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May 4, 2018

Abstract

This paper investigates an adaptation of the high-gain Kalman filter
for nonlinear continuous-discrete system with multirate sampled outputs
under an observability normal form. The contribution of this article is
twofold. First, we prove the global exponential convergence of this ob-
server through the existence of bounds for the Riccati matrix. Second, we
show that, under certain conditions on the sampling procedure, the ob-
server’s asynchronous continuous-discrete Riccati equation is stable and
also, that its solution is bounded from above and below. An example,
inspired by mobile robotics, with three outputs available is given for illus-
tration purposes.

1 Introduction

The present paper deals with the design of observers for nonlinear multirate
sampled-data systems under asynchronous sampling —i.e. control systems hav-
ing continuous state dynamics and a discrete measurement procedure. This
situation arises when the output vector of a control system is obtained through
several sensors that do not have the same (possibly non-uniform) sampling rate.
Such systems are often met in practice, for instance in global positioning prob-
lems, as in [33], or in the field of drone control [10]. Likewise, one can be con-
fronted with such asynchronous systems in the fields of submarine robotics, as
can be seen from [3, 31, 6], chemical engineering [41], or cultivation engineering
[4].

As it is emphasised in [43], this state estimation problem can be tackled by
considering one of the three following options. First, model the state dynamics
as discrete and apply a known estimator for discrete state systems —see for
example [4] in the linear setting. Second, lift the measurements into the space
of continuous functions, e.g. with the help of a polynomial fit as it is done in
[41] in the nonlinear setting. Third, directly consider the continuous model for
the state dynamics and the discrete model for the measurements. This latter



option is the one retained in the present paper, for nonlinear systems, in the
framework of high-gain observers [18].

Considering the design of observers, or estimators, for linear multirate stochas-
tic systems, [43] pose the problem in terms of Ito-Volterra equations associated
to discrete measurements, which allows them to derive a very general optimal
filter in this framework. Using the theory of vibrosolutions of integral equations
with discontinuous measures, the authors provide an explicit solution in the
form of a Kalman-like estimator. More recently, in [34], the authors model each
sensor as a sample-and-hold device and perform a stability analysis based on
Lyapunov-Krasovskii functionals. They also consider the problem of determin-
ing the maximum time interval between consecutive measurements that guar-
antees exponential stability. It is addressed under the guise of an optimisation
problem in terms of linear matrix inequalities (LMI). In [28], the authors build
upon the ideas of [25, 1] where an already designed continuous-time Luenberger-
like observer is coupled with asynchronous inter-samples predictors. Finally, the
problem under consideration is also addressed by using multirate versions of the
Kalman filter, see for instance [27, 4, 24, 17]. In particular, in [17], the authors
study the exponential convergence of the proposed observer and the preservation
of observability for multirate systems. The present article extends this latter
approach to nonlinear systems within the framework of high-gain observers.

In the nonlinear framework, there are many paths one can follow in order to
perform data fusion for multirate systems, as it can be seen from [22]. In [41], the
authors rely on a fully continuous, Luenberger-type, design where the missing
measurements are predicted with the help of a polynomial interpolation method.
More recently, [29] uses an already designed continuous-time, Luenberger-like,
observer coupled with asynchronous inter-samples predictors. Also relying on a
fixed correction gain, [40] propose a continuous observer for multirate systems
where the measurements are updated whenever available, the sensors being seen
as sample-and-hold devices. In this latter paper, the global exponential stability
of the observer is proven assuming that the system under consideration is under
an observability normal form distinct from the one used in the present work
—see [19] for details.

Let us mention two more contributions based on Luenberger-like designs.
In [42], the authors address the problem of robust multirate estimation in the
sense that measurements are available in two time scales: fast and slow. Here,
the slow measurements are shown to enhance the robustness of the estimation
procedure with respect to modelling errors. For this purpose, the state variables
need to be (locally) integral detectable from the slow measurements. Finally, in
[11], the authors propose a discrete-time state estimation based on the Taylor
series expansion of the system’s dynamics. The analysis of the proposed observer
follows the ideas of [18] regarding systems that are observable for any inputs but
without using an explicit high-gain parameter.

A multirate moving horizon estimator is detailed in [30], and relies on a
binary switching sequence in order to model the multirate sampling and predic-
tions of the missing measurements.

Finally, the extended Kalman filter design has also been considered for mul-



tirate estimation, as it can be seen from [13, 14, 21, 35] where systems having
two time scales are considered. In [10] a multirate extended Kalman filter is
considered to perform data fusion onboard a small-scale helicopter.

The present paper details the design of a high-gain extended Kalman filter for
the state estimation of multirate nonlinear systems. Following the ideas of [23,
12, 9, 17] the proposed observer consists of two steps: (i) an open-loop prediction
when no measurements are available, and (ii) an impulsive correction each time
a new measurement is available. This second step is performed accordingly to
the actually measured outputs which may consist of a subset of the system’s
output vector only. The global exponential convergence is proven under the
hypothesis that the system is under an observability normal form —see e.g.
[19, 2, 15]. The main difficulties are, on the one hand, to deal with several non-
uniform subdivisions of time in order to represent the asynchronous outputs,
and on the other hand, proving that the observer’s Riccati equation is bounded
over time. This latter issue is handled by following the ideas developed in [7],
where only the synchronous setting is considered.

The remainder of the article is as follows. In Section 2, the system under
consideration is introduced. In particular, it introduces the notion of wvirtual
sensor in order to take into account measurements that are always available
at the same time steps. The observer proposed for this class of systems is
defined in Section 3. Section 4 deals with the proof of the global exponential
convergence of this observer. The demonstration heavily relies on the existence
of bounds for the solution to the observer’s Riccati equation. For the sake of
clarity in the exposure, the proof of this result is given in appendix A. It basically
follows the ideas developed in [7], with an increased complexity coming from the
asynchronicity of the measurements that makes this exposure necessary. Section
5 is dedicated to an example coming from mobile robotics. Finally, Section 6
concludes the article.

Notations

e A time subdivision {#;}rcn is meant as a strictly increasing sequence
of real numbers with to = 0 and ¢t — oo when k& — oo.

e Jd is the identity matrix with appropriate dimensions, diag[v] denotes a
diagonal matrix whose elements are the elements of v. Throughout the
paper, v can either be a vector or a set of matrices. In this latter case,
diag|v] is to be understood as a block-diagonal matrix.

e For a square matrix M, Tr(M) denotes the trace.
e If Q is a set, we denote by || the cardinal of this set.

e w.r.t. is used as the short form of with respect to, and s.p.d. stands for
symmetric positive definite. Oftentimes, time dependencies are omitted to
make the notation less cluttered.



2 System under consideration

Let (X.) be a nonlinear, observable, continuous system under the following
observability normal form —see also [16, 19, 39]:

(u(r)z(7) + b(z(7), u(7)), x(0) = z0 (=)

—N—
< 8.
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The state variable z(7) lies in a compact subset x of R™, the output y(7) is in
R™ and the input vector u(7), which belongs to U,gm C R™, is bounded for
all times. The state variable is decomposed into n, subvectors as follows:

(1) = (x1(7), 22(7), s Ty, ()
where, for all i € {1,...,n,}, 2;(7) is in the compact subset x; C R™ (and
S . n; = n). Each subvector z;(7) is associated to the i*" output y*(7) and is

written

xz(T) = (le(T)vx?(T)v 71‘71 (T))/

The dynamics of z;(7) are described by:

{i”z;(T) = Ai(u(r))i(T) 4 bi(x(7), u(T))
y'(r) = C'(u(r))zi(T)

e A;(u) and C%(u) are, respectively, (n;,n;) and (1 x n;) matrices of the

form
0 a?(u) --- 0
Ai(u) = 0 0 and C'(u) = (af(u) 0
L)
0 0 0

where, for all i € {1,...,n,}, 5 € {1,..., 0}, 4 € Ungm, 0 < am < |al (u)] <
apr. Moreover, we suppose that the elements of the C* matrices are deriv-
able at least once and have their derivative bounded over time’.

e b;(x,u) is a C! triangular, compactly supported, vector field whose last
component is allowed to depend on the full state of (3,):

bi (w;, u)

b7 (wy, 27, w)

bi(z,u) =

n;—1

b;“_l(x}, N A 7))

bl (x,u)

1 Although restrictive, this condition is necessary in order to apply Lemma (12) to a time
varying matrix C.



We assume that, for all ¢, the Jacobian matrix D,b;(z,u) of b;(z,u), com-
puted w.r.t. x, is upper bounded by L, > 0. Therefore, b;(z,u) has the

Lipschitz property w.r.t. @ (uniformly w.r.t. w): ||b;i(z;(t),u) — bi(Z:(t),u)| <

Ly [|z5(t) — 2:(2)]-
Finally, the full dynamics of system (X.) are given by

by (z, u)

A(u) = diag [Al, R Any] , b(x,u) = and C(u) = diag [Cl, ol C’"ﬂ

bn, (2, u)

To this plant, we associate the following continuous-discrete system with
asynchronous, or multirate, measurements

a(r) = Au(r))x(r) +b(x(7),u(r)),  =(0) =z
(Ecda)
y(Tk) = CUk‘r(Tk)
Contrary to what was proposed in a previous work [17], the asynchronous
measurement procedure is not modelled with respect to each output. Instead,
we lump together outputs always available at the same time.

1. Let a sensor be a non-empty subset s, C {1,...,n,}. It is associated
to a vector y(5¢) (1) = {y/(r) : j €s;}. There are n, sensors, with 0 <
ns < n,. In this work, we assume that the set of all sensors of (X.4,) is
a partition of the set {1,...,n,}. Henceforth, it is assumed that a sensor
is made of consecutive indexes. Indeed, this can always be achieved via a
simple re-ordering of the output and state variables.

The (|s;| x n) output matrix corresponding to a sensor s; is denoted C(%¢)
and is such that y(&) (1) = CC) (7).

2. A subdivision of time {s,(:)}k N is associated to each sensor s;, and the

global time subdivision {7 }ren is defined as:

Ns

{7k }ren == U {Sl(i)}leN

1=

where elements belonging to several subdivisions {sl(i)} are considered

only once.
3. For each 7, there exist at least one sensor s; such that sl(i) = 713, for some
index . Let o) denote the set of such sensors:

o = {z €{1,...,ns}|3 ! € N such that Sl(i) _ Tk;}.



The above mentioned [ index, probably differs from &, and is not the same
from sensor to sensor. As such, for all i € oy, l,(f) denotes the index [ € N
such that sl(i) = Tg.

The matrix C,, associated to the set o is the (Zie%

made of the C'*?) matrices that correspond to the output actually available
at time 73:

|s;| x n) matrix

C,, = | Cs9) and thus vy = y(1) = Co, (k).

1€0

3 Definition of the multirate high-gain Kalman
filter

The continuous-discrete asynchronous high-gain Kalman filter is defined in two
parts:

1. two prediction equations when 7 € [1_1,7[, k¥ € N*, with initial values

) and S

z1q and S; 175

2. two correction equations at time 7.
Notations:

e z(7) is the estimated state for all 7 € [1,_1, 7%];

o 2{7) is the estimated state at time Tk, at the end of a prediction step and

before a correction step;

° z,(j) is the estimated state at time 7y, after a correction step. Therefore,

z,(j) is the initial estimated state of the new prediction interval [y, Ty1][.

Prediction equations

A1) = Aw)z(7) +b(z,u)
— (A(u) + Dyb(z,u)) S() — S(7) (A(u) + Dab(z,u)) — (SQpS)(7)
(O1)

Correction equations

— -1 Y . -1 . _ . i i
A0 = 2D s S ee (BED) T (00020 - y) (Sjg} _ 81(5}71)

[ASTe%

+ - s;)! D) A i i
s = s 0 0o (re0) el (s s )

1€0

(02)



In other words, the correction at a time 74 is made with respect to each

measure y,(:") that is actually available and involves a weighting factor equal to

the time elapsed since the last time this specific output was measured.

The matrices Qg and Rési) —which can be time dependent? provided the
constraints (1)-(2) below are met— are of the form

Qo =0ATQA™!  and Rési) = %5(51’)]?(5’?)5(5"') where:

e Q and RG%) are s.p.d. matrices, of dimensions (n x n) and (|s;| x |s;|)
respectively which must lie in compact subsets such that:

gld <Q<gld with0<g<g (1)

r;Id <RG) <7 1d withO<r, <7 (2)

e 509 and A are both diagonal matrices which construction relies on the
quantity n* = max(ny,na,...,ny,,) and on a fixed scalar 6 > 1:

A:diag[Al,...,Any] where Aidiag{ L .. 1 }

gnr—ni’ T gnr—1

and 0 = diag [{G"*_"j tj€ (EZ)H .

Finally, R = diag [R(El), cee R(E"s)] and Ry = diag [Résl), e ,Rés"s)], or

equivalently, if one defines § = diag [6*),...,6()]: Ry = 26 RS.
e The initial datum of the observer is made of the initial estimated state
z(0) € x C R™ and of S(0), a s.p.d. matrix.

Remark 1. 1. The two matrices Qp and Ry, built according to the normal
form of an observable system constitute the high-gain formalism. The
fixed parameter 0 is the so-called high-gain parameter. When 6 = 1, the
proposed observer is a simple extended Kalman filter for which the normal
form allows to prove local convergence only —see e.g. [8].

Although out of scope of the present work, a worth mentioning issue is the
study of methods that allow to define and run the observer in the original
coordinates of the system instead of the normal coordinates. Interested
readers can refer to, e.g., [5, 26, 36] and references herein.

2. Although the definitions of A and 0 may appear uselessly intricate, they are
necessary in order to simplify forthcoming computations, in particular by
preserving the Lipschitz constant of vector field b(x,u) despite the change
of variables performed at the beginning of the proof of convergence (cf.

Sec. 4).

2This time dependency is not explicitly written in the observer’s equations to make the
notations less cluttered.



3. According to Fquation (O ), the matriz R cannot be taken s.p.d. Indeed,
the elements of R that relates outputs that are not available at the same
sampling time are not considered in (O3). In [17], R was a diagonal
matriz. Here, our definition of sensors allows us to consider correlations
between outputs that are always available at the same time —and usually
given by the same physical sensor.

4 Proof of convergence

This section is dedicated to the proof of convergence of observer (O;)-(05). Tt
relies on the analysis of the dynamics of the estimation error: (1) = z(7) —x(7),
and is divided into two parts: the preparation for the proof, and the exponential
convergence.

Preparation for the proof

Let us first consider the change of variables = Az, 2 = Az and € = Ae.
We also denote b(.,u) = Ab(A™1 . u), Dyb(.,u) = AD (A" u)A~! and § =
ATISATL

Lemma 1. [19]
1. The vector field b(&,u) has the same Lipschitz constant as b(x,u).
2. The Jacobian D b(E,u) has the same bound as Dyb(x,u).
3. We also have the following relations:
o AA=0AA, and AA~ =0A~1A;
o 56 OGBIATL = 0l
o ATICE) R ) AL = gots) RsD T 00,

This change of variables allows us to remove the -dependance of the matrices

Rgsi) and Q. With the help of the relations given in Lemma 1, the observer’s
equations (O1)-(03) become:

5_(7) = 0A(u)i(T) +b(Z,u) / )
S(r) = ( Alu )+ow(z,u)) 5—5(9A(u)+D1.5(2,u)) — 0508 "
S 50
k k
ST 3 RO (57 () (s -, (©2)

191

3 = 5<>+920<5>R<ﬁ>10<ﬁ>( @ s )

€0



In order to proceed with the proof, we want to be able to bound all the
elements of AA(u) + D,b(Z, u), independently from 6. This is true for the lower
bound since # > 1, but not for the upper bound. This issue is resolved with the
help of a time reparametrization.

Let 7 be such that 7 = 7. This infers a change on the subdivisions {7} }ren

and {s{} | foralli € {1,.,n,}, as follows: 7 = O, and 5 = s for all
€

k € N. Moreover, we use the notation z(7) = Z(7) in the new time frame. The
observer is now given by the set of equations (O7)-(02):

dz(;) = A(a)z(7) + 3b(z, )
d‘z(;) = — (4@ + §Db(z, a))' 55 (@) + Dbz m) - 5Q8

9= A -SSR e e (o0 st () -0,
1€0

~(+ _(_ Y D= (s [ G e

S = 57+ ¢RI o >(s§§€2)—s<? )

101
1€E0} F

Exponential convergence

The rest of the proof is based on a Lyapunov function argument, the candidate
function being V() = (¢/S¢)(7). Provided that S(7) remains s.p.d. then,
V(&) > 0 for all € # Ogn. In the sequel, after stating a theorem that ensures
the stability of the matrix S, we compute the time derivative V(£) in order to
display the exponential convergence of the proposed observer.

Theorem 2.
Let us consider the asynchronous, continue-discrete, Riccati equation of ob-
server (01)-(0y), that is to say, with A = A(t) + $D,b(z,u):

%@: _AS§-5A-508
<) a(-) (1) ()L u(se) (2B (d) (3)
S = S+ > ctIRE ¢ 50 = S,

1€E0

Here, (A, C) is a time-dependent observable pair (in the classical sense) having
elements belonging to the set

Ap = {a = (a;;) € L ([0,T],R") : sup |a; jloo < B with B> 0} .
1,J

Moreover, all the elements of C' are derivable at least once and have their deriva-
tive bounded over time.



 Then, S(7) is well defined and is s.p.d. for all times. Moreover, for all
T > 0, there exists constants u; > 0, i € {1,...,ns}, and 0 < a < B, such that,

for all subdivisions E(i) , ATk with E(i) — E(Q < w;, we have:
kf een keN k k—1

ald < S(7) < BId for all 7> T.

The constants o and 5 are independent from 6 and the shape of the subdivisions.

Proof. The proof is detailed in Appendix A. O
Let us now resume the convergence study with the computation of d%V(é):
de d, . o1 _
=) = Z(E-2)(7) = Awe+ 5 (b(z,9) - b(z, ) (4)
v, d(@Se),_
w9 = & 0

= 2(8) (be.0) - ba.w) - Db(z.0)e) - (£5QS2).  (5)

Next, we determine the expression of VkH) —i.e. V(7) after a prediction step:

=(+) (+)

& = % —x(%)
g+t i) Dt i S =(1) (=)
= [Id — Sl(c ) Z C(s ) fi(5 ) C(s ) <Sl(§;)> - Slgj)_l)‘| €k
1€E0L
On the other hand, in 7, we have:
v\ o= (@59
I _ _
= a7 [ - 2m+ M M e (6)
where
Y -1 . _(7 (1 = ~(—
M = Z O R(si) ™ o(si) (555) — sl(fj)’l> = Slg-*-) _ Slg ) (7)
€0

In (6), the matrix M is replaced by the right-hand side of (7). Simplifications

lead to: )

+ (=) Tal(=)"ta(+) a(—)- 1171 (=
v = 50 s T e

Using (O2) again allows us to write:

(=) i) )Tt i S =(%)
S+ eI REY O(s)(sf;3>slg>—1>]

1€0L

-1 _

glg—) S{j)gl(g—)’l _ g](g—)’1

()
101

= 577 4803 ¢ Rl o) <Sz(g)> — 50 ) S

1€E0L

()

Before going any further, let us remind the matrix inversion lemma.

10



Lemma 3 (Matrix inversion lemma).
Let M be a s.p.d. matriz and R an invertible matriz. then

(M +MC'R'CM)' =M~ -C'(R+CMC)~!C.

In order to use this lemma, it is necessary to express the sum of matrices
that appear in expression (x) as a product of matrices. First, let us denote:

Ry, = diag [{ R :i € o). }| and I,, = diag H( 5("2) - sﬁ}) 1) Id:ic ak}] .

Then the sum in (x) can be written:

S ) g0 o) (sff -5 1) = O} Ry 5, Coy
1€0L k

By definition, I, is invertible and using® Lemma 3:

-1

-1 _ __y—17—1 -1 -1 B _ N1
[S078 s = [T+ 80 C(’,kR(,;ngCa,cS,g ]

= 807 =, (BouI)t + Co, S c;k)flc(,k

Therefore, we obtain the following system, for all k£ € N:

%( ) = %(5’5)[6( w) — b( ,0) — D,b(2,1)8] — (£5Q5¢) for 7 € [Tr_1, Tx]
Vit = @Se) — ey, (Bo it +Co 80 )_lc £ forr=r
k k k Ok*0o Ok Ok oLk k

Since b(., @) is Lipschitz in its first argument (uniformly w.r.t @) and D,b(., )
is upper bounded:

=
o
—
8l
&l
|
-]
8
o
—
n
<
SN—
Ul
AN

Ly|z — z|| + Lo ]l
2Ly || &l

Theorem 2 provides bounds for S for times greater than a fixed T' > 0, and the
constraints on Q are given in (1), thus leading to:

Z—Z(é) < <35Lb — aq) (€' S¢g)

Since S(7) is positive definite, the derivative of V(&) is negative for 6 chosen

4
such that féLb — aq < 0. Furthemore, we easily show that V(H < V( ) for
all £k € N. Indeed

o -1
V(+) V( ) _(_)/Cmc, (RJkI;k +C‘”€S’§_) 1001“/) Co 5_12 ).

()

3Note that, matrices Ry, and I;kl do commute. Indeed, by definition, each blocks of R,
correspond to a block of ]U_kl made of an identity matrix times some constant parameter.

11



Since S(7) and R, I} are s.p.d. for all times, then the matrix () is at least
positive semidefinite and:

Vit = (#88)" < (¢52))  forall k e N. (8)

This shows the asymptotic convergence of the observer. Moreover, this conver-
gence is exponential. Indeed, let 7 = Iglilg {?k I TR > T}, then for 7 €T, 7} [:
€

@8 = @50+ (5200 ag)
< (F88)(T)elbrs a-ea)(*=T) )

where (9) has been obtained by using Grénwall’s lemma.
For 7 € [Tk, Tk11], inequality (9) is true with 74 replacing 7'. Then, using relation
(8) we show by iteration that (9) is in fact true for all 7 > T, independently
from the subdivions {5,(5)} and {?,il)} .

keN keN

Since &(7) = £(7), then inequality (9) becomes:

— 2 _ T
é 5 (g) H e(4ng_9a2)(7_%) for all 7 > %

ler))? < 2

Finally, following the definition of £(7) = A~'&(7), since ||A~Y|| < 6"~ and
IIA]] < 1, we conclude that

— 2 _ 'R
le(T)]|? < 02("*_1)5 Hs (Cg) H e(4Lo5=000)(7=F)  for all 7 > %
e

5 Illustrative example

Let us consider a boat* evolving in an area delimited by two beacons (denoted
by A and B). As it is schematised in Figure la, X = (;) € R? is the position of
the boat w.r.t. the reference frame attached to A, and 8 € R is the orientation of
the boat, that is the angle formed by axes &, and A} —this latter axis defining
a reference frame attached to the boat.

An onboard rotational position sensor provides —when aligned with one of
the two beacons— a measurement of the angle formed by axis A} and the line
that joins X to the concerned beacon. Furthermore, we assume that the signal
received from A also provides the distance between A and the boat.

The dynamics are simply modelled by the following system:

(r) = wv(r)cos(6(r))
y(r) = o(7)sin(6(r)) (EBoat)
0(r) = u(r)

40r a wheeled mobile robot.

12



where u(7) and v(7) are the controls.

In order to deal with simple equations for the output vector, the system is
rewritten using polar coordinates w.r.t. both A and B —cf. Figure 1b. Let zg
be the abscissa of B in the (X,.,),) reference frame. Then, the angles a1, as
and distances pp, p2 are such that:

e = pjcos(ar) and y = pysin(aq);

e x =xp + pacos(az) and y = pasin(as).

i &

(a) Notations (planar representation). (b) Notations (polar representations)

Figure 1

In those new coordinates, the full dynamics are given by

o= - sin(f — ay)

p1= wvcos(d—ay) o T+a; —0

dp= = sin(f —az) and ()= |p1 | = p1 (10)
p2 = wvecos(f — ) P2 m+oaz—0

0= u

This system is observable, see e.g. [38] and references herein. Actually, the exact
position of the boat can be computed from the knowledge of ¢ — ;1 and p;. The
orientation of the boat can then be easily deduced. However, without both angle
measurements observability is lost, and the rotational position sensor makes the
angle measurements asynchronous which makes it an appropriate example.
System (10) is equipped with two sensors 51 = {1,2} and so = {3}. Note
that with a quick enough rotational speed of the sensor, measurements take
place alternatively. However, sampling times are non-uniform since the boat
trajectory plays a role in determining the time when a measurement is available.
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In order to apply the asynchonous high-gain Kalman filter under discussion,
we put (10) under the normal observability form below by defining z(7) = £(7).

' vsin(z1) "
21 292
Zo | = —vcos(z1) (11)
s vsin(zs)
ﬁ(zlv 22, 23)

where p(z1, 22, 23) = 22 c08(23 — 21) + /7% — 23 sin?(2z3 — 2;) is the expression

of po (as a function of ¢y — ¢1 = 23 — 21 and p; = 23) obtained through the law
of cosines.

We considered the boat trajectory shown in Figure 2a. Here, the boat’s
speed (i.e. v(7)) is kept constant except for T € [5, 10] where it is momentarily
raised to a higher constant value. The initial state of system is zg = (1,6, 1) and
the initial state of the observer is directly set in the normal coordinates®. The
Riccati equation’s initial datum is set by solving an algebraic Riccati equation
using the informations available at time ¢t = 0.

The estimated trajectory, compared to the actual boat trajectory is shown
in Figure 3. Figure 3a highlights the increased convergence speed due to a large
high-gain parameter. Let us remark that when the high-gain parameter equals
1, the displayed observer fails to achieve convergence. Figure 3b shows the
performance of the observer when additive noise is introduced in the output.
We used a gaussian noise® colored through a first order discrete filter, as it is
illustrated in Figure 2b. Because of the known sensibility of high-gain observers
with respect to noise, only the lower value of the high-gain parameter was con-
sidered in the second experiment. This tradeoff between convergence efficiency
and robustness w.r.t. measurement noise could be further investigated with the
use of an adaptive scheme for the high-gain parameter in the spirit of [8, 16, 37].

5As a consequence, the initial guess lacks consistency w.r.t. the problem’s physics which
makes the task harder for the observer.

SHaving its standard deviation equals to 0.1 for the angle measurements, and 1 for the
distance measurements.
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Figure 2: Informations relative to the first (resp. second) beacon appear in red
(resp. blue)
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(a) Trajectory estimation without measure- (b) Trajectory estimation with additive noise
ment noise. on the measurement —cf. Figure 2b.

Figure 3
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6 Conclusion

In this paper, a high-gain extended Kalman filter for nonlinear continuous-
discrete systems with multirate sampled outputs has been presented and its
global asymptotical convergence, proved. The proposed design consists of two
steps: (i) an open loop prediction when no measurements are available, and (ii)
an impulsive correction as soon as new measurements are available. To this end,
each correction step involves a weighted sum of the output errors calculated on
the basis of the measurements available at this sample time. In order to better
handle possible cross-correlations between measurements alway available at the
same time, sensors are defined as subsets of the output vector. Moreover, the
Riccati matrix of the observer is shown to be bounded from above and below
provided that (X.), the underlying continuous system, is observable and for
small enough sampling intervals.

Some improvements are left for the future. First of all, as it is illustrated in
the example, the well known sensitivity of the high-gain design to measurement
noise could be addressed with the help of an adaptive scheme in the spirit of
[8, 16]. An approach taking into account several high-gain parameters instead
of one only (i.e. one parameter per virtual sensor) in the spirit of [37] is another
possible extension to the present work. The present study can also be conducted
in the framework of hybrid systems, cf. [20], as is it done for synchronous hybrid
systems in [32].

Finally, the presence of redundant sensors can lead to an improved version of
the proposed design. Indeed, the maximum step size condition on the time sub-
division of a given sensor could be relaxed provided there is an active redundant
sensor —for example in submarine robotics the vehicle’s speed available from a
surface GPS is lost when the robot dives but can be obtained again (computed
with respect to the ground) via a Doppler velocity log.

A Bounds for the solution of the Riccati equa-
tion

This section is dedicated to the proof of Theorem 2. It follows the structure of
[7] where a similar result is proved for synchronous continuous-discrete systems.
Although the present proof shares the same structure, differences specific to
the asynchronous setting make this exposure necessary. However, only proofs
having notable differences are detailed.

The complete argument of Theorem 2 is divided into two parts.

e In a first part, for a given T* > 0, we prove the existence of an upper
bound for times greater than 7. Here, the argument mainly relies on the
regularity of S, and the bound depends on the maximum step size of the

subdivision, {7y }ren regardless of the underlying subdivisions {Eg)} .
" ) keN

e In a second time, we prove the existence of a lower bound for times greater
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than T, > T*. In this second part, the result relies on the observability of
the underlying continuous system (X.), and requires small enough maxi-

mum time steps for each subdivision {Eg) e’
€N

The quantity T that appears in Theorem 2 is simply T = T,.

In the following, we assume the existence of a positive definite solution S(7)
on a small interval of time, which is ensured by the Sylvester criterion. We later
on show that this interval of time is actually RT.

A.1 Upper bound

In order to prove that S'S) is upper bounded for times greater than T™*, we
should remember that if S is a symmetric positive semidefinite matrix, then we
have S < Tr(S)Id.

Lemma 4. [7]. .
Let S : [0,T[— S, be a solution to % = —A'S— SA—5Q85, then for almost
all 7 €10,T7:

)\nl'in (Q)

iT1"(S’) < —a(Tr(58(7)))*+20Tr(S(7)) where Z:SUpT-lTT (A/(?').A(?))

W=

dr

Lemma 5. [7].

Let a, b be two positive constants. Let x : [0,T[— RY (possibly T = +o0)
be an absolutely continuous function satisfying for almost all 0 < 7 < T the
inequality:

i(1) < —ax?() + 2bx(7).

The roots of —aX?+ 2bX are 22 and 0. The solution x(7) is such that:
z(7) < max {z(0), 2} for all 7 € [0,T].

In addition if x(0) > 22 then for all T > 0 € [0,T[ we have the two inequalities:

2 2% 1

SR T 12)
2b 2bT

z(1) < oc (13)

~ azg (€27 — 1)+ 20

Let us denote r = sup (Tr (C(si)/R(girlC(ﬁi))) According to equation (3)
ik
and to the previous lemmas, upper bounding S turns into proving that x,(j),
solution of

g—f = —ax?®+2bx
+ _ (=) () _ () 14
= x4+ Z <sl§i) - Sl,{”1) , (14)

1€E0

17



is bounded for all 7, > T*, k € N, independently from the chosen subdivisions.
It leads us to Lemma 6.

Lemma 6.
The solution of (14) is such that:

_ 26 20 1
z(T) < — 4+ —

< —— - ngrT
a a e2b7 — 1 s

for any T > 0, before or after a discrete step.

Proof. Bound (12) gives:

(+) 20 2 1 (1) —(Z)
Ty §;+a62bﬁ_1”2 z<> 1“1

1€071

We denote xr =r Z Z < l( H 5¢ ( ) 1) and the previous inequality trivially

j=licoy
becomes
) 26 26 1
Xq SE—"_EW + Xx1- (15)

We remark that (15) leads to the inequality below:

2b  2b 1
x§+) <—+— +nsT T (16)

~a a e2bmt — 1

Let us now generalise this last inequality for all £ € N. However, in order to do
so, it is necessary to manipulate inequalities shaped as (15) instead of (16). Let
us now rewrite bound (13) as follows:

<2y 0 - %
2 T a a xg“r) (eQb(‘T'Q—%l) _ 1) + %b.

We want to replace osgﬂ by the upper bound found in (15).
Let us define the function

2bre?bT
x(e2bT — 1)+ 2b

h(z) =

Its derivative w.r.t. x is
/ e?72b [ax (e’ — 1) + 2b] — a(e®®™ — 1)ze?*72b
[az(e2™ — 1) + 2b)°
6217'? (2b)2
[az(e2b™ — 1) + 20>

18



Since It is positive for all 7 > 0, we can replace l‘ng) by its upper bound:

) < 22 G+ Semm tal - %
2 = 4 a [2b + 2;176%711 + x1](e2b(T=7) — 1) 4 2b
c B BB I 1
= a a e2b™ —1 [Qb + ab an + Xl](eQb(Tz T1) — 1) _|_
=0 X1
“ B Rads ] @ o+

We lower bound the denominator of the last term with:

[2717 2b 1

= - 26(T2—=71) _ | s
a aeQb’Flfl—i—Xl](e )+ a a’

and the denominator of the second term with:
2b 2b 1 2b 2b 2b 1 2b
[— +—

- 2b(‘7’277—'1)71 = - Qb(’T'zf‘l_'l)il =
a ae2bﬁ—1+Xﬂ(e )Jra _[a a eQle—l](e )Jra

We also simplify (2b/a) in those two terms:

L) < %jﬂj 1 1 .
P e a ([ @ S
2b  2b 1
S ; - + X1

a a 62b7'2 _ eQbﬁ + 62b7'1 -1

Thus we have:

(+) 2b  2b
Ty < E"’aezbm, +X1+TZ l“)_sl(” 1
1€02
26 2b 1
S Ltaamogtee
: _ (1) _ 2(0) (1) _ ()
with X2 =T (Z (Sl(l,;) Slgi)_1> + Z (Sléi) Slg‘,)_1>>
1€01 1€02
Let us notice that for ¢ € o, 5(?.)) =T, for i € 02,5(?,.)) = 7o —and so on

and so forth for all i € oy, k € N, 8((3) = Tj. At time 7o, for a given sensor §;, 4

belongs to one of the four followmg subsets:
1. o1 Noy
2. 01\ 02
3. o2\ 01

4. {1,...,ns} \ o1\ 02
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We consider first the case ¢ € 01 N oo, then:
o let )\g) be defined as )\g) = max{l € N such that sl(i) < 72}, thus )\g) =2;

)

e recall that indexes l,(f are such that

o = {z €{1,..,ns}|3 l,(j) € N such that sl((z)) = Tk}
k

(i)
1

=50 =5 =7 and 5

then, gl(g)> =5 =7, 50

0

() 0 _ =
" = S =T =
1 o 0

e The contribution of sensor s; to x» is of the form:

A
[ o) < ()] = )
j=1

In the same way, and dealing with an i € o3 \ o1, we find:

o A\ =1, 55?) =5 =7, and gl(g'i)>—1 =35 =0

e In this case, the contribution of sensor s; to x2 is of the form:

AS)
() - 2 (-a)
2 2 j:1

By proceeding this way for all the other cases, we find that the contribution of
sensor §; to xs is always of the form:

ALY
> (50 -5) (17)
j=1

Ns )\é’t)

and o also writes xo =17 Z Z (Eg.i) — Ey_)l) < rngTy. Therefore,
i=1 j=1
ne Ay
+) 26 2 1 - _()) ()
2b 27b 1

IA
|
_|_
3
S
w
3
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We can generalise by induction (17) and (18) to any k € N\ {0}. To do so,
we define )\( D= = max{l € N such that s( 2 < 7} and, when )\( D= 0, we use the

/\< 0
convention Z(E;i) — 5;?1) = 0. This yields
j=1
ne A
TR0 I G N D ) S UL NER
j=licoy =1 j=1

(+) _ 2b 2b 1

k S7—~_E(32l’fz‘fl
Moreover, we can generalize this inequality to any 7 > 0, before and after

an update.

+7rns Tk

26 20 1
() I R 7.
x(T)_a+aeQb*—1+TnsT O
Lemma 7. [7]
Let us define the functions

_ 20 2b 1 _

o= Tt a T

2bxe’T
Uuo(T) = i + ng 7.

azo (€27 — 1) + 2b

There exists py > 0, and py(xo) > 0 such that ¢(T), respectively g, (T), is a
decreasing function for T €0, pg], respectively for 7 € [0, py(20)).
Moreover py(zo) s an increasing function of xg.

Lemma 8. [7]
Consider the Riccati equation (3) and the assumptions of Theorem 2. Let
T* > 0 be fixred. There exist two scalars P2 > 0 and p > 0 such that

St < B, 1d,

for all T* < 7, k € N, for all subdivisions {E,(f)}k . {7k tren such that Ty, —
€

Tk—1 < p. This bound is also valid during prediction intervals.

A.2 Lower bound

We now prove that S(7) is also lower bounded for times greater than a fixed
T, >1T~.

Lemma 9. [7, 19] B
For any A € R*, any solution S : [0, T[— S,, (Possibly, T = +oc0) of

B _ A7) - 5A() - 5QS,
dr
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we have for all T € [0,T]:
S(7) = € " a(7,0) S0, (7, 0)

+A /OT e Mg, (7, 0) <S(v) - S(U)QS(U)) #a(T 0)dv

A
(20)
dpa(T, s) . -
where ©q(7,s) is such that: { 0 = ~A@ems),
SOa(S, 5) = Id.

Lemma 10. [7, 19]
Let S : [0;e(S)[— Sm be a maximal positive semi definite solution of

d
dr

If 5(0) = Sy is positive definite then
e(8) = +o0o and S(7) is positive definite for all T > 0.

S=-A'S-SA-35Q5S.

Thus, for any arbitrary time subdivision {7y }ren+, the solution S to the asyn-
chronous continuous discrete Riccati equation (3) is positive definite for all times
provided that Sy is positive definite.

Following Lemma 9, and for a fixed A > 0, S‘ﬁ) is written:

ST = e 04 (71,0)Soip, (71, 0)
[ e gm0 (80 - HUG) o oo
0

) psi)t i =(1) Ry
+ ; CGE) R ) (slgi) —sl(gi’)_l) (21)
1€01

At time 7o, the formula yields:

SH = e =g (7, 7) 8T ) (72, 71)

(50) plsi) "t (s [ g0 _ 2(d)
+ Z cw) RS O (sl(;) slg)l)

i€oo
Replacing §§+) by the expression obtained in (21) leads to:
S = e7A2004(7,0) S0 0, (72, 0)
s = S()QS /
+)\/ e—A(Tz—v)%(f%v) (S(v) — (”)i\?(v)) 0o (To,v)dv
0

+e AT, (7, 7) Y Ol Rl 00 (s“% — 5\ ) (T2 71)

, ISR O
1€01
D b)) (s [0 _ L0
+ Z C(s ) R(s ) C(s ) (Sléi) - Sl(gi)1>
i€0o2
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We iterate this procedure in order to compute Si(+) for any k:
SEP = e a7, 0) Sopn (7, 0)
" e o SWRSW)Y
+A / e AT 0 (Fr,v) (sw) - (“)Q(“)) Po (i, v)dv (22)
0

k
+Z Z e AT J)%(Tk,Tj)C(s VR Cl )%(TkaTj) <Sl(5)> - 51(31)

j=1ica; J
This last equation is of the form Si(+) = (I) + (II) + ({1I), in this order.
(I) Since Sy is positive definite, (I) is at least positive semi-definite.

(II) Let us pick A > (¢, then (5’(1}) - W) is positive definite, and (I1)

is at least positive semi-definite.

We now concentrate our efforts on (II1) since it is the quantity that is actually
bounded from below for all 7 > T™.
Let us define”:

1. the time 0 < p < 7% such that 7, — p = T};

2. the index /\g) as /\(pi) =max{l € N: §l(i) < p} which always exists as soon
as 7 > T,.

Then, we use relation (19) that appears in the proof of lemma 6 to rewrite (111)
as

(i)

(I11) = i ie—k(%k—ﬁﬁ-”)wa (7—_k’ §§i)) 0(51)/R(5i)7lc(5i)(p; (77']@, g;i)) (ggi) _ 5&1)

i=1 j=1

Since all the terms of the sum (/7]) are symmetric positive semidefinite matri-

ces:
ne AL
= “A(7u—5® G . N s (= @) (=() (G
=3 Y 0y, (70 50") € RED g (750 ) (5 52
=1 ;_ (%)
J=XAp +1

From the properties of the resolvent ¢,, the above inequality can be rewritten,
with a(7) = a(7 + p):

ne AV )
(7 -5 _ _(i s, N N _( (i) (i
=S 3 PO () ) 0 R g (7 ) - ) (5 - 5)
i=1 ()
J=Xp +1

7p is defined w.r.t. k —since we need our relations to remain valid for any 7 large
enough— and should be understood as pi. This latter notation is however not used for
readability reasons.
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If we denote by p; the maximum time step of a subdivision {s};}keN, we notice

A7 —5D __
that e A(T"' % ) > e MLHH) - Since ng1 is defined in a compact subset,
therefore, we need to find a lower bound for the following expression:

i) (i i ) (s _(i () _(
Z Z (m—s(&.), 5)—5(&)) o6 ols) (Tk—s(()>,s() s<({.)> (50 =52,
Tk Tk Tk

=7 +1
Let us first redefine the subdivisions as follows:

e we denote §§) _(2)\() p, with s(l) =0forallie{l,..,ns};
e cach new subdivision {§§Z)} has ka) + 1 elements, with k,g“ = )\,(:) — )\E,i).

NO () : .
Hence, S = S}\;j) —pforallie{l,..ns};

e we denote the subdivision {7;} by {7;} = U {éy)}, where elements be-
i
longing to several subdivisions are considered only once.

Thus, we can show that (I17) has a lower bound if we can prove that

ny k®

S e (T sl) e gy (1, 50) (55 - 512, (23)

i=1 j=1

has a lower bound for all subdivisions {7;} and {§;i)}, i € {1,...,ns}, having
a maximum time step size denoted by ;.

Let us now define ¢5(7,s) = (gpgl(?, s))/, which is in fact the resolvant of
system & = A(7)z(7). Since 15(7, s) = 15 (s,7), we can rewrite (23) as follows:

N, k()

GeaalT) = 3D wn (317, 1) ce'cy, (590, 1) (57 - 52,)  (29)

=1 j=1

We call this latter quantity the asynchronous continuous-discrete Gram ob-
servability matriz associated to a time T* > 0. It is actually the key object
that allows us to lower bound the Riccati matrix Sy. In the following we show
that, provided the time steps are small enough, G.44(7%) is as close as needed
to the continuous time Gram observability matrix. To do so, we need the two
following extra lemmas.

Lemma 11. e.g. [19]
Let O, (1, s) denote the resolvant of the following time-dependent, observable,
system:

z = A(r)z(r)
y(r) = Cux(r)
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where the elements of A, denoted by (a;;), are functions living in a subset®

Ap = {a = (a;;) € L= ([0,T],R"), supla;jloc < B with B> 0} .

2]

For a given T > 0, the (continuous) Gram observability matriz is defined as

T 7 ’
Go(T) = / (0, T)C (v, T)do (25)

Then, there exist positive scalars 0 < a < b depending on B and T only,
such that
ald < G.(T) < bld

Lemma 12.

Let m(t), t € [0,T], be a (n x n) symmetric matriz, at least differentiable
once.
Let pu be a positive constant, and {7;}jen an arbitrary subdivision of [0,T] such
that 7; — Tj—1 < p, for all j € N, with To = 0 and Ty, the mazimal element of
the subdivision such that T — T, < u. We suppose that all the coefficients of m
have their derivative bounded over time.
Then

T k
| s =3 m(z) (7= 70 < w (T + 1) 14

where L = sup|/m(7)||2, with |.||2 the matriz norm induced by the euclidean
7

norm, K = = max (‘m;_’l(%) ), with m;,l(?) the element of the k*" row and I*"

k,l,7
column of the matriz m’ (7).

Proof. The proof of this lemma is mainly based on that of Lemma 3.11 in [7],

with small differences discussed in Remark 2 at the end of the present section.
Let M(t) be a primitive matrix of m(¢), that is to say a matrix whose

elements are the primitives of the elements of m(t). We have the identity

T k T
/0 m(v)dv = M(T) — M(0) = Z [M(7;) — M(Tj-1)] +/ m(v)dv.

=1 T

We can apply the Taylor-Lagrange expansion on each element My;:

(Tiz1 *Ti)z

My (Tic1) = M (7)) + (Fie1 — 7) mua(T3) + m;cl(fkl,i)

2
where s € [Ti—1,7;]. We have thus, the relation
k k k k (i1 — 77_‘)2
2 M(7i_1) = Zl M(7) + Zl m(7) (Tie1 — 75) + Zl <2mi>

8The value of 77 depends on the problem under consideration. When z is of dimension n,
then n < n2, depending on the number of identically null or constants elements of A.
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where (R;)r = m}el (&k1,;)- Therefore

k k

T k T
/Om(v)dv—Zm@)(ﬂ—ﬂ_l) = Y [M#) - M(Fia)] =Y (7i—Tic1) ﬁ)+[ m(v)dv

i=1 i=1 i=1

T k =32
/ m(v)dv — <(Tl127—1)9%> =A+B.
Tk i=1

We now use the definition of the matrix inequality to upper bound matrix ‘B.
Let « be a non zero element of R™:

E (-7
z l—é(l*?li&)]x ;(Tll—ﬁ) xi)‘{x)

1

l\D\»—l

k
1 —\2
< 52 (Fimt = 7" ) Lokl (Rl |
i=1 kil
1
< gt max (19Ril1,) ZTZ 1— T Z\$k||$l|
k.l

k
1 1
< 5,umax(|i)“‘t ler) (E Ti— 1—72)2 E k] + |2

i=1 k,l
n
< #§I£?§(|%z|kz)TH$” .

Let us now upper bound matrix 2. Since m(7) is symmetric, for a given 7 € RT,
m(7) < ||m(7)||2fd where ||.||2 is the matrix norm induced by the euchdlan

norm, i.e. ||m(7)|l2 = sup||m(7)z|2. Thus / m(7) < sup||m( )2 pld.
Tk

lll2

Those two upper bounds give us the result. O
The two preceding lemmas allow us to conclude this section’s proof.

Lemma 13.
Consider the Riccali equation (3), and the assumptions of Theorem 2. Let
T, > T™ be fized. Then, there exist constants p; > 0, i € {1,...,ns}, and s > 0

such that, for all subdivisions {gl(“i)}keN’ {7 }ren with (5,(:) - 51(;11) < g,

agld < 5',(;) as soon as T > T,.

Proof.
We start from Equation (24), the asynchronous continuous-discrete Gram
observability matrix at time 7 > 0:

n k(')

Geda(T, ZGm =3 > w (8. e ey, (59,1 (57 - 52

1=1j5=1
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Let us consider the continuous Gram matrix G.(T*), defined in Lemma 12,
which also writes:

= 0, (0, T)CE) Oy (v, T,) ZG@
i=1
By lemma 12, for all i € {1, ...,ns}, there are constants L > 0 and K; > 0:
GIO(T,) = GOL(T) < (KT, + L)Id (26)
Let us apply Lemma 11 on G.(T%):

ald < G.(T)

< Savm) - Salm ZGZE&
=1 i=1

N

S Gl (. +Zﬂz (KT, + L)Id
i=1 i=1

IN

Therefore

N

i=1

Id S cha(T*)

As a consequence, if all the p; are such that (a =S wi (KT + L)) > 0,
then, independently from the shape of the subdivisions {é,(j)}k N and {71} cns
€

there exist a positive as such that:
Oég]d S SI(CJF)
This bound is also valid during prediction intervals. O

Remark 2. Erratum to [7]. The reason why we need Lemma 12 instead of
simply re-using Lemma 3.11 of [7] is because it should be used there as well.
Indeed, the following mistake —which doesn’t invalidate the main result of the
article and is corrected by Lemma 12— is done in [7].

The very end of Proposition 3.12, which corresponds to Lemma 13 in the
present paper relies on the relation:

ald < G (T*) < G(T* +¢) for e>0. (27)

Going back to the definition of the Gram observability matriz (25), we see that
the argument of G.(.) plays a part both as the integration upper limit, but also
in the definition of the resolvent matriz v,. As such, the integrands of G.(T*)
and G.(T* +¢€) are not the same functions, which implies that 27 is not always
true.

However, this issue is resolved by following the procedure used in Equa-
tion (26) above.
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