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Abstract

We investigate a version of one velocity Baer-Nunziato model with
dissipation for the mixture of two compressible fluids with the goal to
prove for it the existence of weak solutions for arbitrary large initial
data on a large time interval. We transform the one velocity Baer-
Nunziato system to another ”more academic” system which possesses
the clear ”Navier-Stokes structure”. We solve the new system by
adapting to its structure the Lions approach for solving the (mono-
fluid) compressible Navier-Stokes equations. An extension of the the-
ory of renormalized solutions to the transport equation to more con-
tinuity equations with renormalizing functions of several variables is
essential in this process. We derive a criterion of almost uniqueness for
renormalized solutions to the pure transport equation without classical
assumption on the boundedness of the divergence of the transporting
velocity. This result does not follow from the DiPerna-Lions transport
theory and it is of independent interest. This criterion plays crucial role
in the identification of the weak solutions to the original one velocity
Baer-Nunziato problem starting from weak solutions of the academic
problem. As far as we know, this is the first result on existence of
weak solutions for a version of the one velocity bi-fluid system of the
Baer-Nunziato type in the mathematical literature.

MSC Classification: 76N10, 35Q30
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1 Introduction

There is no general agreement about the modeling of the mixture of several
compressible fluids, and from the general point of view, about two phase
flow modeling. One of the acceptable model is the so called two velocity
Baer-Nunziato model. The equations of the Baer- Nunziato model with
dissipation [4], [8], [18, Section 1] are as follows:

∂tα± + vI · ∇α± = 0,

∂t(α±%±) + div(α±%±u±) = 0,

∂t(α±%±u±) + div(α±%±u± ⊗ u±) +∇(α±P±(%±))− PI∇(α±)

= α±µ±(∆u±) + α±(µ± + λ±)∇divu±

0 ≤ α± ≤ 1, α+ + α− = 1.

In the above (α±, α±%± ≥ 0,u± ∈ Rd) -concentrations, densities, velocities
of the ± species - are unknown functions of time t ∈ I = (0, T ), T > 0,
and x ∈ Ω ⊂ Rd, d = 2, 3, nP± are two (different) given functions defined
on [0,∞) and PI , vI are conveniently chosen quantities - they represent
pressure and velocity at the interface. In the multifluid modeling, there are
many possibilities how the quantities vI , PI could be chosen, and there is
no consensus about this choice.

Our goal in this paper is to prove the existence of weak solutions for
the Baer-Nunziato system with dissipation under the following simplifying
assumptions:

µ± := µ, λ± := λ, vI = u± := u (1)

αP±(s) = P±(f±(α)s) for all α ∈ (0, 1), s ∈ [0,∞) (2)

with some functions P± defined on [0,∞) and functions f± defined on (0, 1).
With this simplifications, the two velocity Baer-Nunziato system reduces

to the following system (which we will call the one velocity Baer-Nunziato
type system):

∂tα+ (u · ∇)α = 0, 0 ≤ α ≤ 1, (3)

∂t%+ div(%u) = 0, (4)

∂tz + div(zu) = 0, (5)

∂t((ρ+ z)u) + div((ρ+ z)u⊗ u) (6)

+∇P (f(α)%, g(α)z) = divS(∇u)
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Here P : [0,∞)2 7→ [0,∞) as well as f, g : (0, 1) 7→ [0,∞) are given functions,
and

S(Z) = µ(Z + ZT ) + λTr(Z)I

(I is the identity tensor, Tr denotes the trace) is the viscous stress tensor.
The constant viscosity coefficients satisfy standard physical assumptions,
µ > 0, λ+ 2

dµ ≥ 0. The system is endowed with initial conditions

α|t=0 = α0, %|t=0 = %0, z|t=0 = z0, (%+ z)u|t=0 = (%0 + z0)u0, (7)

and no slip boundary conditions,

u|∂Ω = 0. (8)

Assumption (2) is certainly true in the classical situation of two isen-
tropic gases when

P±(s) = a±s
γ± , γ± > 0; (9)

indeed, in this case

P (R,Z) = a+R
γ++a−Z

γ− , f(s) := f+(s) = s
1
γ+ , g(s) := f−(s) = (1− s)

1
γ− .

(10)
We shall however be able to treat in system (3–7) more general functions
P, f, g than those being given by (10).

System (3–6) belongs to the family of multi-fluid models with differential
closure, cf. Ishii, Hibiki [20], Drew, Passman [11]. It is not without interest
that it can be viewed as a barotropic counterpart of the so called five-
equation bi-fluid model derived in Allaire, Clerc, Kokh [1], [2] by different
considerations.

One of the goals of this work is to prove existence of weak solutions for
the model (3–7) under quite general assumptions on constitutive functions
P and f, g (that include the physical situation evoked in (9) - with however
some limitations on admissible values of γ± which will be specified later).
As in [24] (where we have treated another bi-fluid model, with algebraic
closure), the proof will be based on the reformulation of the original problem
via the change of variables

R := f(α)%, Z = g(α)z, Σ = %+ z

and enlarging the new system by another continuity equations for an auxil-
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iary function ξ as follows:

∂tξ + div (ξu) = 0,

∂tR+ div (Ru) = 0,

∂tZ + div (Zu) = 0,

∂tΣ + div (Σu) = 0,

∂t
(
Σu
)

+ div (Σu⊗ u) +∇P (R,Z) = divS(∇u)

(11)

with boundary and initial conditions

u|I×∂Ω = 0, (12)

ξ(0, x) = ξ0(x) := %0(x), R(0, x) = R0(x) := f(α0)%0(x), (13)

Z(0, x) = Z0(x) := g(α0)z0(x), Σ(0, x) = Σ0(x) := (%0 + z0)(x),

Σu(0, x) = (%0 + z0)u0(x) = m0(x)

for unknown quintet (ξ,R, Z,Σ,u) of functions defined on QT .
This system is of independent interest. In this paper, we will call it an

academic bi-fluid system.
In the family of equations (11), the transport equation for α is tacitly

hidden in the continuity equations for ξ and R: We anticipate here the
fact that (formally), ξ/R verifies transport equation, and that (formally)
any sufficiently regular function of ξ/R verifies transport equation as well.
This observation will be put on rigorous grounds in Section 3. Another
good reason to add to the system the equation for ξ is the construction of
solutions via several level of approximations. For the passages from one level
to other, it will be important, that the added equation is decoupled from the
other equations of the system, and does not modify its Navier-Stokes-like
structure.

The statement about the existence of weak solutions for the academic
system (11–13) is formulated in Theorem 1 and similar statement about the
existence of weak solutions to the one velocity Baer-Nunziato type system
(3–7) is available in Theorem 2.

The academic problem (11–13) resembles very much to the academic
bi-fluid system treated as an auxiliary problem in [24, Theorem 1] and its
analysis will be pretty much inspired by the above reference. The proof of
Theorem 1 employs, similarly as [24], the adaptation from mono-fluid to
multi-fluid systems of the DiPerna-Lions transport theory [10], and com-
pensated compactness ( leading to the effective viscous flux identity), the
tools suggested in the mono-fluid theory by P.L. Lions [21], adapted to the
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multi-fluids in [24] and [25]. The proof of Theorem 2- the passage from
the academic system (11–13) to the the Baer-Nunziato system (3–8) needs
to employ an original still never exploited observation: It requires, among
others, an (almost) uniqueness result for renormalized, bounded solutions
of transport equation which seem to differ from what can be deduced from
the DiPerna-Lions transport theory [10] and its recent generalizations by
Ambrosio, Crippa, De Lellis [3], [7]. It plays crucial role in the identifica-
tion of quantities (α, %, z) from quantities (ξ,R, Z,Σ) in the passage from
academic system (11–13) to the final system (3–8). This result is presented
in Proposition 5 together with its proof. It is of independent interest.

Theorem 2 is the first rigorous result on existence of weak solutions for
a version of the Baer-Nunziato type bi-fluid model.

In general, the results on weak solutions to multi-fluid models are in the
mathematical literature in a short supply. It is convenient to quote [25],
[22], [24], [5], [6] for a few papers which are relevant to the present work.

The Di-Perna Lions transport theory imposes limitations on adiabatic
coefficients γ± in formula (9) - or an equivalent limitation on growth condi-
tions of P (see the next Section): at least one of them has to be greater or
equal than 9/5. In view of the existing mono-fluid theory, existence of weak
solutions could be possibly hoped to be achieved if the adiabatic coefficients
of constituents were greater than 3/2. This remains however an interesting
open problem.

In what follows, the scalar-valued functions will be printed with the usual
font, the vector-valued functions will be printed in bold, and the tensor-
valued functions with a special font, i.e. % stands for the density, u for
the velocity field and S for the stress tensor. We use standard notation for
the Lebesgue and Sobolev spaces equipped by the standard norms ‖ · ‖Lp(Ω)

and ‖ · ‖Wk,p(Ω), respectively. We will sometimes distinguish the scalar-, the
vector- and the tensor-valued functions in the notation, i.e. we use Lp(Ω)
for scalar quantities, Lp(Ω;R3) for vectors and Lp(Ω;R3×3) for tensors. The
indication of the R or tensor character of the fields (here ;R3 or ;R3×3)
may be omitted, when there is no lack of confusion. The Bochner spaces of
integrable functions on I with values in a Banach space X will be denoted
Lp(I;X); likewise the spaces of continuous functions on I with values in X
will be denoted C(I;X). The norms in the Bochner spaces will be denoted
‖·‖Lp(I;X) and ‖·‖C(I;X), respectively. In most cases, the Banach spaceX will
be either the Lebesgue or the Sobolev space. Finally, we use vector spaces
Cweak(I;X) of continuous functions in I with respect to weak topology of
X (meaning that f ∈ Cweak(I;X) iff t 7→ F(f(t)) belongs for any F ∈ X∗
to C(I)).
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The generic constants will be denoted by c, c, c, C, C, C and their value
may change even in the same formula or in the same line.

2 Main results

2.1 Definition of weak solutions

We first explain the notion of the weak solution to problem (11–13) and to
problem (3–7):

Definition 1. A quintet (ξ,Σ, R, Z,u) is a bounded energy weak solution to
problem (11–13), if:

1. ξ,Σ, R, Z ≥ 0 a.e. in I×Ω, (Σ, R, Z) ∈ L∞(I;Lγ(Ω))∩Cweak(I;Lγ(Ω))
with some γ > 1, u ∈ L2(I;W 1,2

0 (Ω;R3)), Σ|u|2 ∈ L∞(I;L1(Ω)),
P (R,Z) ∈ L1(I × Ω), Σu ∈ Cweak(I;Lq(Ω)) with some q > 1.

2. Continuity equations∫ T

0

∫
Ω

(
r∂tψ + ru · ∇ψ

)
dx dt+

∫
Ω
r0ψ(0, ·) dx = 0 (14)

are satisfied with any ψ ∈ C1
c ([0, T )× Ω), where r stands for ξ, Σ, R,

Z.

3. Momentum equation∫ T

0

∫
Ω

(
Σu · ∂tϕϕϕ+ Σu⊗ u : ∇ϕϕϕ+ P (R,Z)divϕϕϕ

)
dx dt

=

∫ T

0

∫
Ω
S(∇u) : ∇ϕϕϕdx dt−

∫
Ω

m0 ·ϕϕϕ(0, ·) dx

(15)

holds with any ϕϕϕ ∈ C1
c ([0, T )× Ω;R3).

4. Finally, there is function H ∈ C1((0,∞)2) a solution of first order
partial differential equation

R∂RH(R,Z) + Z∂ZH(R,Z)−H(R,Z) = P (R,Z) (16)

such that energy inequality∫
Ω

(1

2
Σ|u|2 +H(R,Z)

)
(τ, ·) dx

+

∫ τ

0

∫
Ω
S(∇u) : ∇u dx dt

≤
∫

Ω

(1

2
Σ0u

2
0 +H(R0, Z0)

)
dx

(17)
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is satisfied for a.a. τ ∈ (0, T ).

Definition 2. A quartet (α, %, z,u) is a bounded energy weak solution to
problem (3–7), if:

1. %, z ≥ 0 a.e. in I × Ω, (%, z) ∈ L∞(I;Lγ(Ω)) ∩ Cweak(I;Lγ(Ω))
with some γ > 1, α ∈ L∞(QT ) ∩ Cweak(I;Lγ(Ω)), 0 ≤ α ≤ 1,
u ∈ L2(I;W 1,2

0 (Ω;R3)), (%+z)|u|2 ∈ L∞(I;L1(Ω)), P (f(α)%, g(α)z) ∈
L1(I×Ω), (%+z)u ∈ L∞(I;Lq(Ω))∩Cweak(I;Lq(Ω)) with some q > 1.

2. Continuity equations∫ T

0

∫
Ω

(
r∂tψ + ru · ∇ψ

)
dx dt+

∫
Ω
r0ψ(0, ·) dx = 0 (18)

are satisfied with any ψ ∈ C1
c ([0, T )× Ω), where r stands for %, z.

3. Transport equation∫ T

0

∫
Ω

(
α∂tψ + αu · ∇ψ − ψαdivu

)
dx dt+

∫
Ω
α0ψ(0, ·) dx = 0 (19)

holds with any ψ ∈ C1
c ([0, T )× Ω).

4. Momentum equation∫ T

0

∫
Ω

(
(%+ z)u · ∂tϕϕϕ+ (%+ z)u⊗ u : ∇ϕϕϕ+ P (f(α)%, g(α)z)divϕϕϕ

)
dx dt

=

∫ T

0

∫
Ω
S(∇u) : ∇ϕϕϕdx dt−

∫
Ω

(%0 + z0)u0 ·ϕϕϕ(0, ·) dx

(20)
holds with any ϕϕϕ ∈ C1

c ([0, T )× Ω;R3).

5. The energy inequality holds∫
Ω

(1

2
(%+ z)|u|2 +H(f(α)%, g(α)z)

)
(τ, ·) dx

+

∫ τ

0

∫
Ω
S(∇u) : ∇u dx dt

≤
∫

Ω

(1

2
(%0 + z0)u2

0 +H(f(α0)%0, g(α0)z0)
)

dx

(21)

for a.a. τ ∈ (0, T ), where H is the same as in (17).
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2.2 Assumptions

Motivated by [24, Section 2] we shall gather the hypotheses for Theorems 1
and 2.

1. Regularity of the domain:

Ω is a bounded domain of class C2,ν , ν ∈ (0, 1). (22)

2. Hypotheses on in initial data:

(R0, Z0)(x) ∈ O, 0 ≤ Σ0(x) ≤ b(R0 + Z0)(x), dR0 ≤ ξ0 ≤ dR0, (23)

R0 ∈ Lγ(Ω), γ ≥ 9

5
, z0 ∈ Lβ(Ω) if β > γ, Σ0|u0|2 ∈ L1(Ω). (24)

In the above b > 0, 0 < d < d and

O := (R,Z) ∈ R2 | aR < Z < aR} (25)

with some 0 < a < a.

3. Regularity and growth of the pressure function: Pressure function P :
[0,∞)2 → [0,∞), P(0,0)=0, P ∈ C1((0,∞)2) is such that

∀Z ≥ 0, function R 7→ P (R,Z) is continuous in [0,∞), (26)

∀R ≥ 0, function Z 7→ P (R,Z) is continuous in [0,∞)

and there is a number C ≥ 1 (dependent on a, a) such that for all
(R,Z) ∈ O

C−1(Rγ + Zβ − 1) ≤ P (R,Z) ≤ C(Rγ + Zβ + 1), (27)

with some γ ≥ 9
5 , β > 0.

Moreover,

|∂ZP (R,Z)| ≤ C(R−Γ +RΓ−1) in O (28)

with some 0 ≤ Γ < 1, and with some 0 < Γ < γ + γBOG, where
γBOG = min{2

3γ − 1, γ2}.
Finally, function R 7→ P (R,Z) is for all Z > 0 locally Lipschitz on
(0,∞) and function Z 7→ ∂ZP (R,Z) is for all R > 0 locally Lipschitz
on (0,∞) with Lipschitz constant

LP (R,Z) ≤ C(r)(1 +RA) for all r > 0, (R,Z) ∈ O (29)

with some non negative number A. Number C(r) may diverge to +∞
as r → 0+.

8



4. Structure of the pressure: It is assumed that

P (R,Rs) = P(R, s)−R(R, s), (30)

where [0,∞) 3 R 7→ P(R, s) is non decreasing for any s ∈ [a, a], and
R 7→R(R, s) is for any s ∈ [a, a] a non-negative C2-function in [0,∞)
uniformly bounded with respect to s ∈ [a, a] with compact support
uniform with respect to s ∈ [a, a]. Moreover, if γ = 9

5 ,

P(R, s) = π(s)Rγ + p(R, s), (31)

where [0,∞) 3 R 7→ p(R, s) is non decreasing for any s ∈ [a, a] and
π ∈ L∞(a, a), ess infs∈(a,a)π(s) ≥ π > 0. Finally,

∀R ∈ (0, 1), sup
s∈[0,a]

P (R,Rs) ≤ cRB with some c > 0 and B > 0.

(32)
In the above and in the sequel, the following convention is used sys-
tematically:

If 0 ≤ Z ≤ aR then s =
Z

R
:=

{
Z
R if % > 0,
if R = 0.

(33)

2.3 Main results

The first main result of the paper deals with the academic system (11–13)
and reads

Theorem 1. Under Hypotheses (22–33), problem (11–13) admits at least
one weak solution in the sense of Definition 1. Moreover, for all t ∈ I,
(R(t, x), Z(t, x)) ∈ O for a.a. x ∈ Ω, for all t ∈ I, dR(t, x) ≤ ξ(t, x) ≤
dR(t, x) , for all t ∈ I, Σ(t, x) ≤ b(R(t, x) + Z(t, x)) for a.a. x ∈ Ω,
ξ, Z,R,Σ ∈ C(I;L1(Ω))∩Cweak([0, T );Lγ(Ω))∩L2(QT ), Σu ∈ Cweak([0, T );
Lq(Ω;R3)) for some q > 1 and P (%, Z) ∈ Lq(I × Ω) for some q > 1 and
Z ∈ Cweak([0, T );Lβ(Ω)) if β > γ.

Moreover, energy inequality (17) holds with function

H(R,Z) = R

∫ R

1

P (r, ZRr)

r2
dr if (R,Z) ∈ (0,∞)2, H(0, 0) = 0 (34)

which belongs to the space C1((0,∞)2) ∩ C(O).

The second main result of the paper deals with the one velocity Baer-
Nunziato type system (3–8) and reads:
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Theorem 2. Suppose that f, g ∈ C1(0, 1) ∩ C1([α, α]) with 0 < α < α < 1
be two strictly monotone and non-vanishing functions on interval (0, 1). Let
γ ≥ 9/5, β > 0,

α0 ∈ L∞(Ω), 0 < α ≤ α0 ≤ α, (f(α0)%0, g(α0)z0)(x) ∈ O

%0 ∈ Lγ(Ω), z0 ∈ Lβ(Ω) if β > γ, (%0 + z0)|u0|2 ∈ L1(Ω). (35)

Suppose that the boundary is sufficintly regular as (22) and the pressure
P satisfies hypotheses (26–33). Then the problem (3–8) admits at least
one weak solution in the sense of Definition 2. Moreover, for all t ∈ I,
(f(α)%(t, x), g(α)z(t, x)) ∈ O for a.a. x ∈ Ω, for all t ∈ I, α ≤ α(t, x) ≤ α
for a.a. x ∈ Ω, α, %, z ∈ C(I;L1(Ω)), %, z ∈ L2(QT ) z ∈ Cweak(I; Lβ(Ω)) if
β > γ, and P (%, Z) ∈ Lq(I × Ω) with some q > 1.

Remark 2.1

1. It is to be noticed that the results of both Theorems 1 and 2 remain
valid — after well known necessary modifications in the definition of
weak solutions in these cases – in the space periodic setting (if Ω is a
periodic periodic cell) or if we replace the no-slip boundary conditions
(8) and (12), respectively, by the Navier conditions

u · n|∂Ω = 0,
[
µ
(
∇u + (∇u)T ) + λIdivu

]
n× n|∂Ω = 0.

In the above I denotes the identity tensor on R3 and n is the outer
normal to ∂Ω.

2. Condition (22) on the regularity of the domain Ω in both Theorems 1 and
2 could be relaxed up to a bounded Lipschitz domain via the technique
described in [17].

3 Preliminaries

This section contains several preliminary results that will be used later.
Most of them is a summary of well known results, except Proposition 5
about the almost uniqueness for the renormalized solutions to the transport
equation - whose assumptions are beyond and does not seem to be covered
by DiPerna-Lions transport theory [10] and its recent generalizations by
Ambrosio, Crippa, De Lellis, see e.g. [3], [7].
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3.1 Some consequences of DiPerna-Lions theory of renor-
malized solutions to transport equation

Given f, v ∈ L1(I × Ω) and u ∈ L1(0, T ;W 1,1(Ω)) a function % ∈ L1(I ×
Ω;R), R ⊂ R an open set, is called a renormalized solution to the general
transport equation with transport coefficients u, v and right hand side f if
it satisfies

∂t%+ u · ∇%+ v% = f in D′(I × Ω) (36)

and

∂tb(%)+div(b(%)u)+(%b′(%)−b(%))divu+vb′(%)% = fb′(%) in D′(I × Ω) (37)

with any
b ∈ C1([0,∞)), b′ ∈ L∞((0,∞)). (38)

If in (36), v, f = 0 then we shall call (36) pure transport equation. If
v = divu, f = 0 then we call (36) the continuity equation.

The following Proposition resumes the classical consequences of the Di-
Perna–Lions transport theory [10] applied to two general transport equation
involving renormalizing functions of two variables, as formulated in [24,
Proposition 5] (compare with [25, Lemma 2.5]).

Proposition 3.

1. Let functions %, Z satisfy the general transport equation with the same
transport coefficients u, v and with right hand sides f1 and f2, re-
spectively, in the sense of distributions (cf. equation (36)). Suppose
that

%, Z ∈ L2(I × Ω), (%, Z) ∈ O, u ∈ L2(I;W 1,2(Ω;R3)) v ∈ L2(QT ),
(39)

where O is an open set in R2. Then for any

b ∈ C1(O), (∂%b, ∂Zb) ∈ L∞(O;R2) (40)

the function b(%, Z) verifies the renormalized continuity equation

∂tb(%, Z)+div(b(%, Z)u)+(%∂%b(%, Z)−Z∂Zb(%, Z)−b(%, Z))divu (41)

+(v − divu)(%∂%b(%, Z) + Z∂Zb(%, Z)) = f1∂%b(%, Z) + f2∂Zb(%, Z)

in D′(I × Ω).
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2. If moreover

%, Z ∈ L∞(I;Lγ(Ω)) with some γ > 1, u ∈ L2(I,W 1,2
0 (Ω;R3)), (42)

then we have further:

1. Functions %, Z, b(%, Z) are continuous in time (with values in
L1(Ω)), namely

%, Z ∈ C(I;L1(Ω)), b(%, Z) ∈ C(I;L1(Ω)).

2. Both functions %, Z satisfy general transport equation (36) in the
time integrated form up to the boundary, namely∫

Ω
rϕ(τ, x) dx−

∫
Ω
rϕ(0, x) dx (43)

=

∫ τ

0

∫
Ω

(
r∂tϕ+ ru∇ϕ− ϕ(v − divu)r − fiϕ

)
dx

for all τ ∈ I and ϕ ∈ C1
c (I × Ω), where r stands for % if i = 1

and Z if i = 2.

3. The renormalized equation (41) is valid in the time integrated
form up to the boundary, namely∫

Ω

(
b(%, Z)ϕ

)
(τ, ·) dx−

∫
Ω

(
b(%, Z)ϕ

)
(0, x) dx (44)

=

∫ τ

0

∫
Ω

(
b(%, Z)∂tϕ+ b(%, Z)u · ∇ϕ− (%∂%b(%, Z)

−Z∂Zb(%, Z)− b(%, Z))div uϕ− ϕ(v − divu)(%∂%b(%, Z)

+Z∂Zb(%, Z)) + (f1∂%b(%, Z) + f2∂Zb(%, Z))ϕ
)

dx dt

for all τ ∈ I and ϕ ∈ C1
c (I × Ω).

4. If %, Z ∈ L∞(QT ), then function b can be taken in C1(O).

Remark 3.1

1. Consider now (% ≥ 0,u, v = 0) in the regularity class (39–42) verifying
continuity (36), and function b of one variable in the class

b ∈ C([0,∞)) ∩ C1((0,∞)), b(s) ≤ c(1 + s
5
6
γ), (45)
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sb′ − b ∈ C([0,∞)), sb′(s)− b(s) ≤ c(1 + sγ/2),

then
b(%) ∈ Cweak(I;Lp(Ω)), with any 1 ≤ p < 6/5 (46)

and equation (44) still continues to hold in spite of the fact that b is
slightly less regular than required in (39).

2. We notice that function b(%) = % ln % as well as its truncation

Lk(%) = %

∫ %

1

Tk(z)

z2
dz, Tk(z) = kT (Z/k), k > 1, (47)

T (z) =

{
z if z ∈ [0, 1)

2 if z ≥ 3

}
, T ∈ C∞([0,∞)), concave

verify (45) but fail to satisfy (39). It is this function which is employed
in the Feireisl–Lions approach at the very last step of the proof of
compactness of the density sequence.

3. We notice that condition r ∈ C(I, L1(Ω)) in conjunction with r ∈
L∞(I;Lp(Ω)), p > 1 yields by interpolation, r ∈ C(I;Lβ(Ω)) with any
1 ≤ β < p. This remark concerns quantities %, Z, b(%), b(%, Z) in
Proposition 3 and s, b(s), %b(s1, s2) in Propositions 4.

3.2 An almost uniqueness to the solutions of the transport
equation

The next proposition describes passage from two continuity equations to a
transport equation, and from transport equation to a continuity equation.
It is closely related to Propositions 5 and 6 in [24] whose ideas can be traced
back to [22] and [25].

Proposition 4. 1. Suppose that %, Z,u verify assumptions (39) and (42)
with O = {(R,Z) ∈ (0,∞)2 | aR < Z < aR}, where 0 ≤ a < a are
given numbers. Assume further that couples (%,u) and (Z,u) satisfy
transport eaquation (36) with v = divu and f1, f2 = 0.

We define for all t ∈ I, s(t, x) = Z(t, x)/%(t, x) in agreement with
convention (33).

Then for any b ∈ C1[0,∞), b(s) ∈ C(I, L1(Ω)) and the couple (b(s),u)
satisfies time integrated pure transport equation up to the boundary∫

Ω
(b(s)ϕ)(τ, ·) dx−

∫
Ω

(b(s)ϕ)(0, ·) dx (48)
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=

∫ τ

0

∫
Ω

(
b(s)∂tϕ+ b(s)u · ∇ϕ− ϕb(s)divu

)
dx dt

for all τ ∈ I and ϕ ∈ C1
c (I × Ω).

2. Suppose that couples (si,u), i = 1, 2

0 ≤ si ∈ L∞(QT ), u ∈ L2(I;W 1,2
0 (Ω))

satisfy pure transport equation (36) (with f, v = 0) and couple (%,u)

0 ≤ % ∈ L2(QT ) ∩ L∞(I;Lγ(Ω)), γ > 1

satisfies continuity equation (36) (with f = 0, v = divu). Then
%, si ∈ C(I, L1(Ω)), %b(s1, s2) with any b ∈ C1([0,∞)2) and the cou-
ple (%b(s1, s2),u) verifies time integrated continuity equation up to the
boundary ∫

Ω
(%b(s1, s2)ϕ)(τ, ·) dx−

∫
Ω

(%b(s1, s2)ϕ)(0, ·) dx (49)

=

∫ τ

0

∫
Ω

(
%b(s1, s2)∂tϕ+ %b(s1, s2)u · ∇ϕ

)
dx dt

for all τ ∈ I and ϕ ∈ C1
c (I × Ω).

Proof. We shall prove the first statement of Proposition 4. We consider a
sequence of functions

bδ : [0,∞)2 7→ [0,∞), bδ(%, Z) = b(
Z

%+ δ
), δ ∈ (0, 1/2).

Functions bδ and couples (%,u) and (Z,u) satisfy all assumptions of Proposi-
tion 3. Consequently, bδ(%, Z) ∈ C(I, Lq(Ω)), 1 ≤ q <∞ (by interpolation)
and

∂tbδ(%, Z) + div(bδ(%, Z)u) +
(
b′(

Z

%+ δ
)

δ%

(%+ δ)2
− b( Z

%+ δ
)
)

divu = 0 (50)

in D′(QT ) if u ∈ L2(I;W 1,2(Ω;R3)), or even∫
Ω

(
bδ(%, Z)ϕ

)
(τ, ·) dx−

∫
Ω

(
bδ(%, Z)ϕ

)
(0, ·) dx =

∫ τ

0

∫
Ω

(
bδ(%, Z)∂tϕ (51)

+bδ(%, Z)u · ∇ϕ−
(
b′(

Z

%+ δ
)

δ%

(%+ δ)2
− b( Z

%+ δ
)
)

div uϕ
)

dx dt

14



if u ∈ L2(I;W 1,2
0 (Ω;R3)).

We easily verify that for all t ∈ I,

|bδ(%, Z)(t, ·)|+
∣∣∣(b′( Z

%+ δ
)

δ%

(%+ δ)2
− b( Z

%+ δ
)
)

(t, ·)
∣∣∣ ≤ a a.a. in Ω,

for all t ∈ I, bδ(%(t, ·), Z(t, ·))→ b(s(t, ·)) a.a. in Ω

and

for all t ∈ I, b′(
Z

%+ δ
)

δ%

(%+ δ)2
→ 0 a.a. in Ω as δ → 0.

We thus obtain via the Lebesgue dominated convergence theorem

for all τ ∈ I,

∫
Ω

(bδ(%, Z)ϕ)(τ, ·) dx→
∫

Ω
(b(s)ϕ)(τ, ·) dx

for all τ ∈ I,

∫ τ

0

∫
Ω
bδ(%, Z)u · ∇ϕdx dt→

∫ τ

0

∫
Ω
b(s)u · ∇ϕdx dt

and

for all τ ∈ I,

∫ τ

0

∫
Ω

(
b′(

Z

%+ δ
)

δ%

(%+ δ)2
− b( Z

%+ δ
)
)

div uϕdx dt

→
∫ τ

0

∫
Ω
b(s)div uϕdx dt.

We can therefore pass to the limit in equations (50), (51) in order to recover
equation (48).

Finally, according to item 3. of Remark 3.1, functions s, b(s) belong to
C(I;L1(Ω)), and a fortiori, by interpolation, also to C(I;Lq(Ω)), 1 ≤ q <∞.
This completes the proof of item 1. of Proposition 4.

Item 2. of Proposition 4 follows now readily from Proposition 3. This
completes the proof of Proposition 4.

The DiPerna Lions transport theory postulates uniqueness of weak so-
lutions to the general transport equation (36) under assumptions u ∈ L2(I;
W 1,2(Ω)), divu+v ∈ L∞(QT ), cf. [10, Theorem II.2]. The following Propo-
sition shows almost uniqueness to the renormalized solutions to the pure
transport equation (i.e. equation (36) with v = 0) without assumption on
boundedness of divu.
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Proposition 5. Let u ∈ L2(I;W 1,2
0 (Ω;R3). Let 0 ≤ si ∈ L∞(QT ), i = 1, 2

be two weak solutions of the pure transport equation (36) (with v, f = 0) in
the distributional sense such that si ∈ C(I, L1(Ω).

If moreover s1(0, ·) = s2(0, ·) then

for all τ ∈ I s1(τ, ·) = s2(τ, ·) for a.a. x ∈ {%(τ, ·) > 0}, (52)

where % is any weak solution to the continuity equation (36) (with v = divu,
f = 0) in the class 0 ≤ % ∈ C(I, L1(Ω)) ∩ L2(QT ) ∩ L∞(I;Lp(Ω)), p > 1.

Proof. According to item 2. of Lemma 4, function %(s1 − s2)2 belongs to
C(I;L1(Ω) and satisfies continuity equation (49). Taking in this equation
the test function ϕ = 1, we obtain

for all τ ∈ I
∫

Ω
%(s1 − s2)2(τ, x) dx =

∫
Ω
%(s1 − s2)2(0, x) dx = 0.

This yields the statement.

It is to be noticed that if divu ∈ L1(0, T ;L∞(Ω)) and 0 < c ≤ %0(x) <
c <∞ then %(t, x) in (52) can be constructed by the method of caracteristics
which yields for all t ∈ I, C < %(t, x) < C. In this case, Proposition 5 gives
uniqueness to renormalized solutions to the transport equation - which is
well known classical uniqueness result from [10].

3.3 A parabolic problem

The next result follows from the maximal parabolic regularity theory and
comparison principle applied to the regularized continuity equation (57), cf.
e.g. Denk, Hieber, Prüss [9, Theorem 2.1] and [23, Proposition 7.39].

Proposition 6. Suppose that %0 ∈ W 1,2(Ω), u ∈ L∞(0, T ;W 1,∞(Ω;R3)),
u|(0,T )×∂Ω = 0. Then we have:

1. The parabolic problem (57) admits a unique solution in the class

% ∈ L2(I;W 2,2(Ω)) ∩W 1,2(I;L2(Ω)). (53)

2. If moreover 0 < % ≤ %0 ≤ % <∞ a.a. in Ω, then there is 0 < c < c <∞
dependent on τ, %, % and ‖div u‖L1(I;L∞(Ω)) such that

for all τ ∈ I, c ≤ %(τ, x) ≤ c for a.a. x ∈ Ω.
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4 The academic system: Proof of Theorem 1

In this section we show how one can prove Theorem 1 referring abundantly
to the same proof for similar system presented in [24, Section 4] and putting
stress only on eventual differences.

The authors of [24] investigate system (3–8) with Σ = R+ Z and ξ = 0
(and ξ0 = 0, Σ0 = R0 + Z0). Since the equation for ξ is decoupled from
other equations in the system (3–6), the proof of existence of weak solutions
to system of equations (3–8) is reduced to the proof presented in the paper
[24, Section 4]as soon as we show for functions (ξ,R, Z,Σ),u,Σu the same
estimates as those shown for (R,Z),u, (R+ Z)u in [24]. We shall therefore
concentrate in the presented proof exclusively to this issue. Paper [24] is
needed for the full understanding of all details of this proof.

4.1 Approximations and estimates

Following arguments from [24, Section 3], we may suppose, without loss of
generality, that

P ∈ C2([0,∞)2), ∇R,ZP (0, 0) = 0, (54)

0 < R ≤ R0, 0 < Σ ≤ Σ0, (55)

(ξ0, R0, Z0,Σ0) ∈ C3(Ω), (∂nξ0, ∂nR0, ∂nZ0, ∂nΣ0)|∂Ω = 0

u0 ∈ C3(Ω;R3) ∩W 1,2
0 (Ω;R3).

We take δ > 0 and a sufficiently large B � max{9/2, γ, β,A} and define

Pδ(%, Z) = P (%, Z) + δ
(
%B + ZB +

1

2
%2ZB−2 +

1

2
Z2%B−2

)
. (56)

Next step consists in the parabolic regularization of all continuity equa-
tions by adding ε∆ξ, ε∆R, ε∆Z, ε∆Σ to the right-hand side of the conti-
nuity equations for densities ξ, %, Z, Σ, respectively, and endowing the new
equations with the homogeneous Neumann boundary conditions. It is well
known that this regularization must be compensated by adding the term
ε∇Σ · ∇u to the left-hand side of the momentum equation in order to keep
in force the energy identity.

Finally we take {ΦΦΦj}∞j=1 ⊂ C2(Ω;R3)) ∩ W 1,2
0 (Ω;R3) an orthonormal

basis in L2(Ω;R3)) (formed e.g. by eigenfunctions of the Lamé system with
homogeneous Dirichlet boundary conditions) and consider for a fixed N ∈ N
an orthogonal projection of the momentum equation onto the linear hull
LIN{ΦΦΦj}Nj=1.

To summarize, our approximation looks as follows:
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Definition 3. The quintet1 (ξN,ε,δ, RN,ε,δ, ZN,ε,δ, ΣN,ε,δ,uN,ε,δ ) = (ξ,R, Z,Σ,u)
is a solution to our approximate problem, provided ∂t%, ∂tZ, ∂tξ, ∂tΣ, ∇2%,
∇2Z, ∇2ξ, ∇2Σ ∈ Lr(I×Ω) for some r ∈ (1,∞), u(t, x) =

∑N
j=1 c

N
j (t)ΦΦΦj(x)

with cNj ∈ C1(0, T )∩C([0, T ]) for j = 1, 2, · · · , N , the regularized continuity
equations

∂tr + div (ru) = ε∆r,

∂r

∂n

∣∣∣
∂Ω

= 0

r(0, x) = r0,

(57)

(where r represents ξ, R, Z, Σ, according to the case) hold in the a.a. sense,
and the Galerkin approximation for the momentum equation∫ T

0

∫
Ω

(
∂t
(
Σu
)
ϕϕϕ− Σ(u⊗ u) : ∇ϕϕϕ− Pδ(R,Z)divϕϕϕ

)
dx dt

=

∫ T

0

∫
Ω

(
µ∇u : ∇ϕϕϕ+ (µ+ λ)div u divϕϕϕ− ε

(
∇Σ · ∇u

)
·ϕϕϕ
)

dx dt

(58)

holds for any ϕϕϕ ∈ LIN{ΦΦΦ}Nj=1, and

u(0, x) = PN (u0) (59)

with PN the orthogonal projection onto LIN{ΦΦΦ}Nj=1 in L2(Ω;R3).

4.1.1 Estimates and limi N →∞

First, applying Proposition 6 to the all regularized continuity equations
(57) and to the regularized continuity equation satisfied by the differences
aRN −ZN , ZN − aRN , ΣN − b(RN +ZN ) and dξN −RN we easily see that
for all t ∈ I and x ∈ Ω

RN (t, x) ≥ C1(δ,N) > 0, ZN (t, x) ≥ C1(δ,N) > 0, (60)

dRN (t, x) ≤ ξN (t, x) ≤ dR(t, x), 0 ≤ ΣN (t, x) ≤ b(RN + ZN )(t, x)

aRN (t, x) ≤ ZN (t, x) ≤ aRN (t, x) ≤ C2(δ,N).

Taking in equation (58) test function uN end employing conveniently
equations (57)r=R, (57)r=Z , (57)r=Σ we get after a cumbersome calculation

d

dt

(1

2

(
‖ΣN |uN |2‖L1(Ω) +

∫
Ω
Hδ(R

N , ZN ) dx
)

+ ε

∫
Ω

(∂2H

∂R2
(RN , ZN )|∇%N |2

(61)

1We skip the indices N , ε and δ in what follows and will use (only one of them) in
situations when it will be useful to underline the corresponding limit passage.
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+2
∂2H

∂R∂Z
(RN , ZN )∇RN · ∇ZN +

∂2H

∂Z2
(RN , ZN )|∇ZN |2

)
dx

+εδB

∫
Ω

(∂2hδ
∂R2

(RN , ZN )|∇RN |2 + 2
∂2hδ
∂R∂Z

(RN , ZN )∇%N · ∇ZN

+
∂2hδ
∂Z2

(%N , ZN )|∇ZN |2
)

dx+

∫
Ω

(
µ|∇uN |2 + (µ+ λ)|div uN |2

)
dx = 0,

where
Hδ(%, Z) = H(%, Z) + hδ(%, Z), (62)

hδ(%, Z) = δ
B−1(%B + ZB + 1

2%
2ZB−2 + 1

2Z
2%B−2), H is defined in (34). On

the other hand, multiplying equation (27) by ξ,R, Z,Σ (according to the
value of r) and integrating over Ω we obtain the identities

1

2

d

dt
‖r‖2L2(Ω) + ε‖∇r‖2L2(Ω) = −1

2

∫
Ω
r2div uN dx (63)

where r stands for ξ,R, Z,Σ.
Using equations (61) (together with the structure of H inherited from

P through explicit formula (34) - here, the additional assumption (54) is
important) and (62) as well as the domination of ξ by R, Σ by R, Z, and Z
by R established in (60), we end finally with

‖ξN , %N , ZN ,ΣN‖L∞(I;LB(Ω)) + ‖ΣN |uN |2‖L∞(I;L1(Ω)) (64)

+‖uN‖L2(I;W 1,2(Ω)) + ε‖∇%N ,∇ZN‖2L2(I;L2(Ω)) ≤ C

where the constant C is independent of N and ε (but blows up when δ →
0+).

At this stage, we have for quantities ξN and ΣN the same estimates as
for quantities ZN , RN . We can therefore pass to the limit N →∞ exactly
in the same way as it is done in [24, Section 4.2]. Denoting by by (ξ,R, Z,Σ)
the corresponding (weak) limits (as N →∞) we may infer that they satisfy
regularized continuity equations (57), momentum equation∫ T

0

∫
Ω

(
Σu · ∂tϕϕϕ+ Σu⊗ u : ∇ϕϕϕ+ Pδ(R,Z)divϕϕϕ

)
dx dt (65)

=

∫ T

0

∫
Ω

(
µ∇u : ∇ϕϕϕ+(µ+λ)div u divϕϕϕ−ε∇Σ·∇u

)
dx dt−

∫
Ω

m0 ·ϕϕϕ(0, ·) dx

with any ϕϕϕ in C1
c ([0, T )× Ω), and the energy identity (61), written as(1

2
‖Σ|u|2(t)‖L1(Ω) +

∫
Ω
Hδ(%, Z)(t) dx

)
(66)
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+

∫ t

0

∫
Ω

(
µ|∇u|2 + (µ+ λ)|div u|2

)
dx dτ + ε

∫ t

0

∫
Ω

(∂2Hδ

∂%2
(%, Z)|∇%|2

+2
∂2Hδ

∂%∂Z
(%, Z)∇% · ∇Z +

∂2Hδ

∂Z2
(%, Z)|∇Z|2

)
dx dτ

≤
∫

Ω

(1

2
Σ0u

2
0 + Hδ(%0, Z0)

)
dx

for a.a. t ∈ (0, T ).

4.1.2 Estimates and limit ε→ 0

We shall list the available estimates for the quintet (ξε, Rε, Zε,Σε,uε) =
(ξ,R, Z,Σ,u). Inequalities (60) give in the limit

∀t ∈ I, Rε(t, x) ≥ 0, Zε(t, x) ≥ 0, dRε(t, x) ≤ ξε(t, x) ≤ dRε(t, x), (67)

aRε(t, x) ≤ Zε(t, x) ≤ aRε(t, x), 0 ≤ Σε(t, x) ≤ b(Rε + Zε)(t, x)

for a. a. x ∈ Ω. Employing the properties Hδ induced by explicit formula
(34) for H (here, still, for the last time, assumption (54) is important) and
(62), we derive from the energy inequality (66),

‖%ε|uε|2‖L∞(I;L1(Ω)) + ‖(ξε, Rε, Zε,Σε)‖L∞(I;LB(Ω)) (68)

+
√
ε‖∇ξε,∇%ε,∇Zε,∇Σε‖L2(QT ) + ‖uε‖L2(I;W 1,2(Ω)) ≤ C,

where we have used also the domination estimates (67).
These are exactly the same starting estimates which were needed for the

passage ε → 0 in [24, Section 4.3]. We can therefore repeat line by line
the reasoning of that paper - including improved estimates of density via
the Bogovskii-type test functions, including arguments yielding convergence
of
∫

ΩRε(sε − s)
2dx to 0 (with sε = Zε/Rε and s = Z/R where Z and R

are weak limits of the sequences Zε and Rε), including effective viscous flux
identity and including final reasoning using renormalized continuity equation
with renormalizing function R logR.

Denoting by by (ξδ, Rδ, Zδ,Σδ,uδ) = (ξ,R, Z,Σ,u) the corresponding
(weak) limit (as ε→ 0+) we may infer that it satisfies the weak formulations
of the continuity equations, see (14), the weak formulation of the momentum
equation (15) with P replaced by Pδ and energy inequality (66)ξδ,Rδ,Zδ,Σδ,uδ .
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4.1.3 Estimates and limit δ → 0

The final step in the prove of Theorem 1 is the limit δ → 0. As in the
previous Section, we deduce from (67) the following estimates

Rδ(t, x) ≥ 0, Zδ(t, x) ≥ 0, dRδ(t, x) ≤ ξδ(t, x) ≤ dRδ(t, x), (69)

aRδ(t, x) ≤ Zδ(t, x) ≤ aRδ(t, x), 0 ≤ Σδ(t, x) ≤ b(Rδ + Zδ)(t, x)

for a. a. x ∈ Ω. Taking into account (34) and (62) together with assumption
(27), we deduce from energy inequality (66)ξδ,Rδ,Zδ,Σδ,uδ ,

‖%δ|uδ|2‖L∞(I;L1(Ω)) + δ1/B‖(ξδ, Rδ, Zδ,Σδ)‖L∞(I;LB(Ω)) (70)

+‖(ξδ, Rδ, Zδ,Σδ)‖L∞(I;Lγ(Ω)) + ‖uδ‖L2(I;W 1,2(Ω)) ≤ C.

Testing the momentum equation (15)P=Pδ with the Bogovskii solution of
the divergence equation divϕ = %η− 1

|Ω|
∫

Ω %
η dx, ϕ|∂Ω = 0 (with convenient

number η > 0), we arrive to improve the estimate of density up to

‖Rδ‖Lγ(I) ≤ C, where γ = γ + min{γ/2, 2
3γ − 1}. (71)

This estimate is inherited also by ξδ, Zδ, Σδ by virtue of the domination
estimate (69). We notice that if γ ≥ 9/5 then γ ≥ 2. This observation is
crucial: it guarantees that the quantities ξ,R, Z,Σ are square integrable,
which is one of the most essential assumptions to let work the theory of
renormalized solutions reported in Section 3. These are exactly the same
starting estimates which were needed for the passage δ → 0 in [24, Section
4.4]. The reader can now repeat line by line the (detailed) reasoning available
in that paper. Theorem 1 is proved.

5 One velocity Baer-Nunziato system: Proof of
Theorem 2

We set

F (α) =
1

f(α)
, G(α) =

1

g(α)
,

where clearly F , G are strictly monotone non vanishing functions on interval
(0,1), and denote

F = min{F (α), F (α)}, F = max{F (α), F (α)}.
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Similarly, we define numbers G, G as above replacing function F by G.
Then, in particular, F : [α, α]→ [F , F ] is a C1-diffeomorphism.

We will use Theorem 1 with initial conditions

ξ0 = %0, R0 = f(α0)%0, Z0 = g(α0)z0, Σ0 = %0 + z0, u0.

If (α0, %0, z0) satisfies conditions (35) then (ξ0, R0, Z0,Σ0) verifies (23) with
a, a for the relation between R0, Z0, d = F , d = F for the relation between
ξ0, R0 and b = max{F ,G} for the relation between Σ0 and R0 + Z0.

Theorem 1 guarantees existence of a weak solution (ξ,R, Z,Σ,u) in the
corresponding regularity class described in that theorem. Therefore, couples
(ξ,u), (R,u), verify assumptions of Proposition 4 with a = F , a = F .

We now set

α = F−1(ξ/R), % = F (α)R, z = G(α)Z.

Clearly, according to item 1. of Proposition 4, ξ/R and α satisfy pure
transport equation (19) with boundary conditions ξ/R(0) = ξ0/R0 = F (α0)
and α(0) = α0, respectively. Now, according to item 2. of Proposition 4,
the couple (%,u) satisfies the continuity equation (18) with initial condition
%(0) = F (α0)R0 = %0. Likewise, the couple (z,u) satisfies the continuity
equation (18) with initial condition z(0) = G(α0)Z0 = z0.

The proof will be finished if we show that for all t ∈ I, Σ(t, ·) = %(t, ·) +
z(t, ·) a.e. in Ω.

To this end we observe that again according to item 1. of Proposition 4
the quantity z/% together with u satisfies transport equation (19) with initial
condition z0/%0, and consequently the quantity T = Σ/R together with u
satisfies transport equation (19) with initial datum T (0) = F (α0)+F (α0) z0%0 .
On the other hand, by the same token the quantity S = z/R+ %/R verifies
transport equation (19) with the same initial datum as the quantity T . We
thus conclude that for all t ∈ I, RT (t, ·) = RS(t, ·) a.e. in Ω, by virtue of
Proposition 5. In the other words for all t ∈ I, Σ(t, ·) = %(t, ·) + z(t, ·) a.e.
in Ω. This completes the proof of Theorem 2.
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fluids. Birkhäuser Verlag. Advances in Mathematical Fluid Mechanics,
(2009).

[16] E. Feireisl, A. Novotný, H. Petzeltová. On the existence of globally
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solutions to the compressible Navier-Stokes equations of a barotropic
fluid. Math. Methods Appl. Sci. 25, 1045–1073, 2002.

[18] V. Guillemaud. Modélisation et simulation numérique des écoulements
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