0]ε)ϕ(0)dx

=

∫ τ

0

∫
Ω̃h

(
b([%]ε)∂tϕ+ b([%]ε)u · ∇xϕ− ϕ (b′([%]ε)[%]ε − b([%]ε)) divxu

)
dxdt−

∫ τ

0

∫
Ω̃h

ϕb′([%]ε)Rεdx dt

for all τ ∈ [0, T ], for any ϕ ∈ C1
c ([0, T ]× Ω̃h), 0 < ε < dist(supp(ϕ), ∂Ω̃h). Thus, letting ε→ 0 we get∫

Ω̃h

b(%(τ))ϕ(τ)dx−
∫

Ω̃h

b(%0)ϕ(0)dx (3.7)

=

∫ τ

0

∫
Ω̃h

(
b(%)∂tϕ+ b(%)u · ∇xϕ− ϕ (b′(%)%− b(%)) divxu

)
dxdt

for all τ ∈ [0, T ], for any ϕ ∈ C1
c ([0, T ]× Ω̃h). Now we write∫

Ω̃h

b(%)u · ∇xϕdx =

∫
Ω

b(%)u · ∇xϕ dx+

∫
Ũ+
h (Γin)

b(%)u · ∇xϕdx, (3.8)

where, due to (3.5), the second integral is equal to∫
Γin

ϕb(%B)uB · ndSx +

∫
Ũ+
h (Γin)

ϕ(%̃Bb
′(%̃B)− b(%̃B))divũBdx (3.9)
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We notice that ϕ is vanishing on a neighborhood of ∂Ω \Γin and that Γin is Lipschitz. This justifies the
latter integration by parts although Ũ+

h (Γin) may fail to be Lipschitz.
Now, we insert the identities (3.8–3.9) into (3.7) and let h → 0. Recalling regularity of (%̃B, ũB)

evoked in (3.5) and summability of (%,u), we deduce finally that∫
Ω

b(%(τ))ϕ(τ)dx−
∫

Ω

b(%0)ϕ(0)dx

=

∫ τ

0

∫
Ω

(
b(%)∂tϕ+ b(%)u · ∇xϕ− ϕ (b′(%)%− b(%)) divxu

)
dxdt+

∫ τ

0

∫
∂Ω

b(%B)uB · nϕdSxdt

for all τ ∈ [0, T ], for any ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin)).

This finishes proof of Lemma 3.1.

3.2 The case of bounded oscillations defect measure

If the density is not square integrable, but if it is a weak limit of a sequence whose oscillations defect
measure is bounded, one replaces in the case of theory with no inflow/outflow boundary data Lemma
3.1 by another result, see [11]. The goal of this Section is to generalize this result to continuity equation
with non homogenous boundary data.

We introduce the Lp-oscillations defect measure of the sequence %δ which admits a weak limit % in
L1(QT ) as follows

oscp[%δ ⇀ %](QT ) ≡ sup
k≥1

(
lim sup
δ→0

∫
QT

∣∣∣Tk(%δ)− Tk(%)
∣∣∣pdxdt

)
, (3.10)

where truncation Tk(%) of % is defined as follows

Tk(z) = kT (z/k), T ∈ C1[0,∞), T (z) =


z if z ∈ [0, 1],

concave on [0,∞),

2 if z ≥ 3,

(3.11)

where k > 1.
The wanted result is the following lemma.

Lemma 3.2. Suppose that Ω ⊂ Rd, d = 2, 3 is a bounded Lipschitz domain and let (%B,uB) satisfy
assumptions (2.1). Assume that the inflow portion of the boundary Γin is a C2 open (d−1)-dimensional
manifold. Suppose further that

%δ ⇀ % in Lp((0, T )× Ω), p > 1,
uδ ⇀ u in Lr((0, T )× Ω;Rd),

∇uδ ⇀ ∇u in Lr((0, T )× Ω;Rd2), r > 1.
(3.12)
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and that
oscq[%δ ⇀ %]((0, T )× Ω) <∞ (3.13)

for 1
q
< 1 − 1

r
, where (%δ,uδ) solve the renormalized continuity equation (2.13) (with any b ∈ C1[0,∞)

and b′ having compact support). Then the limit functions %, u solve again the renormalized continuity
equation (2.13) for any b belonging to the same class.

Remark 3.3. Let {Ωn}∞n=1, Ωn ⊂ Ωn+1 ⊂ Ω, Ωn ⊂ Ω ∪ Γin be a family of domains satisfying condition:
For all compact K of Ω∪Γin there exists n ∈ N∗ such that K ⊂ Ωn. Then one can replace in Lemma 3.2
assumption (3.12) by a slightly weaker assumption

∀n ∈ N∗, %δ ⇀ % in Lp((0, T )× Ωn), where % ∈ Lp(Ω), p > 1
∀n ∈ N∗, uδ ⇀ u in Lr((0, T )× Ωn;Rd),where u ∈ Lr(Ω;Rd),

∀n ∈ N∗, ∇uδ ⇀ ∇u in Lr((0, T )× Ωn;Rd2), where ∇u ∈ Lr(Ω;Rd2), r > 1.

This observation (which is seen from a brief inspection of the proof hereafter) is not needed in the present
paper but may be of interest whenever one deals with the stability of weak solutions with respect to
perturbations of the boundary in the case of non homogenous boundary data.

Proof of Lemma 3.2
The proof of the lemma follows closely with only minor modifications the similar proof when boundary
velocity is zero, see [11]. During the process of the proof one shall need Lemma 3.1. This is the only
moment when the requirement on the regularity of Γin is needed. We present however here the entire
proof for the sake of completeness.

Renormalized continuity eqution (2.13) with b = Tk reads∫
Ω

Tk(%δ)ϕ(τ, x) dx−
∫

Ω

Tk(%0)ϕ(0, x) dx = (3.14)∫ τ

0

∫
Ω

(
Tk(%δ)∂tϕ+Tk(%δ)uδ ·∇xϕ−ϕ (T ′k(%δ)%δ − Tk(%δ)) divxuδ

)
dxdt−

∫ τ

0

∫
Γin

Tk(%B)uB ·nϕ dSxdt

for any ϕ ∈ C1([0, T ]× (Ω ∪ Γin)).
Passing to the limit δ → 0 in (3.14), we get∫

Ω

Tk(%)ϕ(τ, x) dx−
∫

Ω

Tk(%0)ϕ(0, x) dx =∫ τ

0

∫
Ω

(
Tk(%)∂tϕ+ Tk(%)u · ∇xϕ− ϕ(T ′k(%)%− Tk(%))divxu

)
dxdt−

∫ τ

0

∫
Γin

Tk(%B)uB · nϕ dSxdt

for any ϕ ∈ C1([0, T ] × (Ω ∪ Γin)). Since for fixed k > 0, Tk(%) ∈ L∞((0, T ) × Rd), we can employ
Lemma 3.1 (with a slight obvious modification which takes into account the non zero right hand side
(T ′k(%)%− Tk(%))divxu) in order to infer that∫

Ω

bM(Tk(%))ϕ(τ, x)dx−
∫

Ω

bM(%0)ϕ(0, x)dx = (3.15)
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∫ τ

0

∫
Ω

(
bM(Tk(%))∂tϕ+ bM(Tk(%))u · ∇xϕ− ϕ

(
b′M(Tk(%))Tk(%)− bM(Tk(%))

)
divxu

)
dxdt

+

∫ τ

0

∫
Ω

(%T ′k(%)− %)divxu b′M(Tk(%)) dxdt−
∫ τ

0

∫
Γin

bM(Tk(%B))uB · nϕ dSxdt

holds with any ϕ ∈ C1([0, T ]× (Ω∪ Γin)) and any bM ∈ C1[0,∞) with b′M having a compact support in
[0,M).

Seeing that by lower weak semi-continuity of L1 norms, Tk(%) → % in L1((0, T )× Ω) as k →∞, we
obtain from equation (3.15) by using the Lebesgue dominated convergence theorem∫

Ω

bM(%)ϕ(τ, x)dx−
∫

Ω

bM(%0)ϕ(0, x)dx = (3.16)

∫ τ

0

∫
Ω

(
bM(%)∂tϕ+ bM(%)u · ∇xϕ− ϕ (b′M(%)%− bM(%)) divxu

)
dxdt−

∫ τ

0

∫
Γin

bM(%B)uB · nϕ dSxdt

with any ϕ ∈ C1([0, T ]× (Ω ∪ Γin)) as k →∞, provided we show that∥∥∥(%T ′k(%)− %)divxu)b′M(Tk(%))
∥∥∥
L1((0,T )×Ω)

→ 0 as k →∞. (3.17)

To show the latter relation we use lower weak semicontinuity of L1 norm, Hölder’s inequality, uniform
bound of uδ in Lr(0, T ;W 1,r(Ω)) and interpolation of Lr

′
between Lebesgue spaces L1 and Lq to get∥∥∥(%T ′k(%)− %)divxu)b′M(Tk(%))
∥∥∥
L1((0,T )×Ω)

≤ max
z∈[0,M ]

|b′M(z)|
∫
{Tk(%)≤M}

|(%T ′k(%)− %)divxu)|dxdt

≤ c supδ>0‖%δT ′k(%δ)− %δ)‖
q(r−1)−r
r(q−1)

L1((0,T )×Ω) lim inf
δ→0

‖%δT ′k(%δ)− %δ)‖
q

r(q−1)

Lq({Tk(%)≤M})
.

We have
‖%δT ′k(%δ)− %δ)‖L1((0,T )×Ω) ≤ 2supδ>0‖%δ‖L1({%δ≥k}) → 0 as k →∞

by virtue of the uniform bound of %δ in Lp((0, T )×Ω) (in the above we have also used algebraic relation
zT ′k(z)− Tk(z) ≤ 2z1{z≥k}), while

‖%δT ′k(%δ)− %δ)‖Lq({Tk(%)≤M}) ≤ 2‖Tk(%δ)‖L1({Tk(%)≤M})

≤ 2
(
‖Tk(%δ)− Tk(%)‖Lq((0,T )×Ω) + ‖Tk(%)− Tk(%)‖Lq((0,T )×Ω) + ‖Tk(%)‖Lq({Tk(%)≤M})

)
,

where we have used algebraic relation zT ′k(z) ≤ 2Tk(z) and the Minkowski inequality. Equation (3.16)
implies (2.13) with any b ∈ C1[0,∞), b′ with compact support by virtue of the Lebesgue dominated
convergence theorem. Lemma 3.2 is proved.
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4 Approximate problem

Our goal is to construct solutions the existence of which is claimed in Theorem 2.4. To this end,
we adopt the approximation scheme based on pressure regularization (small parameter δ > 0) adding
artificial viscosity terms to both (1.1) and (1.2) (small parameter ε > 0). This is so far standard
procedure. Moreover, mostly for technical reasons, we regularize the momentum equation by adding
a convenient dissipative monotone operator with small parameter ε > 0. (This step is not needed
when treating zero boundary data, but seems to be necessary if the boundary velocity is non zero.)
In sharp contrast with [13], we consider for the new system a boundary value problem on Ω with the
non homogenous boundary conditions for velocity and a convenient nonlinear Neumann type boundary
condition for density. The approximated problem is determined in Section 4.1 and the crucial theorem
on its solvability and estimates is formulated in Section 4.2 (see Lemma 4.1). Lemma 4.1 is proved by a
standard combination of a fixed point and Galerkin method, see Section 4.3. After this process we have
at our disposal a convenient solution of the approximate problem. Once the sequence of approximated
solutions is available the limit process has to be effectuated in order 1. ε→ 0 (see Section 5), 2. δ → 0
(see Section 6).

4.1 Approximating system of equations

The approximate problem reads:
∂t%− ε∆x%+ divx(%u) = 0, (4.1)

%(0, x) = %0(x), (−ε∇x%+ %u) · n|I×∂Ω =

{
%BuB · n if [uB · n](x) ≤ 0, x ∈ ∂Ω,
%uB · n if [uB · n](x) > 0, x ∈ ∂Ω

(4.2)

∂t(%u)+divx(%u⊗u)+∇xpδ(%) = divxS(∇xu)−ε∇x% ·∇xu+εdiv
(
|∇x(u− u∞)|2∇x(u− u∞)

)
(4.3)

u(0, x) = u0(x), u|I×∂Ω = uB, (4.4)

with positive parameters ε > 0, δ > 0, where we have denoted

pδ(%) = p(%) + δ%β, β > max{γ, 9/2} (4.5)

and where u∞ is an extension of uB from Lemma 2.2. The exact choice of β is irrelevant from the
point of view of the final result provided it is sufficiently large. It is guided by convenience in proofs; it
might not be optimal.

Anticipating the future development, we denote:

Hδ(%) = H(%) + δH(β)(%), Hδ(%) = H(%) + δH(β)(%), H(β)(%) = %

∫ %

1

zβ−2dz =
1

β − 1
%β (4.6)

and
Eδ(%|r) = E(%|r) + δE(β)(%|r), Eδ(%|r) = E(%|r) + δE(β)(%|r), (4.7)

E(β)(%|r) = H(β)(%)− [H(β)]′(r)(%− r)−H(β)(r).
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4.2 Generalized solutions of the approximate problem

Definition 4.1 A couple (%ε,uε) and associated tensor field Zε is a generalized solution of the sequence
of problems (4.1–4.4)ε>0 iff the following holds:

1. It belongs to the functional spaces:

%ε ∈ L∞(0, T ;Lβ(Ω)) ∩ L2(0, T ;W 1,2(Ω)), 0 ≤ %ε a.a. in (0, T )× Ω, (4.8)

uε ∈ L2(0, T ;W 1,2(Ω;R3)) ∩ L4(0, T ;W 1,4(Ω;R3)), uε|I×∂Ω = uB,

Zε → 0 in L4/3(QT ;R3) as ε→ 0.

2. Function %ε ∈ Cweak([0, T ], Lβ(Ω)) and the integral identity∫
Ω

%ε(τ, x)ϕ(τ, x) dx−
∫

Ω

%0(x)ϕ(0, x) dx = (4.9)

∫ τ

0

∫
Ω

(
%ε∂tϕ+ %εuε · ∇xϕ− ε∇x%ε · ∇xϕ

)
dxdt−

∫ τ

0

∫
Γin

%BuB · nϕ dSxdt

holds for any τ ∈ [0, T ] and ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin));

3. Function %εuε ∈ Cweak([0, T ], L
2β
β+1 (Ω;R3)), and the integral identity∫

Ω

%εuε(τ, ·) ·ϕ(τ, ·) dx−
∫

Ω

%0u0(·)ϕ(0, ·) dx = −
∫ τ

0

∫
Ω

Zε : ∇xϕ dxdt (4.10)

+

∫ τ

0

∫
Ω

(%εuε∂tϕ+ %εuε ⊗ uε : ∇xϕ + pδ(%ε)divxϕ− ε∇x%ε · ∇xuε ·ϕ− S(∇xuε) : ∇xϕ) dxdt

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× Ω;R3).

4. Energy inequality ∫
Ω

(1

2
%ε|uε − u∞|2 +Hδ(%ε) +

Σ

2
%2
ε

)
(τ) dx (4.11)

+δ
β − 1

2

∫ τ

0

∫
Γin

%βε |uB · n|dSxdt+ δ
1

β − 1

∫ τ

0

∫
Γout

%βε |uB · n|dSxdt+
Σ

2

∫ τ

0

∫
Γin

%2
ε|uB · n|dSxdt

+

∫ τ

0

∫
Ω

(
S(∇x(uε− u∞)) : ∇x(uε− u∞) + εH ′′δ (%ε)|∇x%ε|2 + εΣ|∇x%ε|2+ε|∇x(uε − u∞)|4

)
dxdt

≤
∫

Ω

(1

2
%0|u0 − u∞|2 +Hδ(%0) +

Σ

2
%2

0

)
dx

−
(
E− δB

)∫ τ

0

∫
Γin

|uB · n|dSxdt− (H − δA)

∫ τ

0

∫
Γout

|uB · n|dSxdt
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−
∫ τ

0

∫
Γin

Hδ(%B)uB · ndSxdt+ Σ

∫ τ

0

∫
Γin

%ε%B|uB · n|dSxdt

−
∫ τ

0

∫
Ω

pδ(%ε)divu∞ dxdt−
∫ τ

0

∫
Ω

%εuε · ∇xu∞ · (uε − u∞) dxdt

+ε

∫ τ

0

∫
Ω

∇x%ε · ∇x(uε − u∞) · u∞ dxdt−
∫ τ

0

∫
Ω

S(∇xu∞) : ∇x(uε − u∞) dxdt

−Σ

2

∫ τ

0

∫
Ω

%2
εdivuε dxdt, A =

1

β − 1
, B =

2β−1

β − 1
%βB

holds for a.a. τ ∈ (0, T ), any Σ > 0 with some continuous extension u∞ of uB in the class (2.11).
In the above, Hδ is defined in (4.6), H is defined in (2.10) and

−∞ < E := inf
%>0,%

B
<r<%B

E(r|%), where E(·|·) is defined in (2.4). (4.12)

The main achievement of this section is existence theorem for approximating problem (4.1–4.4). It
is announced in the next lemma.

Lemma 4.1. Let Ω be a domain of class C2. Let (%B,uB) verify assumptions (2.1) and let initial and
boundary data verify

u0 ∈ L2(Ω), %0 ∈ W 1,2(Ω), 0 < % ≤ %0 ≤ % <∞. (4.13)

0 < %
B
≤ %B ≤ %B <∞ (4.14)

Then for any continuous extension u∞ of uB in class (2.11) there exists a generalized solution (%ε,uε)
and Zε to the sequence of approximate problems (4.1 - 4.4)ε∈(0,1) - which belongs to functional spaces
(4.8), satisfies weak formulations (4.9–4.10) and verifies energy inequality (4.11) - with the following
extra properties:

(i) In addition to (4.8) it belongs to functional spaces:

%ε ∈ L
5
3
β(QT ),

√
%ε, %

β
2
ε ∈ L2(I,W 1,2(Ω)), ∂t%ε ∈ L4/3(QT ),∇2%ε ∈ L4/3(QT ). (4.15)

(ii) In addition to the weak formulation (4.9), the couple (%ε,uε) satisfies equation (4.9) in the strong
sense, meaning it verifies equation (4.1) with (%ε,uε) a.e. in QT , boundary identity (4.2) with
(%ε,uε) a.e. in (0, T )× ∂Ω and initial conditions in the sense limt→0+ ‖%ε(t)− %0‖L4/3(Ω) = 0.

(iii) The couple (%ε,uε) satisfies identity

∂tb(%ε) + εb′′(%ε)|∇x%ε|2− εdivx(b
′(%ε)∇x%ε) + divx(b(%ε)uε) + [b′(%ε)%ε − b(%ε)] divxuε = 0 (4.16)

a.e. in (0, T ) × Ω with any b ∈ C2[0,∞), where the space-time derivatives have to be understood
in the sense a.e.
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Remark 4.2. Identity (4.16) holds in the weak sense∫
Ω

b(%ε(τ))ϕ(τ) dx−
∫

Ω

b(%0)ϕ(0) dx =

∫ τ

0

∫
∂Ω

(
εb′(%ε)∇x%ε − b(%ε)uε

)
· ndSxdt

+

∫ τ

0

∫
Ω

[
b(%ε)∂tϕ+ (b(%ε)uε − εb′(%ε)∇x%ε) · ∇xϕ− ϕ

(
εb′′(%ε)|∇x%ε|2 + (%εb

′(%ε)− b(%ε))divuε

)]
dxdt

with any τ ∈ [0, T ] and ϕ ∈ C1
c ([0, T ]×Ω) with any b whose growth (and that one of its derivatives) in

combination with (4.15) guarantees b(%ε) ∈ Cweak([0, T ];L1(Ω)), existence of traces and integrability of
all terms appearing at the r.h.s.

4.3 Solvability of the approximating equations

This section is devoted to the proof of Lemma 4.1. We adopt the nowadays standard procedure based
on computing the approximate density % in terms of u in (4.1), (4.2), calculating u via a Galerkin
approximation, and applying a fixed point argument, see [17, Chapter 7]. We proceed in several steps.
These steps are described in the following subsections.

4.3.1 Construction of a (strong) solution of problem (4.1-4.2)

Here we consider the problem (4.1–4.2), with fixed ε > 0 and with fixed sufficiently regular u. We may
suppose without loss of generality that{

uB · n on Γin,
0 on ∂Ω \ Γin

}
≡ v ∈ C1(∂Ω), %Bv ≡ g ∈ C1(∂Ω). (4.17)

Now, problem (4.1–4.2) may be rewritten as parabolic problem:

∂t%− ε∆%+ div(%u) = 0 in (0, T )× Ω, (4.18)

−ε∇% · n + %v = g in (0, T )× ∂Ω, %(0) = %0 in Ω.

Applying to problem (4.18) the maximal regularity theory for parabolic systems, we get in particular:

Lemma 4.3. Suppose that Ω is a bounded domain of class C2 and assume further that %0 ∈ W 1,2(Ω),
u ∈ L∞(0, T ;W 1,∞(Ω)), u|(0,T )×∂Ω = uB, v, g ∈ C1(∂Ω) are given by (4.17). Then we have:

1. The parabolic problem (4.18) admits a unique solution in the class

% ∈ L2(0, T ;W 2,2(Ω)) ∩W 1,2(0, T ;L2(Ω)). (4.19)

2. The following estimates hold: There is c = c(T, ε, |Ω|, |∂Ω|2, K) > 0 (independent of u, %0, %B, uB)
such that

‖%(τ)‖2
L2(Ω) ≤ c

(
‖%0‖2

L2(Ω) +

∫ τ

0

∫
∂Ω

%2
B|v|dSxdt

)
, (4.20)
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∫ τ

0

‖∇x%‖2
L2(Ω)dt+

∫ τ

0

∫
∂Ω

%2|v|dSdt ≤ c
(
‖%0‖2

L2(Ω) +

∫ τ

0

∫
∂Ω

%2
B|v|dSdt

)
,

for all τ ∈ [0, T ], provided
‖u‖L∞(QT ) + ‖divu‖L∞(QT ) ≤ K. (4.21)

2. Let
% ≤ %0(x) ≤ % for a. a. x ∈ Ω, % ≤ %B(x) ≤ % for all x ∈ Γin.

Then

%exp
(
−
∫ τ

0

‖divu(s)‖L∞(Ω)ds
)
≤ %(τ, x) ≤ %exp

(∫ τ

0

‖divu(s)‖L∞(Ω)ds
)
, (4.22)

in particular,
%e−Kτ ≤ %(t, x) ≤ %eKτ

for all τ ∈ [0, T ] provided u verifies condition (4.21). (Here and in the sequel |A| is a Lebesgue
measure of set A ⊂ R3 while |A|2 denotes its 2−D Hausdorf measure.)

3. In the sequel we denote % = S%0,%B ,uB(u) ≡ S(u). Then

‖[S%0,%B ,uB(u1)− S%0,%B ,uB(u2)](τ)‖L2(Ω) ≤ Γ‖u1 − u2‖L∞(0,τ ;W 1,∞(Ω)) (4.23)

with some number Γ = Γ(T, ε, |Ω|, |∂Ω|2, K, ‖%0‖L2(Ω), ‖%2
Bv‖L1(0;T ;L1(∂Ω))) > 0, provided both u1,

u2 verify (4.21).

Proof of Lemma 4.3
Proof of statement 1. The parabolic boundary value problem (with elliptic differential operator A =
−ε∆ + u · ∇x + divu on Ω and boundary operator B = −εn · ∇x + v on the boundary ∂Ω) satisfies all
assumptions of the maximal regularity theorem by Denk, Hieber, Prüss [4, Theorem 2.1] with p = 2 (the
coefficients are sufficiently regular in order to verify conditions [4, conditions (SD), (SB)], principal part
of operator A is (normally) elliptic, see [4, condition (E)], while the principal parts of operators A and
B verify the Shapiro-Lopatinskii conditions [4, condition (LS)], and the data %0 and g verify conditions
[4, condition (D)], and eventually Bergh and Löfström [3, Theorem 6.4.4] for the identification of the
Sobolev space W 1,2(Ω) with the Besov space B1

2,2(Ω)). Under these circumstances, Theorem 2.1 in [4]
yields the statement in item 1. of Lemma 4.3, in particular (4.19). The reader wishing to read more
about the maximal regularity to parabolic equations is referred to the monograph [5].

Proof of statement 2. Estimates (4.20) is obtained testing (4.18) by % and using first the Hölder and
Young inequalities and next the Gronwall inequality. Indeed, this testing gives

1

2

∫
Ω

%2(τ) dx−
∫ τ

0

∫
∂Ω

%2vdSxdt+ ε

∫ τ

0

∫
Ω

|∇x%|2 dxdt

=
1

2

∫
Ω

%2
0 dx−

∫ τ

0

∫
∂Ω

%%BvdSxdt−
∫ τ

0

∫
Ω

(
∇x% · u%+ %2divu

)
dxdt,
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where ∣∣∣1
2

∫ τ

0

∫
∂Ω

%%BvdSxdt
∣∣∣ ≤ 1

2

∫ τ

0

∫
∂Ω

%2|v|dSxdt+
1

2

∫ τ

0

∫
∂Ω

%2
B|v|dSxdt

and∣∣∣ ∫ τ

0

∫
Ω

(
∇x%·u%+%2divu

)
dxdt

∣∣∣ ≤ ε

2

∫ τ

0

∫
Ω

|∇x%|2 dxdt+

∫ τ

0

(1

ε
‖u‖2

L∞(Ω) +‖divu‖L∞(Ω)

)∫
Ω

%2 dxdt;

whence application of the standard Gronwall inequality yields

‖%(τ)‖2
L2(Ω) ≤

(
‖%0‖2

L2(Ω) +

∫ τ

0

∫
∂Ω

%2
B|v|dSxdt

)
exp
(

(K +
1

ε
K2)τ

)
which is first inequality in (4.20). Once this inequality is known, the second inequality is immediate.

Proof of statement 3. We shall proceed to the proof of upper bound (4.22). To this end we define

R(t) = %exp

∫ t

0

‖divu(s)‖L∞(Ω)ds, i.e ∂tR + div(Ru) ≥ 0, R(0) = %.

We further set ω(t, x) = %(t, x)−R(t), so that ω satisfies

∂tω − ε∆ω + div(ωu) ≤ 0, in (0, T )× Ω, −ε∂ω · n + ωv = (%B −R)v in (0, T )× ∂Ω.

Testing the latter inequality by ω+ (the positive part of ω) we get while reasoning in the same way as
in the proof of estimate (4.20),

1

2

∫
Ω

|ω+|2(τ) dx+

∫ τ

0

∫
∂Ω

|ω+|2|v|dSxdt+ ε

∫ τ

0

∫
Ω

|∇xω
+|2 dxdt

≤ 1

2

∫
Ω

|ω+|2(0) dx+

∫ τ

0

∫
∂Ω

ω+(%B −R)|v|dSxdt−
∫ τ

0

∫
Ω

(
∇xω

+ · uω+ + |ω+|2divu
)

dxdt.

Now we employ the fact that the first term at the right hand side is zero, while the second term is non
positive, and handle the last term as in the proof of (4.20) to finally get ‖ω+(τ)‖L2(Ω) = 0 which yields
the upper bound in (4.22). To derive the lower bound we shall repeat the same procedure with

R(t) = %exp
(
−
∫ t

0

‖divu(s)‖L∞(Ω)ds
)

and ω(t, x) = R(t)− %(t, x).

Proof of statement 4. The difference η ≡ %1 − %2, where %i = S%0,%B ,uB(ui), verifies equation:

∂tη − ε∆η = F a.e. in QT , −ε∇xη · n + ηv = 0 in (0, T )× ∂Ω
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with zero initial data, where F = −%1div(u1 − u2)−∇x%1 · (u1 − u2)− ηdivu2 −∇xη · u2,

|
∫

Ω

Fη dx| ≤ 1

2
‖u1 − u2‖2

W 1,∞(Ω) +
(1

2
‖%1‖2

W 1,2(Ω) +K +
1

ε
K2
)
‖η‖2

L2(Ω) +
ε

2
‖∇xη‖2

L2(Ω).

Therefore, by the same token as before, after testing the above equation by η, we get

‖η(τ)‖2
L2(Ω) +

ε

2

∫ τ

0

‖∇xη‖2
L2(Ω)dt+

∫ τ

0

∫
∂Ω

η2|v|dSxdt

≤ τ

2
‖u1 − u2‖2

W 1,∞(Qτ ) +

∫ τ

0

(1

2
‖%1‖2

W 1,2(Ω) +K +
1

ε
K2
)
‖η‖2

L2(Ω)dt;

whence Gronwall lemma and bounds (4.20) yield the desired result (4.23).

4.3.2 Galerkin approximation for approximate problem (4.1-4.4)

We start by introducing notations and gathering some preliminary material:

1. We denote

X = span{Φi}Ni=1 where B := {Φi ∈ C∞c (Ω) | i ∈ N∗} is an orthonormal basis in L2(Ω;R3)
(4.24)

a finite dimensional real Hilbert space with scalar product (·, ·)X induced by the scalar product in
L2(Ω;R3) and ‖ · ‖X the norm induced by this scalar product. We denote by PN the orthogonal
projection of L2(Ω;R3) to X. Since X is finite-dimensional, norms on X induced by W k,p−norms,
k ∈ N , 1 ≤ p ≤ ∞ are equivalent. In particular, there are universal numbers (depending solely on
the dimension N of X) 0 < d < d <∞ such that

d‖v‖W 1,∞(Ω) ≤ ‖v‖X ≡ ‖v‖L2(Ω) ≤ d‖v‖W 1,∞(Ω), for all v ∈ X. (4.25)

2. Let g ∈ L1(QT ), infess(t,x)∈QT g ≥ a > 0. We define for a.a. t ∈ (0, T ),

Mg(t) ∈L(X,X), <Mg(t)Φ,Ψ >X :=

∫
Ω

g(t, x)ΦΨ dx (4.26)

With this definition at hand, we easily see that there holds for a.a. t ∈ (0, T ),

‖Mg(t)‖L(X,X) ≤ δ

∫
Ω

g(t, x) dx, <Mg(t)Φ,Φ >X≥ a‖Φ‖2
X , (4.27)

M−1
g(t)(t) ∈L(X,X), ‖M−1

g(t)(t)‖L(X,X) ≤
δ

a
,

‖Mg1(t) −Mg2(t)‖L(X,X) ≤ δ‖g1(t)− g2(t)‖L1(Ω), (4.28)
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‖M−1
g1(t) −M−1

g2(t)‖L(X,X) ≤
δ

a2
‖g1(t)− g2(t)‖L1(Ω).

In the above formulas δ is a positive universal number dependent solely of N . Moreover, if in
addition g ∈ C([0, T ];L1(Ω)) then

Mg(·), M
−1
g(·) ∈ C([0, T ];L(X,X)). (4.29)

Finally, if in addition ∂tg ∈ L1(QT ), then

∂tMg(.)(t) = M∂tg(t) ∈L(X,X), ∂tM
−1
g(.)(t) = −M−1

g(t)M∂tg(t)M
−1
g(t) ∈L(X,X) (4.30)

for a.a. t ∈ (0, T ).

We shall look for
T ′ ∈ (0, T ] and uN = u∞ + vN , vN ∈ C([0, T ′];X), (4.31)

satisfying ∫
Ω

∂t(%NuN) · Φ dx =

∫
Ω

(
divS(∇xuN)+εdiv

(
|∇x(uN − u∞)|2∇x(uN − u∞)

)
(4.32)

−∇xpδ(%N)− div(%NuN ⊗ uN)− ε∇x%N · ∇xuN

)
dx,

or equivalently, omitting index N at vN , uN and %N∫
Ω

%v(t) · Φ dx−
∫

Ω

%0v0Φ dx =

∫ t

0

∫
Ω

(
divS(∇xu)+εdiv

(
|∇x(u− u∞)|2∇x(u− u∞)

)
(4.33)

−∇xpδ(%)− div(%u⊗ u)− ε∇x% · ∇xu−∂t%u∞
)
· Φ dxdt,

where v0 = u0 − u∞, %(t) = S(u)(t), Φ ∈ X, t ∈ (0, T ′) with S being defined in item 3. of Lemma 4.3.
The latter equation is equivalent to the integral formulation

v(t) = T(v) := M−1
S(u)(t)

(
P (%0v0)

)
+ M−1

S(u)(t)

[ ∫ t

0

(
PN(S(u)(s),u(s))

)
ds
]
, (4.34)

where

N(%,u) = divS(∇xu)+εdiv
(
|∇x(u− u∞)|2∇x(u− u∞)

)
−∇xpδ(%)−div(%u⊗u)−ε∇x% ·∇xu−∂t%u∞

and where here and in the sequel, P states for PN .
Clearly, N(S(u),u) ∈ L2(QT ′) due to (4.19), (4.22), (4.31). This implies that 1) the map t 7→

PN(S(u)(t),u(t)) ∈ L2(0, T ;X), 2) the map t 7→
∫ t

0

(
PN(S(u)(s),u(s))ds ∈ C([0, T ];X), 3) operator

T maps C([0, T ];X) to C([0, T ];X), 4) we have a bound
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‖PN(S(u),u)‖X ≤ d2(K, %, T ), provided u verifies (4.21). (4.35)

5) Likewise, using in addition (4.23),

‖PN(S(u1),u1)− PN(S(u2),u2)‖X ≤ d3(K, %, T )‖u1 − u2‖X , provided both ui verify (4.21). (4.36)

Coming back to T, we find with help of (4.27), (4.22), (4.35),

‖Tv(t)‖X ≤
δ

%
eKt
(
‖Pv0‖X + d2(K, %, T )t

)
provided u∞ + v verifies (4.21),

and with help of (4.28), (4.22), (4.23) on one hand and (4.27), (3.5) on the other hand

‖Tv1 −Tv2‖C([0,t];X) ≤ t
(Γδd2

(%)2
+
δd3

%

)
eKt ‖v1 − v2‖C([0,t];X) provided u∞ + vi verifies (4.21).

Now we take K > 0 sufficiently large and T ′ sufficiently small, so that

K
d

2
≥ max

{δ
%
eKT

′
(
‖Pv0‖X + d2(K, %, T )T ′

)
, d‖u∞‖W 1,∞(Ω)

}
and

T ′
(Γδd2

(%)2
+
δd3

%

)
eKT

′
< 1

With this choice, we easily check employing (4.25) that u∞ + v verifies condition (4.21), provided
‖v‖C([0,T ];X ≤ K d

2
. We have thus showed that T is a contraction maping from the (closed) ball

B(0;Kd/2) ⊂ C([0, T ′], X) into itself. It therefore admits a unique fixed point v ∈ C([0, T ′], X),
and u = u∞ + v solves problem (4.33).

Denote now

T = {T ′ ∈ (0, T ) | problem (4.33) admits a solution v ∈ C([0, T ′];X)}, and set Tmax = supT.

We have already proved that T is not empty. In what follows we prove that Tmax = T . In fact, if
Tmax < T , then necessarily

lim
T ′→Tmax

‖v‖C([0,T ′];X) →∞. (4.37)

We shall show that (4.37) cannot happen. To this end we derive in the next section the uniform
estimates.

21



4.3.3 Uniform bounds independent of the Galerkin approximation

We first integrate equation (4.1)(%N ,uN ) in order to obtain the conservation of total mass. Omitting
subscript N in order to simplify notatio, we get∫

Ω

%(τ) dx+

∫ τ

0

∫
Γout

%uB · ndSxdt =

∫
Ω

%0 dx+

∫ τ

0

∫
Γin

%|uB · n|dSxdt (4.38)

Next, we come back to integral formulation (4.34) and conclude employing (4.27), (4.30) and (4.19)
that ∂tv ∈ L2(0, T ′;X).

Further, we multiply equation (4.18) by H ′δ(%) to deduce

∂tHδ(%) + εH ′′δ (%)|∇x%|2 − εdiv
(
H ′δ(%)∇x%

)
+ div(Hδ(%)u) + pδ(%)divu = 0 a.e. in Qτ , τ ∈ (0, T ′),

or, after using boundary conditions (4.18),

∂t

∫
Ω

Hδ(%) dx+ ε

∫
Ω

H ′′δ (%)|∇x%|2 dx+

∫
∂Ω

(
H ′δ(%)(%B − %)v +Hδ(%)uB · n

)
dSx = −

∫
Ω

pδ(%)divu dx

or further, after employing the definition (4.17) of v,

∂t

∫
Ω

Hδ(%) dx+ε

∫
Ω

H ′′δ (%)|∇x%|2 dx+

∫
Γin

(
Hδ(%B)−H ′δ(%)(%B − %)−Hδ(%)

)
|v|dSx+

∫
Γout

Hδ(%)uB·ndSx

= −
∫

Ω

pδ(%)divu dx−
∫

Γin

Hδ(%B)uB · ndSx. (4.39)

Next, we deduce from (4.32)∫ τ

0

∫
Ω

∂t(%v) · v − %u⊗ u : ∇xv dxdt+

∫ τ

0

∫
Ω

S(∇xu) : ∇xv dx

+ε

∫ τ

0

∫
Ω

|∇xv|4 dxdt−
∫ τ

0

∫
Ω

pδ(%)divv dxdt+

∫ τ

0

∫
Ω

ε∇x% · ∇xu · v dxdt = 0,

where by virtue of (4.18) (after several integrations by parts and recalling that u = u∞ + v),∫
Ω

(
∂t(%u) ·v− %u⊗u : ∇xv

)
dx =

∫
Ω

(
∂t%v

2 +
1

2
∂t%v

2 + ∂t%u∞ ·v +
1

2
div(%u)v2− %u ·∇xv ·u∞

)
dx

=

∫
Ω

(1

2
∂t(%v

2) + ε∆%u∞ · v +
ε

2
∆%v2 − div(%u)u∞ · v − %u · ∇xv · u∞

)
dx

= ∂t

∫
Ω

1

2
%v2 dx+

∫
Ω

(
%u · ∇xu∞ · v − ε∇x% · ∇xu · v − ε∇x% · ∇xv · u∞

)
dx.
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Consequently,∫
Ω

(1

2
%v2 +Hδ(%)

)
(τ) dx+

∫ τ

0

∫
Γin

Eδ(%B|%)|uB · n|dSxdt+

∫ τ

0

∫
Γout

Hδ(%)|uB · n|dSxdt (4.40)

+ε

∫ τ

0

∫
Ω

|∇xv|4 dxdt+ ε

∫ τ

0

∫
Ω

H ′′δ (%)|∇x%|2 dxdt+

∫ τ

0

∫
Ω

S(∇xv) : ∇xv dxdt

≤
∫

Ω

(1

2
%0v

2
0 +Hδ(%0)

)
dx−

∫ τ

0

∫
Γin

Hδ(%B)uB · ndSxdt

+

∫ τ

0

∫
Ω

(
− pδ(%)divu∞ − S(∇xu∞) : ∇xv − %u · ∇xu∞ · v + ε∇x% · ∇xv · u∞

)
dxdt,

where, recall, Hδ, Eδ are defined in (4.6), (4.7), respectively.
Further, we test equation (4.1)(%N ,uN ) by %N in order to get, after several integrations by parts,

1

2

∫
Ω

%2(τ) dx+
1

2

∫ τ

0

∫
∂Ω

%2|uB · n|dSxdt+ ε

∫ τ

0

∫
Ω

|∇x%|2 dxdt (4.41)

=
1

2

∫
Ω

%2
0 dx+

∫ τ

0

∫
Γin

%%B|uB · n|dSxdt−
1

2

∫ τ

0

∫
Ω

%2divudxdt

where as in (4.40) we have omitted indexes N .
Now, our goal is to derive from (4.40) and (4.41) useful bounds for the sequence (%N ,uN). The

coefficients of derived bounds depend tacitly on the parameters of the problem (as γ, β, µ, λ, a, b, T,
Ω, functions p, p) and on ”data”, where

”data” stands for

∫
Ω

(1

2
%0v

2
0 +Hδ(%0)

)
dx, ‖u∞‖W 1,∞(Ω), %B, %B ≡ ‖%B‖C(∂Ω), H,E.

In particular, they are always independent N . If they depend on ε or δ this dependence is also always
indicated in their argument as well as the dependence on other quantities (notably T ) if it is necessary
for the understanding of proofs. The coefficients may take different values even in the same formulas.

Before attacking estimates we shall list several consequences of structural assumptions (2.2), (4.5)
and formulas (2.3), (2.4), (4.6), (4.7) needed for the derivation of those bounds.

1. A brief excursion to (2.3) and (4.6) yields

−∞ < − δ

β − 1
+H ≤ Hδ. (4.42)

2. We shall now investigate the lower bound of Eδ(%B|%). First, due to convexity of H, we have
E(%B|%) ≥ 0. Second, we verify by direct calculation that

E(β)(r|%) ≥ 1

2
%β − 2β−1

β − 1
rβ,
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where E(β) is defined in (4.7). Finally, using namely conditions p′(0) = 0 (cf. last line in formula
(2.2)), we get

E := inf
%>0;%

B
<r<%B

E(r|%) > −∞

Putting together these three observations we infer (see (4.6–4.7) for the notation),

Eδ(%B|%) ≥ δ

2
%β + E− δ 2β−1

β − 1
%βB. (4.43)

3. Recalling again definition (4.7) of Eδ, Eδ we find identity

Hδ(%) = Eδ(% | %) +Dδ(%, %), (4.44)

where

Dδ(%, %) =
[
H′
δ (%)(%− %) + Hδ(%) + H(%)

]
, % =

1

|Ω|

∫
Ω

%0 dx.

Thanks to (4.38),

sup
t∈(0,T )

∫
Ω

|D(%, %)| dx ≤ c(data), (4.45)

where we have also employed regularity of p near zero to show that the map % 7→ H(%) is bounded
near 0.

4. We have Eδ(%|r) = E(%|r) + δE(β)(%|r), where, due to convexity of H and H(β) on (0,∞), Eδ enjoys
the following coercivity property: There is c = c(%) > 0, such that

Eδ(%|%) ≥ c
[
δ
(
%β1Ores(%) + 1Ores(%) (4.46)

+1Oess(%)(%− %)2
)

+
(
%γ1Ores(%) + 1Ores(%) + 1Oess(%)(%− %)2

)]
for all % ≥ 0, where Oess = (1

2
%, 2%) while Ores = [0,∞) \Oess, and where we have used the growth

condition for p from (2.2).

5. We deduce from the Korn and Poincaré inequalities,

‖v‖2
W 1,2(Ω) ≤ c‖S(∇xv) : ∇xv‖L1(Ω). (4.47)

6. There holds Hδ = H + δH(β) + H, where

H′′ ≥ 0, [H(β)]′′(%) = β%β−2 (4.48)∫ T

0

∫
Ω

|H′′(%)||∇x%|2 dxdt ≤ sup
%>0

∣∣∣p′(%)

%

∣∣∣ ∫ T

0

∫
Ω

|∇x%|2 dxdt, (4.49)

where sup%>0

∣∣∣p′(%)
%

∣∣∣ < ∞ namely thanks to assumption p′(0) = 0 (cf. again last line in formula

(2.2)).
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7. The absolute value of the right hand side of inequality (4.40) is bounded by

1 + α

α
c(data, δ)

∫ τ

0

∫
Ω

(
Eδ(%|%) +

1

2
%v2
)

dxdt+ αε‖∇x%‖2
L2(Qτ ) (4.50)

+
(
α + ε

c(data, T )

α

)
‖∇xv‖2

L2(Qτ ) +
c(data)

α
,

with arbitrary α > 0, where we have used several times the Hölder and Young inequalities, and
coercivity (4.46) of Eδ(%|%).

8. By the same token, the absolute value of the right hand side of equality (4.41) is bounded by

1

δ

1 + α

α
c(data, T ) + c

1 + α

α

1

δ

∫ τ

0

∫
Ω

Eδ(%|%) dxdt (4.51)

+αδ

∫ τ

0

∫
Γin

%β|uB · n|dSxdt+ α‖∇xv‖2
L2(Qτ )

with arbitrary α > 0.

Next, we multiply equation (4.41) by a positive number Σ and add it to inequality (4.40). With
notably (4.42–4.43) at hand, we deduce from this operation the following inequality which will be our
departure point: ∫

Ω

(1

2
%v2 +Hδ(%) +

Σ

2
%2
)

(τ) dx (4.52)

+δ
β − 1

2

∫ τ

0

∫
Γin

%β|uB · n|dSxdt+ δ
1

β − 1

∫ τ

0

∫
Γout

%β|uB · n|dSxdt+
Σ

2

∫ τ

0

∫
∂Ω

%2|uB · n|dSxdt

+

∫ τ

0

∫
Ω

(
S(∇xv) : ∇xv + εH ′′δ (%)|∇x%|2 + εΣ|∇x%ε|2 + ε|∇xv|4

)
dxdt

≤
∫

Ω

(1

2
%0v

2
0 +Hδ(%0) +

Σ

2
%2

0

)
dx

−
(
E− δB

)∫ τ

0

∫
Γin

|uB · n|dSxdt− (H − δA)

∫ τ

0

∫
Γout

|uB · n|dSxdt

−
∫ τ

0

∫
Γin

Hδ(%B)uB · ndSxdt+ Σ

∫ τ

0

∫
Γin

%%B|uB · n|dSxdt

−
∫ τ

0

∫
Ω

pδ(%)divu∞ dxdt−
∫ τ

0

∫
Ω

%u · ∇xu∞ · v dxdt

+ε

∫ τ

0

∫
Ω

∇x%ε · ∇xv · u∞ dxdt−
∫ τ

0

∫
Ω

S(∇xu∞) : ∇xv dxdt− Σ

2

∫ τ

0

∫
Ω

%2divu dxdt,

where numbers A, B are define in (4.11).
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Now we take in (4.52)

Σ = 2 sup
%>0

∣∣∣p′(%)

%

∣∣∣
and use estimates (4.44–4.45) when dealing with

∫
Ω
Hδ(%)(τ) dx, (4.47) when dealing with

∫ τ
0

∫
Ω
S(∇xv) :

∇xv dxdt , (4.48–4.49) when treating ε
∫ τ

0

∫
Ω
H ′′δ (%)|∇x%|2dxdt, and (4.50–4.51) to treat the right hand

side (while taking first α > 0 sufficiently small and then ε > 0 also sufficiently small in order to let the
terms αε‖∇x%‖L2(Qτ ), (α + ε c

α
)‖∇xv‖2

L2(Qτ ) and αδ
∫ τ

0

∫
Γin
%β|u · n|dSx ”absorb” in the left hand side)

with the goal to obtain with help of the Gronwall inequality,

sup
t∈(0,T ′)

∫
Ω

%v2(t) dx ≤ K(data, T, δ) (4.53)

‖v‖L2(0,T ′;W 1,2(Ω)) ≤ K(data, T, δ), (4.54)

sup
t∈(0,T ′)

∫
Ω

Eδ(%|%)|(t) dx ≤ L(data, T, δ), (4.55)

ε

∫ T ′

0

∫
Ω

H′′
δ (%)|∇x%|2 dx ≤ L(data, T, δ), (4.56)

ε

∫ T ′

0

∫
Ω

|∇x%|2 dx ≤ L(data, T, δ), (4.57)∫ T ′

0

∫
∂Ω

%β|uB · n|dSxdt ≤ L(data, T, δ). (4.58)

ε‖v‖4
L4(0,T ′;W 1,4(Ω)) ≤ L(data, T, δ). (4.59)

At this immediate stage, we shall use the first two estimates. Employing (4.25), namely ‖v‖W 1,∞(Ω) ≤
c‖v‖W 1,2(Ω), v ∈ X, and (4.22), we get

% ≥ %exp
(
−
∫ T ′

0

(‖u∞(s)‖W 1,∞(Ω) + c‖v(s)‖W 1,2(Ω))ds
)
≥ K1(%, T, data).

Coming back to (4.53), and using ‖v‖L2(Ω) ≥ d‖v‖W 1,∞(Ω), we finally obtain

‖v‖C([0,T ′];W 1,∞(Ω)) ≤
1

d

K

K1

for any T ′ < Tmax.

This contradicts (4.37). We have thus proved that Tmax = T .
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4.3.4 From Galerkin approximation to solutions of approximate problem (4.1-4.4)

Recalling structural assumptions (2.2) for p, definitions (2.3) of H and (4.6) of pδ, Hδ (notably the
coercivity relations (4.46), (4.48), we deduce from (4.53–4.59) the following bounds for the sequence
(%N = S(uN),uN = u∞ + vN) of Galerkin solutions to the problem (4.33):

‖%N |uN |2‖L∞(I,L1(Ω)) ≤ L(data, δ), (4.60)

‖uN‖L2(I,W 1,2(Ω)) ≤ L(data, δ), (4.61)

‖%N‖L∞(I,Lβ(Ω)) ≤ L(data, δ), (4.62)

ε‖∇%N‖2
L2(QT ) + ε‖∇(%

β/2
N )‖2

L2(QT ) ≤ L(data, δ), (4.63)

‖%|uB · n|1/β‖Lβ((0,T )×∂Ω) ≤ L(data, δ), (4.64)

ε‖uN − u∞‖4
L4(0,T ;W 1,4(Ω)) ≤ L(data, δ). (4.65)

From these bounds we find by Hölder inequalities, Sobolev embeddings and interpolation

‖%NuN‖
L∞(I,L

2β
β+1 (Ω))

+ ‖%NuN‖
L2(I,L

6β
β+6 (Ω))

≤ L(data, δ), (4.66)

‖%N |uN |2‖
L2(I,L

6β
4β+3 (Ω))

≤ L(data, δ), (4.67)

‖%N‖L 5
3β(QT )

≤ L(data, δ, ε), (4.68)

‖div(%NuN)‖L4/3(QT ) ≤ L(data, δ, ε). (4.69)

Now we return to (4.18) -with (%N ,uN)- and consider it as parabolic problem with operatot ∂t%− ε∆%
in (0, T )× Ω with right hand side −div(%NuN), and boundary operator −εn · ∇x%+ v% in (0, T )× ∂Ω
with right hand side %Bv. The maximal parabolic regularity theory, as e.g. [4, Theorem 2.1], yields that

‖∂t%N‖L4/3(QT ) + ‖%N‖L4/3(0,T ;W 2,4/3(Ω)) ≤ L(data, δ, ε). (4.70)

The above bounds imply, via several classical convergence theorems, existence of a chosen subse-
quence (not relabeled) whose limits and way of convergence will be specified in the following text.

We deduce from (4.70),

%N ⇀ % in L4/3(0, T ;W 2,4/3(Ω)) and in L2(0, T ;W 1,2(Ω)), ∂t%N ⇀ ∂t% in L4/3(QT ) (4.71)

and also in addition with help of (4.62–4.63) by Lions-Aubin Lemma, %N → % in L2(QT ), ∇x%N → ∇x%
in L4/3(QT ); whence, in particular,

%N → % a.e. in QT and in Lp(QT ), 1 ≤ p < 5
3
β, (4.72)

∇x%N → ∇x% a.e. in QT and in Lp(QT ), 1 ≤ p < 2, (4.73)
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where we have used (4.68) and (4.63). Consequently, in particular

pδ(%N), Hδ(%N)→ pδ(%), Hδ(%) in Lp/β(QT ), β < p <
5

3
β. (4.74)

Further, due to (4.63), trace theorem and (4.64)

%N ⇀ % in L2((0, T )× ∂Ω), %N |uB · n|1/β ⇀ %|uB · n|1/β in Lβ((0, T )× ∂Ω). (4.75)

Next, we derive from (4.18) written with (%N ,uN) that the sequences of functions t 7→
∫

Ω
%N(t)ϕ dx

are for any ϕ ∈ C1
c (Ω) uniformly bounded and equi-continuous in C[0, T ]; whence the Arzela-Ascoli

theorem in combination with the separability of Lβ
′
(Ω) furnishes,

%N → % in Cweak([0, T ], Lβ(Ω)). (4.76)

Estimate (4.65) yields
uN ⇀ u (weakly) in L4(0, T ;W 1,4(Ω)), (4.77)

and in combination with (4.72)

%NuN ⇀ %u e.g. in L2(0, T ;L
6β
β+6 (Ω)) (4.78)

and finally, together with (4.69),

div(%NuN) ⇀ div(%u) in L4/3QT ). (4.79)

Estimate (4.65) furnishes further

ε|∇x(uN − u∞)|2∇x(uN − u∞) ⇀ Z ≡ Zε weakly in L4/3(QT ;R9), (4.80)

where
‖Zε‖L4/3(QT ) → 0 as ε→ 0.

Second convergence in (4.73) and (4.77) yield

∇x%N · ∇xuN ⇀ ∇x% · ∇xu in L4/3(QT ). (4.81)

Returning with estimates (4.60–4.67) and with (4.81) to (4.33), we infer that the sequences of func-
tions t 7→

∫
%NuN(t)Φi are for any Φi ∈ B uniformly bounded and equi-continuous in C[0, T ]. We

may thus combine Arzela-Ascoli theorem with the fact that the linear hull of B is dense in L
2β
β−1 (Ω) to

deduce that
%NuN → %u in Cweak([0, T ];L

2β
β+1 (Ω)), (4.82)

where we have used the second convergence in (4.77) in order to identify the limit. Seeing the compact

imbedding L
2β
β+1 (Ω) ↪→↪→ W−1,2(Ω), we deduce %NuN(t)→ %u(t) (strongly) inW−1,2(Ω) for all t ∈ [0, T ].
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This implies, in particular, %NuN → %u in L2(0, T ;W−1,2(Ω)). Combining weak convergence (4.77) with
just obtained strong convergence of %NuN , and with estimate (4.67) we get

%NuN ⊗ uN ⇀ %u⊗ u in L2(I, L
6β

4β+3 (Ω)). (4.83)

Relations (4.72–4.83) guarantee the belonging of (%,u) to class (4.8) while (4.63), (4.68) and (4.70)
guarantee additional regularity (4.15). Relation (4.71) guarantees that equation (4.9) is satisfied in the
strong sense (4.1). Equation (4.1)%ε,uε tested by %e yields inequality (4.41) by the same manipulations as
presented during the derivation of inequality (4.41). Equation (4.16) is obtained by multiplying (4.1) by
b′(%). The limits (4.72–4.78), (4.81–4.83) employed in (4.32) lead to equation (4.10). It remains to pass
to the limit from the inequality (4.52)(%N ,uN ) to inequality (4.11). To this end, we use at the left hand
side the lower weak semi-continuity of norms and convex functionals. The right hand side converges
to its due limit (the same expression with (%,v)) due to (4.72), (4.77), (4.81), (4.83) and (4.75). We
postpone the details of the limit passage in the energy inequality to the next Section, where similar
reasoning will be employed. We have thus established Lemma 4.1.

5 Limit ε→ 0

The aim in this section is to pass to the limit in the weak formulation (4.9–4.11) of the problem (4.1–
4.4)(%ε,uε) in order to recover the weak formulation of problem (1.1–1.6) written with pδ, Hδ instead of
p,H (cf. (4.8–4.11)). We expect that there is a (weak) limit (%,u) of a conveniently chosen subsequence
(%ε,uε), that represents a weak solution of problem (1.1–1.6)(p=pδ,H=Hδ) (cf. (2.5–2.9)). More exactly,
we want to prove the following lemma:

Lemma 5.1. Under assumptions of Lemma 4.1, there exists a subsequence (%ε,uε) (not relabeled) and
a couple (%,u) such that

%ε ⇀∗ % (weakly − ∗) inL∞(0, T ;Lβ(Ω)), uε ⇀ u ∈ L2(0, T ;W 1,2(Ω;R3)) (5.1)

0 ≤ % a.a. in (0, T )× Ω, u|(0,T )×∂Ω = uB,

satisfying:

1. Function % ∈ Cweak([0, T ], Lβ(Ω)) and the integral identity∫
Ω

%(τ, ·)ϕ(τ, ·)dx−
∫

Ω

%0(·)ϕ(0, ·)dx (5.2)

=

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dxdt−

∫ τ

0

∫
Γin

%BuB · nϕ dSxdt

holds for any τ ∈ [0, T ] and ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin));
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2. The renormalized continuity equations holds:∫
Ω

b(%)ϕ(τ)dx−
∫

Ω

b(%0)ϕ(0)dx = (5.3)

∫ τ

0

∫
Ω

(
b(%)∂tϕ+ b(%)u · ∇xϕ− ϕ (b′(%)%− b(%)) divxu

)
dxdt−

∫ τ

0

∫
Γin

b(%B)uB · nϕ dSxdt

for any ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin)), and any continuously differentiable b with b′ having a compact

support in [0,∞).

3. Function %u ∈ Cweak([0, T ], L
2β
β+1 (Ω;R3)), and the integral identity∫

Ω

%u(τ, ·) ·ϕ(τ, ·)dx−
∫

Ω

%0u0(·)ϕ(0, ·)dx (5.4)

=

∫ τ

0

∫
Ω

(%u · ∂tϕ + %u⊗ u : ∇xϕ + pδ(%)divxϕ− S(∇xu) : ∇xϕ) dxdt

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× Ω;R3).

4. The energy inequality∫
Ω

(1

2
%|u− u∞|2 +Hδ(%)

)
(τ)dx+

∫ τ

0

∫
Ω

S(∇x(u− u∞)) : ∇x(u− u∞)dxdt (5.5)

≤
∫

Ω

(1

2
%0|u0 − u∞|2 +H(%0)

)
dx−

∫ τ

0

∫
Γin

Hδ(%B)uB · ndSxdt

−
(
E− δB

)∫ τ

0

∫
Γin

|uB · n|dSxdt− (H − δA)

∫ τ

0

∫
Γout

|uB · n|dSxdt

−
∫ τ

0

∫
Ω

pδ(%)divu∞dxdt−
∫ τ

0

∫
Ω

%u · ∇xu∞ · (u− u∞)dxdt

−
∫ τ

0

∫
Ω

S(∇xu∞) : ∇x(u− u∞)dxdt

holds for a.a. τ ∈ (0, T ). Numbers A, B are defined in (4.11) and H, E in (2.10) and (4.12),
respectively. Vector field u∞ is a given continuous extension of uB in class (2.11).

The remaining part of Section 5 will be devoted to the proof of Lemma 5.1. The proof will be
performed in the following subsections.
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5.1 Uniform bounds independent on ε

We have to start by deriving uniform bounds independent of ε. We collect them in the following lemma:

Lemma 5.2. Let (%ε,uε) (and associated Zε) be a sequence of (genegalized) solutions of the approximate
problem (4.1–4.2) constructed in Lemma 4.1. Then under assumptions of Lemma 4.1 there holds:

‖uε‖L2(I,W 1,2(Ω)) ≤ L(data, δ), (5.6)

ε1/4‖uε‖L4(I,W 1,4(Ω)) ≤ L(data, δ), (5.7)

‖%ε‖L∞(I,Lβ(Ω)) ≤ L(data, δ) (5.8)

‖%ε|uε|2‖L∞(I,L1(Ω)) ≤ L(data, δ), (5.9)
√
ε‖∇%ε‖L2(QT ) ≤ L(data, δ), (5.10)

‖%ε‖Lβ+1((0,T )×K) ≤ L(data, δ,K, δ), with any compacts K ⊂ Ω. (5.11)

(We recall that Zε converges to 0 in L4/3(QT ) according to (4.80)). Here L is a positive constant, which
is, in particular, independent of ε.

Proof of Lemma 5.2
Continuity equation (4.9) provides bound∫

Ω

%ε(τ) dx ≤
∫

Ω

%0 dx−
∫ τ

0

∫
Γin

%BuB · ndSxdt.

With this bound at hand, uniform estimates (5.6–5.10) follow directly from energy inequality (4.11),
structural assumptions on pressure p, definitions of pδ and Hδ, see (2.2), (4.5), (2.10) and (4.6), in the
same manner as detailed in Sections 4.3.3 and 4.3.4. The last estimate is based on the properties of the
so-called Bogovskii operator. We shall recall them in the following lemma.

Lemma 5.3. Let Ω be a bounded Lipschitz domain. Then there exists a linear operator

B : {f ∈ C∞c (Ω;R3) |
∫

Ω

f dx = 0} 7→ C∞c (Ω;R3)}

such that: 1) divB[f]=f; 2) B is bounded linear operator from L
p
(Ω) to W 1,p(Ω) for any 1 < p < ∞

(i.e. there is c = c(p) > 0 such that ‖B[f ]‖W 1,p(Ω;R3) ≤ c(p)‖f‖Lp(Ω)) for all f ∈ Lp(Ω); 3) if f = divg,
g ∈ Lq(Ω), 1 < q < ∞ with g · n|∂Ω = 0 in the sense of normal traces, then there is c = c(q) > 0 such
that ‖B[f ]‖Lq(Ω;R3) ≤ c(q)‖g‖Lq(Ω,R3) for all g with the above properties. In the above L

p
(Ω) := {f ∈

Lp(Ω) |
∫

Ω
f dx = 0}.
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We shall obtain estimate (5.11) by taking in the momentum equation (4.10) with (%ε,uε) test function

ϕ = η(t)B
[
ψ%ε −

1

|Ω|

∫
Ω

ψ%ε dx
]
,

where η ∈ W 1,∞
0 (0, T ) and ψ ∈ C1

c (Ω) are convenient cut off functions. This testing provides an identity
of the form ∫ T

0

∫
Ω

ηψpδ(%ε)%ε dxdt =

∫ T

0

∫
Ω

R(%ε,uε, η, ψ) dxdt,

where the right hand side may be bounded from above via the uniform estimates (5.6–5.10) by virtue
of Hölder, Sobolev and interpolation inequalities, and Lemma 5.3 by a positive number dependent of
∇xψ, but independent, in particular, of η, η′ (and, of course, independent of ε). In order to obtain
this formula, one must perform several times integration by parts and employ conveniently continuity
equation (4.9). We notice that the most disagreeable terms involving integration over the boundary
vanish due to the fact that ϕ and ψ vanish at the boundary. This is nowadays a standard and well
understood procedure. We refer the reader for more details to [11, Section 3.2], or to monographs [7],
[17], [9]. Seeing decomposition (2.2) of the pressure and seeing that p is bounded, the latter formula
provides bound (5.11).

5.2 Weak limits in continuity and momentum equations

We shall first pass to the limit in the weak formulations of the continuity equation (4.9) and momentum
equation (4.10). Estimates (5.6) and (5.8) yield convergence (5.1), and estimate (5.11) together with

(2.2), (4.5) implies pδ(%ε) ⇀ pδ(%) weakly in L
β+1
β ((0, T )×K)) for any compact K ⊂ Ω. Here, and in the

sequel, g(%,u) denotes a weak limit in L1(QT ) of the sequence g(%ε,uε). By virtue of (5.10) (and (5.6))
the terms multiplied by ε will vanish in the limit. Sequence Zε → 0 in L4/3(QT ;R9) by construction, see
(4.80). Seeing that %ε → % in Cweak([0, T ];Lβ(Ω)) (as one can show by means of the Arzela-Ascoli type
argument from equation (4.9) and uniform bounds (5.6–5.10)), we deduce from the compact imbedding
Lβ(Ω) ↪→↪→ W−1,2(Ω) and from uε ⇀ u in L2(0, T ;W 1,2(Ω)) the weak-* convergence %εuε ⇀∗ %u

in L∞(0, T ;L
2β
β+1 (Ω)) that may be consequently improved thanks to momentum equation (4.10) and

estimates (5.6–5.10) to %εuε → %u in Cweak(0, T ;L
2β
β+1 (Ω)) again by the Arzela-Ascoli type argument.

With this observation at hand, employing compact imbedding L
2β
β+1 (Ω) ↪→↪→ W−1,2(Ω) and uε ⇀ u in

L2(0, T ;W 1,2(Ω)) we infer that %εuε → %u in L2(0, T,W−1,2(Ω;R3)) and consequently %εuε⊗uε ⇀ %u⊗u
weakly e.g. in L1(QT ;R9), at least for a chosen subsequence (not relabeled). Having the above, we get
the following limits in equations (4.9–4.10):∫

Ω

%(τ, x)ϕ(τ, x)dx−
∫

Ω

%0(x)ϕ(0, x)dx =

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dxdt (5.12)

= −
∫ τ

0

∫
Γin

%BuB · nϕ dSxdt
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for any τ ∈ [0, T ] and ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin));∫

Ω

%u(τ, ·) ·ϕ(τ, ·)dx−
∫

Ω

%0u0(·)ϕ(0, ·)dx (5.13)

=

∫ τ

0

∫
Ω

(
%u∂tϕ+ %u⊗ u : ∇xϕ + pδ(%)divxϕ− S(∇xu) : ∇xϕ

)
dxdt

for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× Ω;R3).

It remains to show that
pδ(%) = pδ(%).

The rest of this section is devoted to the proof of this identity. This is equivalent to show that %ε → %
a.e. in QT .

5.3 Effective viscous flux identity

We denote by ∇x∆
−1 the pseudodifferential operator with Fourier symbol iξ

|ξ|2 and by R the Riesz

transform with Fourier symbol ξ⊗ξ
|ξ|2 . Following Lions [14], we shall use in the approximating momentum

equation (4.9) test function

ϕ(t, x) = ψ(t)φ(x)∇x∆
−1(%εφ), ψ ∈ C1

c (0, T ), φ ∈ C1
c (Ω)

and in the limiting momentum equation (5.13) test function

ϕ(t, x) = ψ(t)φ(x)∇x∆
−1(%φ), ψ ∈ C1

c (0, T ), φ ∈ C1
c (Ω)

subtract both identities and perform the limit ε → 0. This is a laborious, but nowadays standard
calculation (whose details can be found e.g. in [11, Lemma 3.2], [17], [7] or [9, Chapter 3]) leading to
the identity∫ T

0

∫
Ω

ψφ2
(
pδ(%)− (2µ+ λ)divu

)
% dxdt−

∫ T

0

∫
Ω

ψφ2
(
pδ(%)%− (2µ+ λ)%divu

)
dxdt (5.14)

=

∫ T

0

∫
Ω

ψφu ·
(
%R · (%uφ)− %u ·R(%φ)

)
dxdt

− lim
ε→0

∫ T

0

∫
Ω

ψφuε ·
(
%εR · (%εuεφ)− %εuε ·R(%εφ)

)
dxdt.

This process involves several integrations by parts and exploits continuity equation in form (4.9) and
(5.12). We notice that the non homogenous data do not play any role due to the presence of compactly
supported cut-off functions ψ and φ. The essential observation for getting (5.14) is the fact that the
map %→ ϕ defined above is a linear and continuous from Lp(Ω) to W 1,p(Ω), 1 < p <∞ as a consequence
of classical Hörmander-Michlin’s multiplier theorem of harmonic analysis. The most non trivial moment
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in this process is to show that the right hand side of identity (5.14) is 0. To see it (we repeat the
reasoning [11] for the sake of completeness) we first realize that the Cweak([0, T ], Lβ(Ω))-convergence of

%ε and Cweak([0, T ], L
2β
β+1 (Ω))-convergence of %εuε evoked in Section 5.2 imply, in particular,

for all t ∈ [0, T ], %ε(t) ⇀ %(t) in e.g. Lβ(Ω) %εuε(t) ⇀ %u(t) in L
2β
β+1 (Ω).

Since R is a continuous operator from Lp(R3) to Lp(R3), 1 < p <∞, we also have

for all t ∈ [0, T ], R[%ε(t)φ] ⇀R[%(t)φ] in Lβ(Ω), R[%εuε(t)φ] ⇀R[%u(t)φ] in L
2β
β+1 (Ω).

At this stage we report a convenient version of the celebrated Div-Curl lemma, see [7, Section 6] or [9,
Theorem 10.27]. It reads

Lemma 5.4. Let
Vε → V weakly in Lp(RN ;RN),

Uε → U weakly in Lq(RN ;RN),

where 1
p

+ 1
q

= 1
s
< 1. Then

Uε ·R[Vε]−R[Uε] ·Vε → U ·R[V]−R[U] ·V weakly in Ls(RN).

Applying this lemma to the above situation, we get

for all t ∈ [0, T ], [%εR · (%εuεφ)− %εuε ·R(%εφ)](t) ⇀ [%R · (%uφ)− %u ·R(%φ)](t) in L
2β
β+3 (Ω).

In view of compact imbedding L
2β
β+3 (Ω) ↪→↪→ W−1,2(Ω), we have also

for all t ∈ [0, T ], [%εR · (%εuεφ)− %εuε ·R(%εφ)](t)→ [%R · (%uφ)− %u ·R(%φ)](t) in W−1,2(Ω).

We easily verify that the sequence ‖%εR · (%εuε)− %εuε ·R(%ε)‖W−1,2(Ω) is bounded in L∞(0, T ); whence
the latter convergence yields the strong convergence

%εR · (%εuεφ)− %εuε ·R(%εφ)→ [%R · (%uφ)− %u ·R(%φ) in L2(0, T ;W−1,2(Ω)).

Recalling the L2(0, T ;W 1,2(Ω))-weak convergence of uε we get the desired result. Identity (5.14) now
reads

p(%)%− p(%) % = (2µ+ λ)
(
%divu− %divu

)
. (5.15)

If the pressure were non decreasing (i.e. if p would be identically zero), we would have by Miniti’s trick,
p(%)% − p(%)% ≥ 0 a.e. in QT , see [9, Theorem 10.19] and consequently %divu − %divu ≥ 0 a.e. in QT .
We however consider a non-monotone pressure and this simple conclusion is not true anymore.

We have to further extend this argument. Following Feireisl [7], we realize that there is Λ > 0
(dependent on p) such that

[0,∞) 3 % 7→ Λ% ln %− %p(%), [0,∞) 3 % 7→ Λ% ln %+ p(%) (5.16)
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are convex. Consequently,

Λ
(
% ln %− % ln %

)
≥ %p(%)− %p(%) (5.17)

and
Λ
(
% ln %− % ln %

)
≥ p(%)− p(%). (5.18)

Coming now back to (5.15), we obtain by using monotonicity of p,

(2µ+ λ)
(
%divu− %divu

)
≤ %p(%)− % p(%)

≤
[
%p(%)− %p(%)

]
+ %
[
p(%)− p(%)

]
.

Employing (5.17) and (5.18) further yields

%divu− %divu ≤ cΛ(1 + r)
(
% ln %− % ln %

)
, (5.19)

provided supp p ⊂ [0, r]. This is the crucial inequality that plays in the case of non monotone pressure
the same role as would be played by the inequality %divu− %divu ≥ 0 in the case of monotone pressure
law.

5.4 Strong convergence of density sequence

Since % verifies continuity equation (5.12) and since it belongs to to L2(QT ) we may employ Lemma 3.1
in order to conclude that it verifies also renormalized continuity equation (2.13). In view of Remark
2.5, identity (2.13) is valid for any b belonging to class (2.14). In particular, for b(%) ≡ L(%) = % log %,
it reads ∫

Ω

L(%(τ, x))ϕ(τ, x)dx−
∫

Ω

L(%0)ϕ(0, x)dx (5.20)

=

∫ τ

0

∫
Ω

(
L(%)∂tϕ+ L(%)u · ∇xϕ− ϕ%divxu

)
dxdt+

∫ τ

0

∫
∂Ω

L(%B)uB · nϕdSxdt.

We continue with the renormalized version of the approximate equation of continuity (4.16). In
particular, for b(%) = L(%) ≡ % log(%), when passing to the weak formulation, we obtain∫

Ω

L(%ε(τ, x))ϕ(τ, x) dx−
∫

Ω

L(%0(x))ϕ(0, x) dx (5.21)

−
∫ τ

0

∫
Ω

(
L(%ε)∂tϕ+ L(%ε)uε · ∇xϕ

)
dxdt+

∫ τ

0

∫
Ω

%εdivxuεϕ dxdt

+

∫ τ

0

∫
Γin

ϕL(%ε)uB · n dSxdt− ε
∫ τ

0

∫
Γin

ϕL′(%ε)∇x%ε · n dSxdt ≤ o(ε)
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for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ] × (Ω ∪ Γin)), ϕ ≥ 0, where the inequality sign appears due to

the omission of the (non negative) term containing εL′′(%ε)|∇x%ε|2 (recall that L is convex) and o(ε),
limε→0 o(ε) = 0 corresponds to the terms of (4.16) containing ε as multiplier.

Finally, we use the boundary conditions (4.10) obtaining∫
Ω

L(%ε(τ, x))ϕ(τ, x) dx−
∫

Ω

L(%0(x))ϕ(0, x) dx (5.22)

−
∫ τ

0

∫
Ω

(
L(%ε)∂tϕ+ L(%ε)uε · ∇xϕ

)
dxdt+

∫ τ

0

∫
Ω

%εdivxuεϕ dxdt

+

∫ τ

0

∫
Γin

(
L(%ε)uB · n + L′(%ε)(%B − %ε)uB · n

)
dSxdt ≤ o(ε)

for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin)), ϕ ≥ 0.

Subtracting (5.20) from (5.22) while taking ϕ independent of t ∈ [0, T ], we get∫
Ω

L(%ε(τ, x))ϕ(x) dx−
∫

Ω

L(%(τ, x))ϕ(x) dx (5.23)

−
∫ τ

0

∫
Ω

(
L(%ε)− L(%)

)
uε · ∇xϕ dxdt+

∫ τ

0

∫
Ω

(
%εdivxuε − %divxu

)
ϕ dxdt

+

∫ τ

0

∫
Γin

ϕ [L(%B)− L′(%ε)(%B − %ε)− L(%ε)] |uB · n| dSx ≤ o(ε)

for any τ ∈ [0, T ] and any ϕ ∈ C1
c (Ω ∪ Γin)), ϕ ≥ 0. As L is convex, we deduce,∫

Ω

L(%ε(τ, x))ϕ(x) dx−
∫

Ω

L(%(τ, x))ϕ(x) dx

−
∫ τ

0

∫
Ω

(
L(%ε)− L(%)

)
uε · ∇xϕ dxdt+

∫ τ

0

∫
Ω

(
%εdivxuε − %divxu

)
ϕ dxdt ≤ o(ε).

Whence, letting ε→ 0 yields∫
Ω

(
% log %− % log %)(τ, x)ϕ(x) dx+

∫ τ

0

∫
Ω

(
% log %− % log %

)
u · ∇xϕ dxdt (5.24)

≤ cΛ(1 + r)

∫ τ

0

∫
Ω

(
% log %− % log %

)
dxdt

for any τ ∈ [0, T ] and any ϕ ∈ C1
c (Ω ∪ Γin), ϕ ≥ 0, where we have used (5.19).

Let now ũB ∈ W 1,∞(Ω) be a Lipschitz extension of uB to Ω constructed in Lemma 2.2. Since Γout is
in class C2, function x 7→ dist(x,Γout) belongs to C2(U−ε0(Γout) ∪ Γout) for some ”‘small”’ ε0 > 0, where

U−ε0(Γout) ≡ {x = x0 − zn(x0) |x0 ∈ Γout, 0 < z < ε0} ∩ Ω,
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cf. Foote [12]. Moreover,

∇xdist(x,Γout)→ −n(x0), whenever U−ε (Γout) 3 x→ x0 ∈ Γout, 0 < ε < ε0.

Therefore,
ũB · ∇xdist(x,Γout) < 0 for all x ∈ U−ε (Γout) and 0 < ε < ε0. (5.25)

Since Ω is Lipschitz, we have also that∣∣∣Û−ε (Γout)∆U−ε (Γout)
∣∣∣→ 0 as ε→ 0, (5.26)

where
Û−ε (Γout) ≡ {x ∈ Ω | dist(x,Γout) < ε}

and A∆B denotes the symmetric difference of sets A and B.
Consider family of Lipschitz test functions in Ω,

ϕε(x) =

{
1 if dist(x,Γout) > ε
1
ε
dist(x,Γout) if dist(x,Γout) ≤ ε

}
(5.27)

By Lebesgue theorem and Hardy’s inequality (we notice that |∇xϕε(x)| ≤ 1
ε
),∫ T

0

∫
Ω

[
% log(%)− % log(%)

]
(u− ũB) · ∇xϕε dxdt→ 0 as ε→ 0, (5.28)

while, in accordance with (5.25), (5.26)

lim inf
ε→0

∫ T

0

∫
Ω

[
% log(%)− % log(%)

]
ũB · ∇xϕε dxdt ≥ 0. (5.29)

Coming with this information back to (5.24) we conclude that∫
Ω

(
% log %− % log %)(τ, x) dx ≤ cΛ(1 + r)

∫ τ

0

∫
Ω

(
% log %− % log %

)
dxdt, τ ∈ [0, T ];

whence by the Gronwall lemma ∫
Ω

(
% log %− % log %

)
(τ, x) dx ≤ 0. (5.30)

On the other hand, since L is convex, % log %− % log % ≥ 0 a.e. in QT . Inequality (5.30) thus yields

% log % = % log % a.e. in QT ;

Consequently
%ε → % a.e. in QT and strongly in Lp((0, T )×K) and in Ls(QT ) (5.31)

with any compact K ⊂ Ω, p ∈ [1, β + 1), s ∈ [1, β), see e.g. [9, Theorem 10.20]. Therefore pδ(%) = pδ(%)
in equation (5.13). We have proved identity (5.4)

Lemma 5.1 is almost proved. It remains to show the energy inequality (5.5). This will be done in
the next section.
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5.5 Energy inequality

We shall pass to the limit in the energy inequality (4.11) with the goal to deduce from it energy inequality
(5.5). To this end we first take identity (4.16) with b(z) = z2, ϕ = 1 in order to get identity (4.41)(%ε,uε).
This is justified by virtue of Remark 4.2. Due to this operation, all terms in (4.11) multiplied by Σ
vanish.

Once this is done, we integrate the resulting inequality over τ from 0 < τ1 < τ2 < T to get∫ τ2

τ1

∫
Ω

(1

2
%ε|uε − u∞|2 +Hδ(%ε)

)
(τ) dxdt+

∫ τ2

τ1

∫ τ

0

∫
Ω

(
S(∇x(uε − u∞)) : ∇x(uε − u∞) dxdt (5.32)

≤
∫ τ2

τ1

∫
Ω

(1

2
%0|u0 − u∞|2 +H(%0)

)
dxdτ −

∫ τ2

τ1

∫ τ

0

∫
Γin

Hδ(%B)uB · ndSxdtdτ

−
(
E− δB

)∫ τ

0

∫
Γin

|uB · n|dSxdt− (H − δA)

∫ τ

0

∫
Γout

|uB · n|dSxdt

−
∫ τ2

τ1

∫ τ

0

∫
Ω

pδ(%ε)divu∞ dxdt−
∫ τ2

τ1

∫ τ

0

∫
Ω

%εuε · ∇xu∞ · (uε − u∞) dxdtdτ

−
∫ τ2

τ1

∫ τ

0

∫
Ω

(
S(∇xu∞) : ∇x(uε − u∞)− ε∇x%ε · ∇x(uε − u∞) · u∞

)
dxdtdτ,

where, at the left hand side we have omitted the non negative terms multiplied by ε and the non negative
terms involving integrals over the Γin and Γout portions of the boundary.

We can now use the convergences established in Section 5.2 and in (5.31) in combination with the
lower weak semi-continuity of convex functionals at the left hand side (see e.g. [9, Theorem 10.20]) - to
this end we write Hδ = Hδ + H and realize that Hδ is convex and H is bounded on (0,∞)- to get∫ τ2

τ1

∫
Ω

(1

2
%|u− u∞|2 +Hδ(%)

)
(τ) dxdt+

∫ τ2

τ1

∫ τ

0

∫
Ω

(
S(∇x(u− u∞)) : ∇x(u− u∞) dxdt

≤
∫ τ2

τ1

∫
Ω

(1

2
%0|u0 − u∞|2 +H(%0)

)
dxdτ −

∫ τ2

τ1

∫ τ

0

∫
Γin

Hδ(%B)uB · ndSxdtdτ

−
(
E− δB

)∫ τ

0

∫
Γin

|uB · n|dSxdt− (H − δA)

∫ τ

0

∫
Γout

|uB · n|dSxdt

− lim inf
ε→0

∫ τ2

τ1

∫ τ

0

∫
Ω

pδ(%ε)divu∞ dxdt−
∫ τ2

τ1

∫ τ

0

∫
Ω

%u · ∇xu∞ · (u− u∞) dxdtdτ

−
∫ τ2

τ1

∫ τ

0

∫
Ω

S(∇xu∞) : ∇x(u− u∞) dxdtdτ.

We observe that due to (2.11),∫ τ

0

∫
Û−h (∂Ω)

(
p(%ε) + δ(%βε + %ε)

)
divu∞dxdt ≥ 0
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(if h > 0 is sufficiently small) and

lim inf
ε→0

∫ τ2

τ1

∫ τ

0

∫
Ω\Û−h (∂Ω)

((
p(%ε) + δ(%βε + %ε)

)
divu∞dtdτ

=

∫ τ2

τ1

∫ τ

0

∫
Ω\Û−h (∂Ω)

(
p(%) + δ(%β + %)

)
divu∞dxdtdτ,

while ∫ τ

0

∫
Ω

p(%ε)divu∞ dxdt→
∫ τ

0

∫
Ω

p(%)divu∞ dxdt

by virtue of (5.31).
Using these facts in (5.32), letting h → 0 and τ1 → τ2 while applying the Theorem on Lebesgue

points yields the desired inequality (5.5). Lemma 5.1 is thus proved.

6 Limit δ → 0. Proof of Theorem 2.4

Our ultimate goal is to perform limit δ → 0. We will prove the following:

Lemma 6.1. Let (%δ,uδ) be a sequence of functions constructed in Lemma 5.1. Then there is a subse-
quence (not relabeled) such that

%δ ⇀ % weakly-* in L∞(0, T ;Lγ(Ω)), (6.1)

uδ ⇀ u in L2(0, T ;W 1,2(Ω;R3)),

where the couple (%,u) is a weak solution of problem (1.1–1.6).

The remaining part of this section is devoted to the proof of Lemma 6.1, which is nothing but
Theorem 2.4.

6.1 Uniform estimates

We shall start with estimates for weak solutions (%δ,uδ) constructed in Lemma 5.1. They are collected
in the following lemma.

Lemma 6.2. Let (%δ,uδ) be a couple constructed in Lemma 5.1. Then, the following estimates hold:

‖uδ‖L2(I,W 1,2(Ω;R3)) ≤ L(data), (6.2)

‖%δ‖L∞(I,Lγ(Ω)) ≤ L(data), (6.3)

‖%δu2
δ‖L∞(I,L1(Ω)) ≤ L(data), (6.4)

δ1/β‖%δ‖L∞(I,Lβ(Ω)) ≤ L(data), (6.5)
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There is α(γ) > 0 such that

‖%δ‖Lγ+α((0,T )×K) ≤ L(data, K), with any compact K ⊂ Ω. (6.6)

In the above,

”data” stands for
∫

Ω

(
1
2
%0u

2
0 +H(%0)

)
dx, ‖u∞‖W 1,∞(Ω), %B, %B

Proof of Lemma 5.2
Similarly as before, continuity equation (5.12)(%δ,uδ) yields L∞(0, T ;L1(Ω)) bound for the sequence %δ.
Now, uniform estimates (6.2–6.5) follow directly from energy inequality (5.5), structural assumptions
on the pressure p, and definitions of pδ and Hδ, see (2.2), (4.5), (4.6), and energy inequality (5.5) by the
similar (in fact more simple) reasoning as that one performed in Sections 4.3.3, 4.3.4. The last estimate,
as in the previous section, is based on the properties of the Bogovskii operator introduced in Lemma
5.3. We obtain it by testing the momentum equation (5.4) with (%δ,uδ) with test function

ϕ = η(t)B
[
ψ%αδ −

1

|Ω|

∫
Ω

ψ%αδ dx
]
, where α > 0 is sufficiently small,

and where η ∈ W 1,∞
0 (0, T ) and ψ ∈ C1

c (Ω) are convenient cut off functions. After several integrations by
parts, using renormalized equation (5.3) (with (%δ,uδ) and b(%) = %α, cf. Remark 2.3), we arrive finally
at ∫ T

0

∫
Ω

ηψpδ(%δ)%
α
δ dxdt =

∫ T

0

∫
Ω

R(%δ,uδ, η, ψ) dxdt,

where the right hand side may be bounded from above due to estimates (6.2–6.5), in the same way as
in the Section 5.1. We refer the reader for more details of this standard but laborious procedure again
to [11, Section 4.1], or to monographs [7], [17], [9].

6.2 Weak limits in the field equations

Estimates (6.2–6.3) yield immediately weak convergence announced in (6.1) and estimate (6.6) together

with (2.2) imply p(%δ) ⇀ p(%) weakly in L
γ+α
γ ((0, T )×K)) for any compact K ⊂ Ω. The terms multiplied

by δ in the momentum equation will vanish due to estimate (6.5). Repeating carefully the (standard)

reasoning of Section 5.2, we deduce that % ∈ Cweak([0, T ];Lγ(Ω)), %u ∈ Cweak([0, T ];L
2γ
γ+1 (Ω;R3)), and

the the limit in equations (5.12) and (4.10) reads∫
Ω

%(τ, ·)ϕ(τ, ·)dx−
∫

Ω

%0(·)ϕ(0, ·)dx =

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dxdt (6.7)

= −
∫ τ

0

∫
Γin

%BuB · nϕ dSxdt

for any τ ∈ [0, T ] and ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin));∫

Ω

%u(τ, ·) ·ϕ(τ, ·)dx−
∫

Ω

%0u0(·)ϕ(0, ·)dx (6.8)
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=

∫ τ

0

∫
Ω

(
%u∂tϕ + %u⊗ u : ∇xϕ + p(%)divxϕ

)
dxdt−

∫ τ

0

∫
Ω

S(∇xu) : ∇xϕdxdt

for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ] × Ω;R3). We can perform the weak limit in the renormalized

continuity equation (5.3) for (%δ,uδ). We obtain, by the same token,∫
Ω

(b(%)u)(τ)ϕ(τ)dx−
∫

Ω

b(%0)u0ϕ(0)dx = (6.9)

∫ τ

0

∫
Ω

(
b(%)u · ∇xϕ− ϕ(b′(%)%− b(%))divxu

)
dxdt−

∫ τ

0

∫
Γin

b(%B)uB · nϕ dSxdt

for any ϕ ∈ C1([0, T ]× (Ω∪Γin)), with any b satisfying conditions (2.14)p=γ. (Here again b(%,u) denotes
weak limit of the sequence b(%δ,uδ) (in L1(QT ).))

It remains to show that
p(%) = p(%).

The rest of this section is devoted to the proof of this identity. This is equivalent to show that %δ → %
a.e. in QT .

6.3 Effective viscous flux identity

We now perform similar reasoning as in Section 5.3. Since however functions % and % log % do not possess
enough summability, we shall replace them by convenient truncations Tk(%) and Lk(%), where Tk(%) is
defined in (3.11) and

Lk(%) = %

∫ %

1

Tk(z)

z
dz. (6.10)

We shall repeat the process described in Section 5.3 with Tk(%δ) resp. Tk(%) instead of %δ, %: Following
[11], we shall use in the approximating momentum equation (5.4) (where (%,u) = (%δ,uδ)) test function

ϕ(t, x) = ψ(t)φ(x)∇x∆
−1(Tk(%δ)φ), ψ ∈ C1

c (0, T ), φ ∈ C1
c (Ω)

and in the limiting momentum equation (6.8) test function

ϕ(t, x) = ψ(t)φ(x)∇x∆
−1(Tk(%)φ), ψ ∈ C1

c (0, T ), φ ∈ C1
c (Ω)

subtract both identities and perform the limit δ → 0. This leads to equation∫ T

0

∫
Ω

ψφ2
(
p(%)Tk(%)− (2µ+ λ)Tk(%)divu

)
dxdt−

∫ T

0

∫
Ω

ψφ2
(
pδ(%)Tk(%)− (2µ+ λ)Tk(%)divu

)
dxdt

=

∫ T

0

∫
Ω

ψφu ·
(
Tk(%)R · (%uφ)− %u ·R(Tk(%)φ)

)
dxdt
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− lim
δ→0

∫ T

0

∫
Ω

ψφuδ ·
(
Tk(%δ)R · (%δuδφ)− %δuδ ·R(Tk(%δ)φ)

)
dxdt.

Renormalized continuity equation (5.3)(%δ,uδ) and its weak limit (6.9) with b = Tk play in this calculation
an important role. Due to the compact support of φ, the non homogeneity of the boundary data is
irrelevant. The right hand side of the last identity is zero by div-curl lemma. Consequently, we get the
effective viscous flux identity

p(%)Tk(%)− p(%) Tk(%) = (2µ+ λ)
(
Tk(%)divu− Tk(%)divu

)
. (6.11)

The details of this calculus and reasoning can be found in [11, Lemma 3.2], [7], [17] or [9, Chapter 3].

If p would be non decreasing we would have (2µ + λ)
(
Tk(%)divu − Tk(%)divu

)
≥ 0 (according to e.g.

[9, Theorem 10.19]) and we could stop this part of argumentation at this place. In the general case, we
must continue.

Writing p = p− p and recalling that p is non decreasing, we deduce from identity (6.11),

(2µ+ λ)
(
Tk(%)divu− Tk(%)divu

)
≤ p(%)Tk(%)− p(%)Tk(%). (6.12)

Next, we realize (by employing essentially the lower-weak semi-continuity of norms) that

lim sup
k→∞

‖Tk(%)− %‖L1(QT ) = 0, lim
k→∞
‖p(%)Tk(%)− p(%) %‖L1(QT ) = 0;

whence

lim sup
k→∞

∫ τ

0

∫
Ω

(
p(%)Tk(%)− p(%)Tk(%)

)
dxdt ≤

∫ τ

0

∫
Ω

(
p(%)%− p(%) %

)
dxdt

Finally, we employ formulas (5.17), (5.18), similarly as when deriving (5.19), in order to get

(2µ+ λ)

∫ τ

0

∫
Ω

(
Tk(%)divu− Tk(%)divu

)
dxdt ≤ cΛ(1 + r)

∫ τ

0

∫
Ω

(
% ln %− % ln %

)
dxdt. (6.13)

6.4 Oscillations defect measure

The main achievement of the present section is the following lemma.

Lemma 6.3. Let (%δ,uδ) be a sequence constructed in Lemma 5.1. Then

oscγ+1[%δ ⇀ %](QT ) <∞. (6.14)

The quantity oscγ+1[%δ ⇀ %](QT ) is defined in (3.10)

It is well known that Lemma 6.3 follows from the effective viscous flux identity, see [11, Lemma 4.3],
[7], [17] for the detailed proof. To see this fact, we observe that there is non-decreasing pm ∈ C[0,∞)
and bounded pb ∈ C[0,∞) such that

p(%) =
a

2γ
%γ + pm(%)− pb (6.15)
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Indeed, one may take pm = p− a
2γ
%γ + bη(%) min{r, %}, pb(%) = p(%)− bη(%) min{r, %}, where r solves

equation asγ−1 − 2b = 0 and η ∈ C1
c [0,∞), η(s) = 1 for s ∈ [0, R), 0 ≤ −η′(s) ≤ 1

R
with R sufficiently

large. With this decomposition, effective viscous flux identity (6.11) can be rewritten as follows

a

2γ

∫ T

0

∫
Ω

(
%γTk(%)− %γ Tk(%)

)
dxdt+

∫ T

0

∫
Ω

(
pm(%)Tk(%)−pm(%) Tk(%)

)
dxdt

= lim sup
δ→0

3∑
i=1

I iδ, (6.16)

where

I1
δ =

(
2µ+ λ

)∫ T

0

∫
Ω

(
Tk(%δ)− Tk(%)

)
divxuδ dxdt,

I2
δ =

(
2µ+ λ

)∫ T

0

∫
Ω

(
Tk(%)− Tk(%)

)
divxuδ dxdt,

I3
δ =

∫ T

0

∫
Ω

(
pb(%)Tk(%)− pb(%)Tk(%)

)
dxdt

We first observe that the second integral at the left hand side is non negative (indeed, pm is non-
decreasing and we can use Theorem 10.19 in [9]). Second, we employ the Hölder inequality and interpo-
lation together with the lower weak semi-continuity of norms and bounds (6.2 –6.3) to estimate integrals
I1
δ , I2

δ in order to get

|I1
δ + I2

δ | ≤ c
[
oscγ+1[%δ ⇀ %](QT )

] 1
2γ

(6.17)

with c > 0 independent of k. Finally, since pb is continuous with compact support, integral |I3
δ | is

bounded by an universal constant c = c(pb) > 0.
Next we write, as in [11] ∫ T

0

∫
Ω

(
%γTk(%)− %γ Tk(%)

)
dxdt =

lim sup
δ→0

∫ T

0

∫
Ω

(
%γδ − %

γ
)(
Tk(%δ)− Tk(%)

)
dxdt+

∫ T

0

∫
Ω

(
%γ − %γ

)(
Tk(%)− Tk(%)

)
dxdt

≥ lim sup
δ→0

∫ T

0

∫
Ω

∣∣∣Tk(%δ)− Tk(%)
∣∣∣γ+1

dxdt,

where we have employed convexity of % 7→ %γ and concavity of % 7→ Tk(%) on [0,∞), and algebraic
inequality

|a− b|γ ≤ |aγ − bγ| and |a− b| ≥ |Tk(a)− Tk(b)|, (a, b) ∈ [0,∞)2.

Inserting the last inequality into (6.16) yields (in combination with estimates of integrals I1
δ − I3

δ ) the
statement of Lemma 6.3.
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6.5 Strong convergence of density

Since couple (%,u) verifies continuity equation (2.6), it verifies also renormalized continuity equation
(2.13) in view of Lemma 3.2. In view of Remark 2.5 we can take in the latter equation b = Lk. We get,
in particular, ∫

Ω

Lk(%(τ, x))ϕ(x)dx−
∫

Ω

Lk(%0)ϕ(x)dx (6.18)

=

∫ τ

0

∫
Ω

(
Lk(%)u · ∇xϕ− ϕTk(%)divxu

)
dxdt+

∫ τ

0

∫
∂Ω

Lk(%B)uB · nϕdSxdt,

with any ϕ ∈ C1
c (Ω ∪ Γin) and τ ∈ [0, T ]. On the other hand, equation (6.9) with b = Lk reads,∫

Ω

Lk(%)(τ, x)ϕ(x)dx−
∫

Ω

Lk(%0)ϕ(x)dx (6.19)

=

∫ τ

0

∫
Ω

(
Lk(%)u · ∇xϕ− ϕTk(%)divxu

)
dxdt+

∫ τ

0

∫
∂Ω

Lk(%B)uB · nϕdSxdt,

where ϕ ∈ C1
c (Ω ∪ Γin) and τ ∈ [0, T ]. Subtracting (6.19) and (6.18) yields∫

Ω

(
Lk(%)− Lk(%)

)
(τ, x)ϕ(x)dx−

∫ τ

0

∫
Ω

(
Lk(%)− Lk(%)

)
(u− ũB) · ∇xϕdxdt (6.20)

−
∫ τ

0

∫
Ω

(
Lk(%)− Lk(%)

)
ũB · ∇xϕ =

∫ τ

0

∫
Ω

ϕ
(
Tk(%)divxu− Tk(%)divxu

)
dxdtdxdt

with any ϕ ∈ C1
c (Ω ∪ Γin) and τ ∈ [0, T ], where ũB is defined in Lemma 2.2.

Now we consider the family of test functions ϕδ defined in (5.27). By the same reasoning as in
(5.26–5.29) we deduce∫ T

0

∫
Ω

[
Lk(%)− Lk(%)

]
(u− ũB) · ∇xϕδ dxdt→ 0 as δ → 0, (6.21)

lim inf
δ→0

∫ T

0

∫
Ω

[
Lk(%)− Lk(%)

]
ũB · ∇xϕδ dxdt ≥ 0. (6.22)

Finally we write ∫ τ

0

∫
Ω

ϕδ

(
Tk(%)divxu− Tk(%)divxu

)
dxdt (6.23)

=

∫ T

0

∫
Ω

ϕδ

(
Tk(%)− Tk(%)

)
divxu dxdt+

∫ τ

0

∫
Ω

ϕδ

(
Tk(%)divxu− Tk(%)divxu

)
dxdt,

where the first term converges to 0 as k → ∞ by virtue of (6.14) and interpolation estimate (indeed,
‖Tk(%) − Tk(%)‖L1(QT ) → 0 as k → ∞ by virtue of definition of Tk and lower weak semi-continuity of
norms), while the second term is bounded from above by the expression at the right hand side of (6.13).
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Coming with all this information back to (6.20) with ϕ = ϕδ, and performing first limit δ → 0 and
then limit k →∞ we conclude that∫

Ω

(
% log %− % log %)(τ, x) dx ≤ cΛ(1 + r)

∫ τ

0

∫
Ω

(
% log %− % log %

)
dxdt (6.24)

for all ϕ ∈ C1
c (Ω ∪ Γin), ϕ ≥ 0, τ ∈ [0, T ]. Consequently, by the Gronwall lemma∫

Ω

(
% log %− % log %)(τ, x) dx ≤ 0. (6.25)

This means a.e. in QT convergence of %δ to % and consequently the identity p(%) = p(%).
The passage δ → 0 from the energy inequality (5.5) (with (%δ,uδ)) to the final energy inequality

(2.9) will be done in the same way as in Section 5.5.
We have so far performed the whole proof with initial data satisfying (4.13). We notice that this

is without loss of generality. Indeed finite energy initial data (2.15) can be easily approximated on the
level δ by initial data (4.13) in the way suggested in [11, Section 4]. This concludes the proof of Theorem
2.4.
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general boundary conditions Preprint Nečas Center for Mathematical Modeling, Charles University,
Prague, 2017
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