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This paper is devoted to the link between the Fisher Information Matrix invertibility and the observability of a parameter to be estimated in a nonlinear regression problem.

I. Introduction

In Signal Processing [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF], in Target Motion Analysis [START_REF] Bar-Shalom | Estimation and Tracking: Principles, Techniques and Software[END_REF], a large class of measurements can be modelled as

X = h(θ) + ε ( 1 
)
where X is the available measurement vector (element of R n ), θ is the unknown deterministic parameter (lying in R d ) and h(.) is a (known) nonlinear mapping from R d to R n .

The vector ε represents the additive measurement noise.

Whatever the estimation technique employed (Least Squares, Maximum Likelihood, ...), the observability of parameter θ must be investigated.

Most of the time, the analysis of observability is a tough task, and many authors suggest to declare that θ is observable if the Fisher Information Matrix (FIM) of θ given X, under Gaussian hypothesis concerning ε, is nonsingular at θ (see, for example, [START_REF] Bar-Shalom | Estimation and Tracking: Principles, Techniques and Software[END_REF] page 168).

Intuitively (and practically), it turns out that this way is sufficient. But it is legitimate to wonder about the meaning of that analysis: Observability being a deterministic notion, why use a statistical tool (the FIM) to establish its status? Why restrain oneself to the Gaussian law? Would the conclusion be the same if the FIM was computed for another law?

Parts of answers can be found in Jazwinski's book ( [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF] page 231) but linear Gaussian cases are concerned.

The aim of this paper is to answer these questions by establishing clearly the link between the status of the FIM (singular or nonsingular) under a large class of probability laws and the status of the observability, i.e. in nonlinear and non-Gaussian cases.

The coming section recalls some classical definitions of observability. In the third section, we give a general form of the FIM. Some pathologic (but still relevant) cases are analyzed in Section IV. The last section gives the main result, after presenting the necessary mathematical tools.

II. Observability Concepts

There are several ways to define the observability concept: it can be a global one (for all the vectors of R d ), or a local one (for a special θ).

We recall the three major definitions of observability.

Definition 1. The noise-free system

X = h(θ) is simply observable at θ 0 if ∀θ ∈ R d , {θ = θ 0 } ⇒ {h(θ) = h(θ 0 )} (2) 
Definition 2. The noise-free system is (simply

) observable if ∀θ, ∀θ ∈ R d , {θ = θ } ⇒ {h(θ) = h(θ )} (3) 
Definition 3. The noise-free system is locally observable at θ 0 if

∃U θ 0 ⊂ R d (open subset containing θ 0 ), ∀θ ∈ U θ 0 , {θ = θ 0 } ⇒ {h(θ) = h(θ 0 )} (4) Remark 1.
a) These definitions come from the theory of dynamic systems in which the parameter θ changes in time and must be hence denoted θ(t). For such systems, there exists some other definitions of observability to take into account the trajectory of θ(t) [START_REF] Hermann | Nonlinear controllability and observability[END_REF].

b) When h(.) is a linear mapping (in practice a matrix), local observability and simple observability coincide.

III. Fisher Information Matrix

In the sequel, we assume that the behavior of the vector ε is described by a probability density function (pdf), say p ε , whose support is R n . The vector X has its own pdf, denoted p X . It depends on θ while its support is independent of it 1 . More precisely, the 1 This assumption is necessary to compute the Fisher Information Matrix.
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p X (ν|θ) = p ε (ν -h(θ)). ( 5 
)
The likelihood function of θ is nothing else than the probability density function of X

given θ evaluated at X :

L θ (X) p X (X|θ). (6) 
The Fisher Information Matrix (FIM) is

F θ (X) Cov θ {∇ θ ln [L θ (X)]} = E θ ∇ θ ln[L θ (X)]∇ T θ ln[L θ (X)] . ( 7 
)
The Cramèr-Rao Lower Bound (CRLB) of any unbiased estimator of θ is the inverse of

F θ (X).
If ε is a 0-mean Gaussian vector whose covariance matrix is R ε (assumed invertible), the FIM can be expressed as follows

F θ (X) = ∇ θ h(θ)R -1 ε ∇ T θ h(θ). ( 8 
)
Under more general assumptions, we can still give a close form for the FIM .

Theorem 1. F θ (X) = ∇ θ h(θ)W ε ∇ T θ h(θ)
where

W ε E{∇ ν ln [p ε (ν)] ν=ε ∇ T ν ln [p ε (ν)] ν=ε } (9)
Proof :

For the dummy variable z, we have

∇ θ ln [p X (z|θ)] = ∇ θ ln [p ε (z -h(θ))] = ∇ θ h(θ)∇ ν ln [p ε (ν)] ν=z-h(θ) . ( 10 
)
Hence

∇ θ ln [L θ (X)] = ∇ θ h(θ)∇ ν ln [p ε (ν)] ν=X-h(θ) . ( 11 
)
As a consequence, the FIM is readily written as

F θ (X) = ∇ θ h(θ)E θ {∇ ν ln [p ε (ν)] ν=X-h(θ) ∇ T ν ln [p ε (ν)] ν=X-h(θ) }∇ T θ h(θ) (12) DRAFT October 14, 2006
The middle term above is

E θ {∇ ν ln [p ε (ν)] ν=X-h(θ) ∇ T ν ln [p ε (ν)] ν=X-h(θ) } = E{∇ ν ln [p ε (ν)] ν=ε ∇ T ν ln [p ε (ν)] ν=ε }. ( 13 
)
In the sequel, W ε is assumed nonsingular. The following theorem gives us a sufficient condition for that.

Theorem 2. If ∇ ν p ε (ν) is a continuous function then W ε is nonsingular. Proof :
Suppose that W ε is singular. So there exists a non null vector

u ∈ R d such that u T W ε u = 0, i.e. ∃u = 0 s.t. u T W ε u = 0 ⇔ ∃u = 0 s.t. u T R d ∇ ν p ε (ν)∇ T ν p ε (ν) 1 p ε (ν) dν u = 0 ⇔ ∃u = 0 s.t. R d u T ∇ ν p ε (ν) p ε (ν) 2 dν = 0 (14) 
Since ∇ θ p ε (θ) is a continuous function, this last statement is equivalent to

∃u = 0 s.t. u T ∇ ν p ε (ν) = 0, ∀ν ∈ R d ⇔ ν∈R d ker{∇ ν p ε (ν)∇ T ν p ε (ν)} = { 0}. ( 15 
)
Let r be the dimension of the vector space

ν∈R d ker{∇ ν p ε (ν)∇ T ν p ε (ν)}.
In a suitable basis, the last (d -r) components of ∇ ν p ε (ν) will be null, i.e.

∇ ν p ε (ν) = ∂p ε (ν) ∂ν 1 , ∂p ε (ν) ∂ν 2 , • • • , ∂p ε (ν) ∂ν r , 0, • • • , 0 T ∀ν ∈ R d ( 16 
)
which means that in that basis, p ε (ν) = p ε (ν 1 , ν 2 , ..., ν r ). This contradicts the fact that

R d p ε (ν)dν = 1. Remark 2. If ε is Gaussian of covariance matrix R, it is readily shown that W ε = R -1 ε .
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IV. Pathologic cases

A. Case I :

We consider the two-dimensional measurement

(n = d = 2) X   X 1 X 2   =   θ 3 1 + θ 2 θ 3 1 -θ 2   +   ε 1 ε 2   . ( 17 
)
Obviously, the associated noise-free system is simply observable at any θ = (θ 1 , θ 2 ) T .

Under the assumption that ε i ∝ G(0, 1) and independent, the FIM is

F θ (X) =   9θ 4 1 0 0 2   (18) 
which is singular at any θ such that θ 1 = 0.

Remark 3.

a)

In similar cases, we can prove that no unbiased estimator of θ exists since for such estimators the CRLB is the inverse of the FIM. This fact is met in array processing for the estimation of the end-fire bearing [START_REF] Pasupathy | Range and bearing estimation in passive sonar[END_REF].

b) The singularity of the FIM at some points of R d can cause some problems during the Gauss Newton routine for which the Hessian is approximated by the FIM evaluated at the point of the current iteration. The palliative is the augmentation of the FIM by some αId as suggested in the Levenberg-Marquardt method [START_REF] Dennis | A user's guide to nonlinear optimization algorithms[END_REF].

B. Case II

This counter-example comes from [START_REF] Isidori | Nonlinear Controllability Systems[END_REF] p. 479. Let's consider the two-dimensional measurement vector

X   X 1 X 2   =   aθ -sin θ cosθ   +   ε 1 ε 2   , with a ∈]0, 1[ (19) F θ (X) = 2a a + 1 2a -cos θ (20)
Hence, the FIM is never equal to 0, but still the pairs (θ 1 , θ 2 ) defined by

   θ 1 2kπ + τ θ 2 2kπ -τ (21) DRAFT October 14, 2006
are undistinguishable, τ being the root of the equation τ = sin τ a . The parameter θ is not simply observable, but locally observable.

V. Analysis

A. Mathematical Tools

We need two types of tools : one from the linear algebra theory and the second one from the differential calculus.

Theorem 3. Let A a (n × d) matrix (d ≤ n).
The following statements are equivalent : [START_REF] Isidori | Nonlinear Controllability Systems[END_REF] p. 479).

(i) A T A is invertible. (ii) ∃S a real nonsingular symmetric (n × n) matrix such that A T SA is nonsingular. (iii) ∀S real nonsingular symmetric (n × n) matrix, A T SA is nonsingular. (iv) Rank(A) = d. Definition 4. h : R d → R n is an immersion at θ 0 if the rank of ∇ θ h(θ 0 ) is equal to d (see
Theorem 4. h : R d → R n is an immersion at θ 0 if there exists an open set U θ 0 containing θ 0 such that the rank of ∇ θ h(θ) is equal to d, whatever θ in U θ 0 .

See [START_REF] Schwarz | Calcul Différentiel et Equations Différentielles[END_REF] for the proof.

Proposition 1. If h : R d → R n is an immersion, than h is locally injective, i.e. it exists an open set U θ 0 of R d containing θ 0 such that h : U θ 0 ⊂ R d → R n is injective.
See [START_REF] Schwarz | Calcul Différentiel et Equations Différentielles[END_REF] for the proof.

Remark 4. If h is a linear mapping i.e. h(θ)

= A(θ), then ∇ θ h(θ 1 ) = ∇ θ h(θ 2 ) = A T for
any pair (θ 1 , θ 2 ). Hence h is locally injective as well as injective anywhere.

B. The main result

The exploitation of the previous theorems and of the last proposition yields straightforwardly the following October 14, 2006 DRAFT Theorem 5. Let us consider the measurement equation X = h(θ) + ε associated to the noise-free system X = h(θ). If the support of p ε is R n itself and if the FIM is nonsingular at θ 0 -or, equivalently, if ∇ θ h(θ 0 )∇ T θ h(θ 0 ) is nonsingular -then the noise-free system is locally observable at θ 0 .

Proof :

We know that ∇ θ h(θ)W ε ∇ T θ h(θ) is nonsingular. Using Theorem 4, statement (iv), with A ≡ ∇ θ h(θ 0 ) and S ≡ W , we conclude that Rank(∇ θ h(θ 0 )) is equal to d ; hence h is an immersion. Now, thanks to Proposition 1, we know that h is locally injective, and as a consequence, satisfies Definition 3.

Remark 5.

a) The first pathological case forbids the converse.

b) Remark 4 proves that local observability is equivalent to simple observability for linear system

: if h is linear, i.e. h(θ 0 ) = Aθ 0 , then ∇ θ h(θ 0 )∇ T θ h(θ 0 ) = A T A, ∀θ 0 .
In that case, the system is observable iff A T A is nonsingular, or equivalently, iff A T W ε A (the FIM) is nonsingular.

VI. Conclusion

The link between the invertibility of the FIM and the observability status has been unambiguously established, for a large class of probability laws in nonlinear regression problems. This theoretical result can help the study of observability. 
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