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Abstract

In this paper, we propose a generic pre-filtering method of point descriptors which

addresses the confusion problem due to repetitive patterns. This confusion of-

ten leads to wrong descriptor matches and prevents further processes such as ob-

ject recognition, image indexation, super-resolution or stereo-vision. Our method

sorts keypoints by their unicity without taking into account any visual element

but the feature vectors’s statistical properties thanks to a kernel density estima-

tion approach. Both binary descriptors and floating point based descriptors are

studied, regardless of their dimensions. Even if highly reduced in number, results

show that keypoints subsets extracted are still relevant and our algorithm can be

combined with classical post-processing methods.

Keywords: keypoints filtering, computer vision, feature matching, kernel density

estimator

In computer vision, many applications share the same first steps known as key-

point extraction and associated features computation. These two steps have been

Email addresses: emilien.royer@univ-tln.fr (Emilien Royer),
{thibault.lelore@gmail.com (Thibault Lelore), bouchara@univ-tln.fr (Frédéric
Bouchara)

Preprint submitted to Computer Vision and Image Understanding August 1, 2016



more and more studied over the last years from the result of an increasing need

of, as example, efficient robotic vision or image retrieval. Some major contribu-

tions, such as the SIFT descriptor [1] by D. Lowe are based on oriented gradient

histograms. Its high efficiency, proven [2], has brought it wide popularity as it is

one of the most used feature descriptor, even being rewritten for GPU architec-

tures several years ago [3]. It also has inspired many others such as SURF [4]

or [5]. However, even for nowadays computation capabilities, this class of al-

gorithms shares some relatively high computational cost which often prevents us

from using them in real-time applications, especially with low-end hardware such

as embedded devices.

Yet, the rise of the smartphone industry has increased the need for light-

processing algorithms and less memory consumption. Thus, in 2010, Calonder et

al. introduced the BRIEF descriptor [6], slightly inspired by Local Binary Pattern

(LBP) [7], which has led the way to a new class of methods called binary de-

scriptors like ORB [8], BRISK [9], FREAK [10] or D-BRIEF [11]. Originaly less

efficient than the SIFT-based ones (but still, good enough for real applications)

there has been a trend in keeping the fast processing aspect while improving the

matching capabilities; the last ones, like BinBoost [12], BOLD [13] and LATCH

[14], claim to have similar performances as the best floating-point descriptors.

With the major exception of BinBoost and D-BRIEF, binary descriptors are often

based on the simple but yet efficient following procedure: pixel pairs are sampled

all over a small blured region of the chosen keypoint and for each pair the differ-

ence of the pixel values is computed, acting as an element of the feature vector. As

it is common for feature descriptors, each new variation has brought slight mod-

ification of the original idea. For example, BRIEF originally uses different ways
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Figure 1: Example from the Zurich Building Image Database of repetitive patterns leading

in ”good-false” matches with the SIFT descriptor.

of random pair sampling, ORB has proposed machine learning to learn efficient

pair sampling and BRISK uses a mandatory pattern which is bio-inspired. These

are feature descriptors modifications, but same is done with keypoint detection in

order to improve keypoint selection. Again, ORB orders the FAST [15] responses

by a Harris corner measure [16]. With our contribution, we propose a solution

to both generally improve the selection and to address a specific case that we are

presenting in the next section.

0.1. The repetitive patterns problem

A frequent and troublesome problem easily encountered when trying to match

pairs in different images is the repetitive pattern case, as we can see in figure 1 :

the exact same pattern is present in multiple occurrences within the image. These

visual features make it highly responsive to saliency analysis, returning numerous

keypoints that have almost the same feature vectors, which results in high con-

fusion during matching phase. Usually, the mismatch problem is handled from a

given putative point correspondence by different kinds of approaches. A first kind

of methods is based on a robust statistic estimation such as LMS (Least Median

of Squares) or M-estimators. In [17] Deriche et al. applied the LMS for the ro-
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bust estimation of the fundamental matrix. In a similar approach Torr et al [18]

proposed a method for the estimation of both the fundamental matrix and motion

estimation. Another robust estimation methods can be found in the literature such

as the algorithms proposed by Ma et al [19, 20].

Another kind of methods, known as resampling methods, act by trying to get a

minimum subset of mismatch-free correspondence. Methods belonging to this

category are usually extensions of the well known RANSAC (RANdom SAmple

Consensus) [21] such as MLESAC [22] or SCRAMSAC [23]. We can also cite

[24]. Other algorithms are based on different approaches as the ICF (Identifying

point correspondences by Correspondence Function) proposed by Li et al [25].

Another way to consider the mismatch problem is to filter out repetitive patterns in

each image. Such a priori approaches may be combined with the previous methods

that are performed a posteriori from a given putative point correspondence. When

looking at the literature, detecting repetitive pattern is a known issue in several

different applications although it is reputed to be difficult. Repetitive structures

can be detected through symmetry analysis [26, 27, 28] and despite being mostly

2D analysis, recent propositions try to take into account non-planar 3D repetitive

elements [29, 30]. Mortensen et al. enrich the SIFT descriptor with information

about the image global context [31], inspired by shape contexts [32]. The SERP

[33] descriptor and the CAKE [34] keypoint extractor both rely on kernel density

estimation [35]. The first one uses mean-shift clustering on SURF descriptors,

whereas the second one builds a new keypoint extractor based on Shannon’s defi-

nition of information. As we’re about to see in the next section, our approach does

also rely on kernel density estimation but in a different way.
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Figure 2: Classical processing pipeline of an image processing application requiring key-

points detection and features computation. ? symbols corresponds to generic pre and post

processing steps.

As we can see by passing in review the methods found in the literature, they are

to be applied during different steps of the usual processing pipeline. Moreover, the

choice of some of these steps are not without consequences ; for example methods

like CAKE entirely replace the detection step since it’s a different detector. This

prevents us from using other classical detectors that might have different appre-

ciable characteristics. If we look at figure 2, it is easy to understand that the most

handy algorithms are the ones which are designed to be applied in-between steps

1 & 2 and 2 & 3 which we call here respectively pre and post processing / filtering

approaches (the matching step being the ”in-processing” one) such as SCRAM-

SAC : they provide us with genericity since they can be used with the different

major, classical algorithms without altering a classical processing pipeline. With

our notations, the matching step would be called the ”in-processing” one. Con-

sidering the particularities of high-dimensional spaces, matching features is not a

trivial issue and this subject is still being studied with dedication. For example,

very important works include the FLANN (Fast Library for Approximate Nearest

Neighbors) collection of algorithms, and Rabin et al. with [36] and [37] with their

clever adaptation of the Earth Mover’s Distance to circular histograms thanks to

a dissimilarity measure.

Since SCRAMSAC objective is about building a subset of matches before
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applying the RANSAC algorithm, we can classify it as a post-processing method.

However, generic pre-processing methods with the objective of building a subset

of features before the matching step, whatever the feature descriptor algorithm

employed and with the aim of reducing the confusion appear to be lacking.

Therefore, this is the goal of this paper: we propose a new approach to cope

with the keypoints confusion problem. We don’t take into account the keypoints

visual properties since they may vary with the type of extractor chosen, but instead

we analyze the statistics properties of their associated feature vectors. We estimate

a numerical value that is associated to the confusion risk of a given feature vector

between another vector in a different image. With this criterion, we can, then,

sort the keypoints from low confusion risk, to high confusion risk. With the right

threshold, we can thus decide which points should be discarded and which ones

should be kept. The rest of the paper is organized as follow: Section 1.1 will

present an overview of our proposed method. In section 1.2 we will explain the

criterion computation. Section 1.3 will address the problem of threshold setting.

Finally, Section section 2.1 and 3 will respectively present results and conclusions.

Further in the text we will use the following notation: we let Px(y) be the

probability Pr(x = y). Vectors are denoted by lower bold letters such as u or vi.

The dth component of such vectors are denoted ud and vid .

1. Proposed Method

1.1. Overview

. Let I be the image resulting of the observation (with a camera) of a specific

scene. Let I′ be (a potential) another observation of the same scene in which
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changes result from various transformations such as perspective changes, light

modifications, etc. In our model, I is deterministic whereas I′ is a potential (not

yet observed) different version of I and is hence considered to be stochastic. Let

now ui, i∈{1,...,N} be D-dimensional feature vectors computed on N keypoints of I

and let u′i, i∈{1,...,N}, be their N respective equivalents in I′. We assume that even

if descriptors try to be invariant as much as possible to most transformations, each

feature vector in image I is subject to slight variations that we can assimilate in

image I′ as randomness. By doing so we consider u′i as random vectors and we

shall define a criterion associated to each keypoint of I that characterizes the con-

fusion risk, i.e. a value correlated to the probability that in I′, a vector u′j, j 6=i is

closer to ui than uj.

1.2. Criterion computation

For each keypoint i of I we define Ci, the criterion, as the probability density

that any other random u′j, j 6=i is equal to ui, i.e. Pu′j, j6=i
(ui). This density should act

as a criterion for separating relevant and high confusion risk keypoints.

From this definition, we can write:

Ci ≡ Pu′j, j6=i
(ui) = ∑

j 6=i
Pr(k = j,u = ui) (1)

= ∑
j 6=i

Pk, k6=i(j)Pu/j(ui) (2)

where Pk, k6=i(j) denotes the probability of choosing keypoint j and Pu/j(.) is

the probability density function (pdf) of the feature vector given the keypoint num-

ber. We simply assume Pk, k 6=i(j) = 1
N−1 (the N− 1 keypoints are equiprobable)
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and we shall denote Pu/j(u) = K
(∣∣u−uj

∣∣) (Pu/j(u) is assumed to depend only on

the distance
∣∣u−uj

∣∣)
We thus obtain the estimation of Ci by the classical Parzen-Rosenblatt kernel

density estimator (KDE):

Ci =
1

(N−1) ∑
j 6=i

K
(∣∣ui−uj

∣∣) (3)

By labeling each keypoint i with is Ci value, a confusion reduction (CORE)

algorithm is easily designed:

Steps (a) and (b) are explained in next subsections.

1.2.1. Floating point case

We suppose that the vector variation causes are numerous and are either from

natural origins or can be considered as such. Therefore, it makes sense to consider

this behavior to be Gaussian. With this assumption we can define K as the classical

D-dimensional uncorrelated Gaussian Kernel:

K(d) =
(

1
σ
√

2π

)D

exp(− d2

2σ2 ) (4)

Thus, the criterion formula is :

Ci =
1

(N−1)
(
σ
√

2π
)D ∑

j 6=i
exp(−

dE(ui,uj)
2

2σ2 ) (5)

where dE(ui,uj) =
√
‖ui−uj‖ is the Euclidean distance between vector ui and

uj. σ is the average modification of a vector component in the feature’s space. Its

value is specific to each feature descriptor algorithm and should be evaluated once;

for example we found it to be roughly around 32.125 with the SIFT descriptor.
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1.2.2. Binary case

In the binary case u =
(
ud, d∈{1,...,D}

)
is a binary vector and we let µd =

Pr(ud 6= u′d) be the probability that the value of the dth component is different

between the two images. In the following, we shall assume µd independant of the

component and we shall drop the index d. Pu/j(u) is then given by a Bernouilli

distribution and K(.) can therefore be written in the form:

K(u) =
D

∏
d=1

µud(1−µ)1−ud (6)

which leads to the following expression for Ci:

Ci =
1

(N−1) ∑
j 6=i

D

∏
d=1

µuid⊕ujd(1−µ)1−uid⊕ujd (7)

=
1

(N−1) ∑
j 6=i

µdH(ui,uj)(1−µ)D−dH(ui,uj) (8)

where uid ⊕ ujd represents the exclusive disjunction between uid and ujd and

dH is the hamming distance.

1.3. Threshold estimation

Since we can associate a numerical value tied to the confusion risk for each

feature vector, an immediate method to extract a subset of keypoints would be to

sort them according to their Ci value and only keep the nth first. However, it is

quick realized that such a solution would not be relevant, it lacks the genericity

spirit that lead the developments of our method : in two different situations, the nth

first points would not have the same Ci value if the overall confusion risk is differ-

ent. Hence, again, a relevant value of the threshold Cth to apply on the Ci, i∈{1,...,N}

9



can be estimated by considering the confusion problem with a probabilistic point

of view.

1.3.1. Floating point case

With the notations of the previous section, let ui and u′i be the feature vectors

computed on the same keypoint i of two different versions of a scene. Let now

vi = u′i−ui, vj = u′j−ui, d2
i = ‖vi‖2 and d2

j = ‖vj‖2 where uj, u′j are the corre-

sponding feature vectors computed on another keypoint j.

To estimate Cth we shall express Ci as a function of p = Pr(d2
j < d2

i ) the prob-

ability of a confusion. In our approach, p is a user-defined parameter which tunes

an acceptable confusion rate. To derive this relation we need first to estimate

Pd2
j
(.), (and hence Pvj(.)) which is governed by the distribution of the uj, j 6=i.

However, we shall assume that p only depends on the behavior of Pvj(.) in a small

neighborhood of ui. We hence approximate Pvj(.) by a D-dimensional uncorre-

lated Gaussian distribution N(.;0,Σvj) of which the central value Pr(vj = 0) =

Pvj(0) =Ci thanks to the definition of Ci given in the previous section. The diago-

nal element σvj of the covariance matrix Σvj is simply related to Ci by considering

the normalization condition on Pvj(.) which can be written:

Ci = (2πσ
2
vj
)−D/2 (9)

From this assumption, Pd2
j
(.) is given by a chi-squared distribution with D degrees

of freedom which can be approximated by a Gaussian law N(.;Ej,σj) due to the

large value of D. The values of Ej and σj are classically related to the values of

σvj and D by: Ej = σ2
vj

D and σj = σ2
vj

√
2D.
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Thanks to the Gaussian assumption on the u′i values and using the same con-

siderations as before, we can also approximate Pd2
i

by a Gaussian law N(.;Ei,σi)

with Ei = σ2D and σi = σ2
√

2D.

From these definitions we can now write:

p = Pr(d2
j < d2

i ) (10)

=
∫

∞

−∞

∫
∞

x
Pd2

j
(x)Pd2

i
(y)dydx (11)

=
∫

∞

−∞

∫
∞

x
N(x;Ej,σj)N(y;Ei,σi)dydx (12)

=
1
2
− 1

2σj
√

2π

∫
∞

−∞

exp

[
−(x−Ej)

2

2σ2
j

]
×

erf
[

x−Ei

σi
√

2

]
dx (13)

=
1
2

1+ erf

 Ei−Ej√
2(σ2

i +σ2
j )

 (14)

After a straightforward, albeit a bit tedious, calculation we obtain from (14):

σ
2
vj
= σ

2 D+2
√

γ(D− γ)

D−2γ
(15)

with γ = 2
(

erf−1(2p−1)
)2

(16)

From (15) and (16), the threshold Cth which corresponds to a specific p is then

given by (9).
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1.3.2. Binary case

Similarly to the floating point case, we let vi = u′i⊕ ui, vj = u′j⊕ ui, di =

dH(ui,u′i) and dj = dH(ui,u′j).

We equivalently assume that p only depends on a small neighborhood of ui

and we locally modeled Pvj(.) with a Bernouilli distribution:

Pvj(u) =
D

∏
d=1

ν
ud(1−ν)1−ud (17)

From this assumption we get the following relation which links Ci with ν:

Ci = (1−ν)D (18)

Considering the Bernouilli expressions of Pvi(.) and Pvj(.) , Pdi(.) and Pdj(.) are

given by binomial distributions that we shall approximate by Poisson distributions

with parameters λi = Dµ and λ j = Dν respectively.

The difference dji = dj−di between two Poisson distributed random numbers

is Skellam distributed [38]. We then get:

Pdji(d) = e−(λ j+λi)

(
λ j

λi

)d/2

Id

(
2
√

λ jλi

)
(19)

with Id the modified Bessel function. The Skellam distribution is well approx-

imated by the normal distribution N(.;λ j−λi,
√

λ j +λi) which leads to:
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p = Pr(dj < di) (20)

=
∫ 0

−∞

N(x;λ j−λi,
√

λ j +λi)dx (21)

=
1
2

[
1+ erf

(
D(µ−ν)√
2D(ν+µ)

)]
(22)

By a similar calculation as previously, we finally obtain:

ν =
2µD+ γ+

√
γ(8µD+ γ)

2D
if p ∈ [0,0.5[ (23)

ν =
2µD+ γ−

√
γ(8µD+ γ)

2D
if p ∈ [0.5,1[ (24)

with γ given by (16).

1.4. Computational cost

Algorithm 1 and equation 3 seem to imply a significant computational cost of

our proposed filter. Therefore, even if we do not analyze the processing times in

our following experiments it is a matter that should be discussed here. Since we

have to compute distances for each possible feature vector couples in a given im-

age, a straightforward implementation should have a complexity of O(N2) (with

N the number of keypoints in filtered image). Considering the symmetry prop-

erty of the distance, the computation time may be simply reduced by half if said

distances are stored somewhere in memory. For real-time applications, however

a parallel impementation (on a GPU architecture for instance) is straightforward.

In addition, applications such as homography estimation will clearly gain from

having to deal with a reduced set size and hence, computation time spent by the

CORE algorithm may be partially compensated at the matching step.
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All in all, these observations lead us to think that even if a non-planned CORE

algorithm integration in a processing pipeline might be costful, some small careful

plannings which are not highly complex workarounds like storing the distances at

first computation should easily negates it.

2. Results

A direct application of CORE filtering for SIFT detector and descriptor can be

seen with figure 3 where interesting patterns are observed: the vast majority of the

chessboard image’s points are removed except for some on the corners whereas

the ones on the photograph are mostly kept. This behavior is confirmed on the

less obvious and simple Zurich image where the keypoints removed are mostly

located on the repetitive windows patterns. Last, the text document image show

clustered locations of kept points and many are located on particular places such

as titles.

To better understand the dynamic of thresholding the features and the repar-

tition of the Ci values, we can refer to figure 4 which shows the usefulness of

our thresholding approach: as stated previously, different images have different

responses of confusion risk and thus deriving the Cth from p filters accordingly.

But these are only visual observations. For validating our contribution, we’re

looking to prove that our algorithm does actually extract a better keypoints subset

less subject to confusion by analyzing the features matching results by brute-force

matching between two different images of the same scene. For most of our follow-

ing experiments we will apply the Lowe’s ratio test [1] to keep only high-quality

feature matches: we reject poor matches by computing the ratio between the best

and second-best match (labeled 2NN for 2 nearest neighbors). If the ratio is below
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Figure 3: Examples of the 3 image types used in this paper and the filtering results with

CORE algorithm of SIFT points (keypoints and features), left shows keypoints removed,

right are keypoints kept. p = 0.1.
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Figure 4: sorted Ci values of the first two images (Chess and Zurich) of figure 3 with SIFT

points, respectively in black and gray. Dashed horizontal lines from top to bottom cor-

respond to threshold values with p = 0.20,0.15,0.10,0.05,0.01. Points above respective

thresholds are discarded.
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a given threshold (we use 0.8), the match is discarded as being low-quality.

2.1. Floating-point case

We first ask an operator to manually evaluate each matches involving 9 image

couples of the Zurich images database and 2 personal ones with chess patterns

such as seen with figure 3 in 3 different scenarios, SIFT algorithm: without any

filtering (plain full sets of keypoints and matches), with 2NN post-filtering and

with CORE pre-filtering (p = 0.1) and 2NN post-filtering. Results are shown

with table 1.

We can see that our contribution globally improves the good matching ratio:

we find an average increasing value of 8.52% for the Zurich images. Images 4.c

and 4.i show slight improvements (with respectively 1.13% and 2.72% ratio in-

creasing) while the other ones extracted from this dataset range from 6.22% to

13.8%. An explanation could come from contextual information from the scene

that could prevent some confusion. The chessboard images that hardly benefit

from contextual information at all and contain real repetition jump with respec-

tively 36.99% and 50.46%.

From now, we will focus on the application of estimating the underlying trans-

formation between the image couples with the RANSAC algorithm. As a similar

approach as used by SCRAMSAC, we evaluate the quality of the transformation

found with the inlier ratio measure, i.e., matches consistent with it.

We apply our next experiments on a personal set of 10 couples of document

images captured by a smartphone camera. Printed document images are very

good candidates for confusion reduction due to the letters and words repetitions.

Moreover, their visual properties make them highly responsive to saliency anal-

ysis, resulting in a profusion of keypoints returned; usually around 30.000 for a
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2560x1920 picture with default SIFT parameters. Thus, we also test our method

as a way of reducing huge keypoint sets without relying on visual analysis. We

proceed as follows: for each image pair, we apply our CORE algorithm on the

keypoints returned by SIFT. This returns a reduced keypoints set with which we

establish correspondences by brute-force matching. We then use the RANSAC

algorithm to estimate the fundamental matrix and analyze the inlier ratio. For

a fair comparison, we do the same with another keypoints subset by following

Lowe idea of saliency analysis by a contrast threshold so we end up with a differ-

ent keypoint set with equal size. On both of these approaches, we also apply the

SCRAMSAC test to see how its matching filter behaves with these two different

methods. At last, to serve as a control test we extract a random keypoint subset

with same size in order to prove that our method (as well as Lowe’s one) is better

and makes more sense than randomness. We repeat this for different p values,

respectively 0.5, 0.25, 0.15, 0.10 and 0.05.

In order to get results from an alternative approach, we have also achieved

experiments with a filtering method of the keypoint set based on a mean shift

clustering. Mean shift clustering is used in particular by the SERP algorithm to

detect repeated pattern in an image [33].

Results are presented with figure 5. We see that for every p value, the number

of inliers is always greater than other subsets of equal size resulting from saliency

analysis. Moreover, with small p values (between 0.25 and 0.05), inlier ratio is

always improved by CORE pre-processing and starting with p = 0.15, even if

these processes take place during different places in the processing pipeline, it is

worth noting that CORE pre-processing alone is doing better than post-processing

18



Figure 5: Average results inlier ratio evaluation with different filters. For each p value,

we compare the results with subsets of equal size. The number of kept points for each

image is computed by the CORE algorithm for a given pencentage of confusion (see the

text for more details). Top: raw numbers of inliers, bottom: inlier ratio. Horizontal red

line corresponds to SIFT inlier ratio without any filtering.

19



60 65 70 75 80 85 90 95 100
% keypoints size reduction

0.0

0.2

0.4

0.6

0.8

In
lie

r r
at

io

none
none_sc
core
core_sc
random

Figure 6: Individual inlier ratio results for each images couples and keypoints subsets with

corresponding filterings as a function of original keypoints sets size reduction, percent

based.
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SCRAMSAC.

However, for p = 0.5 (50% of confusion tolerated), the inlier ratio is actually

smaller with our method. This could come from the large confusion tolerated that

doesn’t remove enough keypoints: we don’t take advantage of confusion reduc-

tion and some very similar keypoints were removed whereas their feature vector

transformation may have not been enough to generate confusion. So we recom-

mend using p values being inferior to 0.25 and best results seem to be achieved

with 0.10. Not studied here, another advantage of our algorithm would be the

speed-up gained during matching phase and model estimation as we observed the

average computation time to be 20 times faster than without filtering. Finally,

it is worth noting that our pre-processing filter (CORE) behaves well with post-

processing (SCRAMSAC) by always increasing the inlier ratio, regardless of the

p value used and the poor results from control test based on randomness prove the

relevance of pre-processing.

2.2. Binary case

. Considering the trending topic of binary features we will broaden our analysis

with multiple descriptors and detectors while remaining on the same inlier ratio

evaluation. We chose four classical descriptors which showed increasing com-

plexity with their chronological order of apparition. Namely BRIEF with ran-

dom pair sampling, ORB with maching learned pair sampling, BRISK with hand-

crafted sampling pattern and FREAK with a bio-inspired one. Chosen detectors

are SURF and BRISK for the relatively high number of responses and ORB for

its HARRIS corner measure ordering.
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. First, let’s consider another way of choosing the µ parameter. For a given p

value, we can plot the inlier ratio and number of matches kept after filtering as a

function of µ. High values should indicate us good parameters. Since the floating-

point evaluation showed us that our chess images are very good candidates for the

confusion issue we will focus our evaluation on these and we will use a restrictive

p value of 0.05. We apply the RANSAC algorithm with three methods: none

(plain bruteforce matching, labeled plain further in the text), 2nn and cross-check.

Results are given in figure 9. As we can see, by increasing µ we increase the

number of removed keypoints, thus increasing the inlier ratio by removing high-

confusion-risk points until an extrema is reached. From this extrema, removing

more points is unefficient since we perform unwanted filtering on good points.

This is easily explicated by the fact that µ is the state-switching probability of one

bit in a feature vector; therefore, the higher µ, the higher we consider a keypoint

to be from the high-confusion risk class.

This gives us an indication of valid parameters. From this, we can plot the

inlier ratio as a function of p. A first example is shown with figure 7 for the chess

images with the SURF detector and ORB descriptor. Again we can observe the

expected behavior: by removing keypoints leading to confusion, the average inlier

ratio is increased.

. Now, let’s plot the same evaluation for our four descriptors and three detectors

on the document text images, with 2nn filtering. This is given in figure 10. An

interesting ascertainment is the fact that the descriptors are not equal on the be-

havior of confusion reduction when we apply them with different detectors. For

example, BRISK shares the same behavior with all detectors used: the first key-

point subsets extracted is always above the non-filtering approach but increasing p
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leads to converge the ratios towards the non-filtering value. BRIEF seems to give

average results. This could be explained by the fact that it was the first modern

binary descriptor; now a bit outdated, its simple mechanism of random sampling

the pixel pairs might proves to be less discriminant on text document images with-

out spots that particularly stand out against the others. At last, results associated

with the ORB detectors give almost always poorer results, even when comparing

non-filtering ratios: since keypoints are ordered with a harris corner measure, it

is not well suited for text document images with sharp angles and high contrast,

thus loosing discriminative power of locations. Only BRISK manages to benefit

from confusion reduction which could imply the high discriminative power of this

descriptor.

. Finally, to better understand the impact of µ choice, figure 8 shows us what

happens when we increase this parameter: we can notice the inlier ratio curve

shifts as the number of points kept rises slower.

From our evaluations, it seems that usable values should be included between

0.20 and 0.35 but of course the final choice might depends on the context.
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Data: I : image input

Data: p : probability confusion tolerated

Data: D : descriptor dimension

Data: σ: average variance of (real-valued) descriptor’s feature vectors

µ: (binary) feature vector bit-flip probability

Data: Cth← findThreshold(p, σ|µ, D) (b)

Result: χ : keypoint subset returned

K ← keypoint set detected

U ← associated feature vectors

for ui ∈U do
ci← KDE(ui, U) (a)

end

for ki ∈ K do

if ci <Cth then
Add ki to χ

end

end

return χ

Algorithm 1: CORE algorithm.
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Table 1: Comparisons of the results (percentage, number of good matches/total matches)

for three different approaches: first column plain matching SIFT, second column SIFT

with the 2NN filter (d = 0.8) and last column SIFT with both CORE (p = 0.1) and 2NN

filter (d = 0.8).

couple unfiltered 2NN CORE + 2NN

object0014 23.89% 322 / 1348 70.68% 258 / 365 81.82% 153 / 187

object0008 20.00% 336 / 1680 52.71% 204 / 387 66.51% 143 / 215

object0039 26.78% 448 / 1673 66.24% 310 / 468 67.37% 159 / 236

object0110 24.58% 222 / 903 57.29% 165 / 288 69.34% 95 / 137

object0164 25.16% 685 / 2723 65.66% 545 / 830 71.88% 317 / 441

object0170 41.61% 928 / 2230 80.25% 760 / 947 87.83% 469 / 534

object0181 32.35% 645 / 1994 74.77% 495 / 662 81.69% 290 / 355

object0192 18.75% 486 / 2592 64.78% 309 / 477 73.93% 241 / 326

object0106 25.06% 505 / 2015 74.71% 325 / 435 77.42% 216 / 279

chess01 15.92% 225 / 1413 47.49% 142 / 299 84.48% 49 / 58

chess02 10.72% 182 / 1698 35.98% 127 / 353 86.44% 51 / 59
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Plain RANSAC

RANSAC with 2nn filtering RANSAC with cross-check

Figure 7: Evolution of inlier ratio (blue) when increasing p with µ = 0.30, with SURF

detector and ORB descriptor on chess images. Numbers of matches are shown in red,

dashed lines are the respective values for non-filtering approach.
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µ = 0.20

µ = 0.25 µ = 0.30

µ = 0.35 µ = 0.40

Figure 8: Evolution of inlier ratio when increasing the bit-switching probability, µ, with

SURF detector and ORB descriptor on chess images.
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3. Conclusions

We presented the CORE algorithm, a pre-processing filter which extracts from

a feature vector set a smaller subset less subject to confusion by removing highly

similar keypoints thanks to a probability approach. Results showed that subsets

extracted are more discriminant and our approach can be combined with post-

processing ones.

The algorithm can be applied on feature points and binary descriptors and it is

better used on high-confusion context with lots of repetitive visual patterns.

ACKNOWLEDGMENTS

This work was financially supported by the French region Provence-Alpes-
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