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X-ray fluorescence imaging using perfect planar square pore micro-channel plate X-ray optics (MPO) is
investigated through the modeling of the MPO point spread function (PSF). A semi-continuous model
based on the use of a simplified two parameters reflectivity curve is developed including in particular
three kind of contributions. A validation of this model is carried out by calculating variations of several
PSF characteristics with the MPO and fluorescence imaging parameters and comparing the results with
ray-tracing simulations. A good agreement is found in a large range of X-ray energies; however it is shown
that for the lower values of the working distance a discrete model should be used to take into account
the periodic nature of the PSF. Ray-tracing simulated images of extended monochromatic sources are
interpreted in the light of both the semi-continuous and discrete models. Finally solutions are proposed
to improve the imaging properties of MPOs.

OCIS codes: (340.0340) X-ray optics ; 340.7440 X-ray imaging .
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1. INTRODUCTION

Elemental imaging using X-ray fluorescence is a non destruc-
tive technique capable of bringing out important information
in many fields[1], from materials science to cultural heritage
[2–5] and planetary surface analysis [6] . A first class of methods
by which X-ray fluorescence images can be obtained consists
in the two dimensional scanning of a beam on the object and
collection of the fluorescence X-rays at every point of the map
[7, 8]. It requires a focusing device and a minimum of two-axis
motorized scanner. A second class of methods is based on direct
X-ray fluorescence imaging with no moving parts. These direct
imaging methods are more suited to situations where mechani-
cal simplicity is critical. Among the different imaging devices
that can be used, square-pore micro-channel plate X-ray optics
(MPO), sometimes referred to as “Square Multi channel plate
optics” , “Multi-pore optics” or “lobster-eye optics” is one of
the most attractive because of its efficiency given by the corner
cube effect [9–12], in particular when compared with straight
polycapillary optics [13, 14] used for 1:1 imaging. Planar MPOs,
to which this study will be restricted, offer a magnification of 1
to cover a surface area commensurate with the size of the detec-
tor, and provide an additional degree of freedom, compared to
spherical MPOs, with the possibility of changing the working
distance without changing the magnification.

The understanding of MPO properties relies first on the mod-
eling of perfect structures for which the Chapman et al. publi-
cation of 1991 [11] is a reference. The intention of the present
publication is to bring several improvements to this model and
examine the effect of short distances which are not considered
in the work of Chapman et al. The effect of defects related to
the manufacturing technology is beyond the scope of our publi-
cation with the exception of the modification of reflectivity by
surface roughness.

In Chapman et al.[11] two approximations of the reflectivity
curve are used, depending on the X-ray energy, and are defined
with a single parameter. We will show that a single simplified
description might be used with two parameters, the first cor-
responding to the real part of the reflecting material refractive
index and the second related to both absorption (imaginary
part of the refractive index) and surface roughness. Using this
new simplified curve the behavior of the MPO is much better
described in a large range of energies, in particular for heavy
reflecting materials like platinum or iridium.

In addition the Chapman et al. model is a continuous model
where the pore size is considered as small enough to replace
summations by integrals. For this reason the only contributions
to the central spot of the PSF considered by Chapman et al.
are the ones corresponding to an odd number of reflections
in each of the two perpendicular planes containing the pores
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faces. It will be shown here that two additional contributions
cannot be neglected when the source-MPO distance is decreased.
The first additional contribution is related to reflections on the
central row and column of pores relative to the optical axis
and is visible at medium distance. The second contribution
comes from direct transmission by the central pores closest to the
optical axis and becomes important only at very small working
distances. A new semi-continuous model based on the use of
the two-parameter reflectivity curve and taking into account the
three contributions mentioned above will be described in the
first part of this publication. Using this model the influence of
geometrical parameters and X-ray energy on the point spread
function (PSF) central spot integrated intensity and profile are
shown. The modifications of other features of the PSF such
as the two characteristic perpendicular wings and the pseudo-
background related in part to the direct transmission through
the pores are also investigated.

In the second part it will be shown that the PSF is not unique,
it is a periodic function of the source coordinates reflecting the
periodicity of the planar MPO itself. It will be shown that the
influence of this periodicity is enhanced at small distances and
can be reproduced in most cases using a discrete model. The
semi-continuous model can however be used in the case of a
modified point spread function where a small square with a size
( defined as the side length ) equal to the pore periodicity is used
as a source instead of a point.

Finally in the third part the trends shown in part 2 for the
PSF are illustrated by images simulated using ray tracing and
improvements to the standard MPO are proposed.

Throughout this publication ray tracing simulations are used
to support our modeling because the analysis carried out in
this paper is based on geometrical optics. Using the very crude
criterion of an angular diffraction contribution on the order
of λ/D where λ is the X-ray wavelength and D the pore size
we believe that it should be valid in the energy range of the
fluorescence of most of the elements and for pore sizes of tens of
microns. However it might be necessary to use a wave theory
taking into account wave-guide effects, diffraction, eventual
interference between pores and the effect of partial coherence
for lower energy fluorescence and smaller pore sizes, but it is
beyond the scope of this paper.

2. RAY TRACING

Ray tracing simulations ( sometimes referred to as Monte Carlo
simulations ) are used to produce PSFs and quantities which are
eventually compared with the results of analytic models. These
simulations include the calculation of X-ray reflectivity which
is done using the standard matrix method [15]. Anomalous
scattering and absorption are taken into account through the
calculation of the atomic scattering factor as well as surface and
interface roughness through a static Debye-Waller factor with
a single parameter which is the root mean square roughness
σ. Most of the ray tracing simulations are carried out with a
monochromatic point source to obtain the PSF. The remainder
use a two dimensional object emitting monochromatic X-rays
as a source. The results shown do not depend on the number
of rays used, except for the shot noise. The initial number of
rays ( between 10 million and 1 billion) was, for each kind of
simulation, large enough to make the shot noise negligible, or at
least not cumbersome. Emission was considered isotropic in the
maximum ±0.1rad range used in the simulations.

3. SEMI CONTINUOUS MODEL

The model developed below will be called “semi-continuous”
because at some places sums over the pores of the MPO are
replaced by integrals (i.e. pores are considered as infinitely
small) while at other places the discrete aspect of the MPO is
taken into account.

A. Parameters
Figure 1 shows the main geometrical parameters used in the
model. In the following D, T and t are respectively the pore size
( square side length), the period of the MPO square lattice and
the MPO pore length. The distance between the source and the
MPO is ls and is equal to li the distance between the MPO and
the image plane ( see also Figure 15 ). ls and li are measured with
respect to the plane which is half way from the MPO entrance
plane and the MPO exit plane. The MPO in-plane dimensions
and, as a result, the total number of pores are considered to be
infinite, edge effects will not be discussed. Additional material
parameters are used through the inner pore coating reflectivity
properties.
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Fig. 1. MPO geometrical parameters (a) Point source imaged
in the 1:1 arrangement. (b) Detail showing the precise posi-
tion (x0, y0) of the optical axis with respect to the nearest pore
center

B. Reflectivity
In order to enable analytical calculations, a two parameters sim-
plified (linearized) reflectivity curve is used instead of the reflec-
tivity curve calculated using the standard matrix method. (fig.
2). These two parameters are the total reflection critical angle
γc and R the reflectivity averaged between 0 and γc. The total
reflection critical angle is written as :

γc = λ

√
re

2π
NavρmK (1)

≈ 1.643 10−3λ
√

ρmK [γc(rad), λ(Å), ρm(g.cm−3)]

K = 2
∑i ci( f0i + f ′i (λ))

∑i ci Mi

where λ is the X-ray wavelength, re is the classical electron
radius, Nav the Avogadro number, ρm the mass density, ci is the
element i composition in the reflecting material, f0i + f ′i (λ) the
element i atomic scattering factor including the anomalous part
f’, and Mi the element i atomic mass. For light elements the
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K coefficient is close to 1, for heavy elements such as Ir or Pt
it is around 0.8 and of course for a mixture of light and heavy
elements K will be between these values.
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Fig. 2. Example of the simplified version of the reflectivity
curve used for analytic calculations (blue line) compared with
the simulated reflectivity of an Ir layer on a silica substrate at
6400 eV ( red line).

We define R(λ) by :

R(λ) =
1

γc(λ)

∫ γc(λ)

0
R(γ, λ)dγ (2)

where R(γ, λ) is the reflectivity of the material or stack of mate-
rials at the grazing angle γ and X-ray wavelength λ. The value
of R(λ) depends on the surface roughness and on the reflecting
material elements atomic scattering factors which themselves
depend on energy and can have singular points at X-ray absorp-
tion edges. It can be calculated directly by numerical integration
of the reflectivity curve. The simplified reflectivity is then given
by :

R(γ, λ) =

{
1 + 2(R(λ)− 1)γ/γc(λ) γ ≤ γc(λ)

0 γ > γc(λ)
(3)

When absorption and roughness are low, R(λ) will be close to
1 and the reflectivity model will be close to the model used by
Chapman et al. at high energy. For higher absorption R(λ) will
be close to 0.5 and the simplified reflectivity will be similar to the
model used by Chapman at low energy. In the case of medium
absorption and roughness - see for example figure 2 - it should
work better than the two asymptotic models.

γc(λ) and R(λ) are the two parameters defining a simplified
reflectivity curve. In the calculations it will be however more con-
venient to use ∆R(λ) instead of R(λ), with ∆R(λ) = 2(R(λ)− 1)
( figure 2 ). It might occur, for high absorption and because of
the additional effect of roughness, that equation 2 gives a value
of R lower than 0.5. In this case equation 3 gives negative values
for R when γ is close to γc. To avoid this, the γc value used in
the model is replaced by an effective value γceff and R by Reff:

R < 0.5

{
Reff = 0.5

γceff = 2Rγc
(4)

This substitution applies for example in the 2keV-3keV region in
the case of Ir for a root mean square (rms) roughness of 2nm, as
will be shown later in figure 6.

It appeared that there was a problem with commonly used
f’ and/or f” tables, such as Henke or Cromer Liberman tables,
in the region of M edges of heavy elements such as Ir or Pt,
eventually giving negative values of the real part of the atomic
scattering factor. For these elements the values published by C.T.
Chantler in 2000 [16] were used. Finally we would like to point
out that the simplified two parameters analytical approxima-
tion of the X-ray reflectivity discussed in this paragraph might
be used in grazing incidence applications, beyond the context
discussed in this publication.

C. Point spread function (PSF) central spot integrated inten-
sity

A typical simulated MPO point spread function (PSF) is shown
on figure 3. The main features are a central spot which is the
desirable part for image formation, two perpendicular lines
forming a cross and weaker intensity in the quadrants delimited
by the cross. All these characteristics parts can be found in
experimental PSFs as well [12]. In this section we will calculate
Ωeff, the effective solid angle acceptance of the MPO, which
multiplied by the source intensity per unit solid angle gives the
intensity in a square twice the size the MPO period, i.e. 2T. The
intensity outside this square is not taken into account because it
is not properly focused in the image plane.

Fig. 3. Ray tracing simulated point spread function (PSF). The
reflecting material is a 25nm Ir layer on SiO2, with a surface
and interface roughness both equal to 2nm. E = 15keV, ls =
0.05m, D = 20µm, T = 26µm, t = 4.8mm. Normalized intensity
in log scale.

The central spot intensity is usually considered as coming
from an odd number of reflections in the two (x,z) and (y,z)
planes. At long working distance this contribution is the most
significant, however there are two other contributions to the
central spot. Figure 4 shows the distribution in the entrance
plane of the MPO of the rays contributing to the PSF central spot
as a function of the number of reflections in the (x,z) and (y,z)
planes noted (nx, ny). In this figure, the MPO parameters and the
energy of X-rays are such that a maximum of one reflection can
occur in each plane. The (odd,odd) reflections - (1,1) in the figure
- come from 4 equivalent 2-dimensional regions of the MPO, so
this contribution will be named Ω2d. Note that these 4 regions
correspond to the 4 regions visible on figure 6 of the Chapman
et al. 1991 publication [11]. The second and newly considered
contribution is coming from (odd,0) and (0,odd) reflections ((1,0)
and (0,1) in the figure) and corresponds to the one or two rows
and columns of pores which are the closest to the optical axis.
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This contribution will be noted Ω1d as the MPO regions from
which it is coming are linear. The last contribution, related to
the one to four pores which are the closest to the optical axis, is
noted Ω0d as it comes from a very localized region. We have the
following relation :

Ωeff = Ω2d + Ω1d + Ω0d

-0.002 -0.001 0 0.001 0.002

x(m)

-0.002

-0.001

0

0.001

0.002

y
(m

)

(1,1)
(1,0) and (0,1)
(0,0)

Fig. 4. Distribution of rays, at the entrance surface of the MPO,
contributing to the PSF central spot. In the notation (nx, ny),
nx is the number of reflections in the xz plane, ny is the num-
ber of reflections in the yz plane. Because of the parameters
used here nx and ny are either 1 or 0. Parameters : D = 20µm,
T = 26µm , t = 1.2mm, ls = 10cm, E = 6400eV, reflective layer:
Ir

Ω2d is first calculated with a method close to, and largely
inspired by, the method of Chapman et al. [11] using small angle
approximations. If D/ls � γc the rays entering a particular pore
of angular position with respect to the source (θx, θy) ( see figure
1a ) are considered parallel and their direction is defined by the
same angles as the pore angular position. The beam entering
this particular pore and that is submitted to nx reflections in
the (x,z) plane and ny reflections in the (y,z) plane will have
a dimension δnx(θrx) along x and δny(θry) along y. When the
number of reflections is greater than 0, δnx(θrx) and δny(θry) are
given by the expression:

δns (θrs)

D
=


0 |θrs| ≤ ns − 1

|θrs| − (ns − 1) ns − 1 < |θrs| ≤ ns

ns + 1− |θrs| ns < |θrs| < ns + 1

0 |θrs| ≥ ns + 1

(5)

where the index s will be either x or y and θrs = θst/D. In the
case where ns = 0:

δ0(θrs)

D
=

{
1− |θrs| 0 ≤ |θrs| < 1

0 |θrs| ≥ 1
(6)

The corresponding effective collected solid angle correspond-
ing to (nx, ny) reflection in the same single pore is:

Ωp(θx, θy) =
δnx (θrx)δny (θry)

(ls − t/2)2 Rnx (θx)Rny (θy) (7)

For infinitely small pores the number of pores in the dθxdθy
element of solid angle is :

d2N(θx, θy) =
η(ls − t/2)2

D2 dθxdθy (8)

where η is the fraction of the MPO entrance surface occupied by
pores. Considering a pore size D and a period of T in both x and
y directions:

η = D2/T2

The total effective solid angle corresponding to (nx, ny) re-
flections, Ω(nx, ny), is then obtained by integration :

Ω(nx, ny) =
∫ +∞

θx=−∞

∫ +∞

θy=−∞
Ωp(θx, θy)d2N(θx, θy)

= 4ηγ2
c Snx Sny (9)

with

Sn =


1
α

∫ α

0

δn(θrs)

D
Rn (θrst/D) dθrs n 6= 0

1
2α

n = 0
(10)

where n is either nx or ny and:

α = t
γc

D

Equation 10 is valid for any expression of the reflectivity for
which the upper bound, above which reflectivity is equal to zero,
is the total reflection critical angle γc. It is the case with the
simplified reflectivity model of equation 3 which is then used
to calculate the integral of equation 10. Writing ∆R = 2(R− 1)
and after integration we obtain in the case where n > 0:

αSn =



0 α ≤ n− 1

Fn(∆R)− Fn((n− 1)∆R/α) n− 1 < α < n
Fn(n∆R/α)− Fn((n− 1)∆R/α)+

Gn(∆R)− Gn(n∆R/α) n ≤ α < n + 1

Fn(n∆R/α)− Fn((n− 1)∆R/α)+

Gn((n + 1)∆R/α)− Gn(n∆R/α) α ≥ n + 1
(11)

where the functions Fn(U) and Gn(U) are defined as follows:

Fn(U) =
( α

∆R

)2
(

U
(1 + U)n+1

n + 1
− (1 + U)n+2

(n + 1)(n + 2)

)

− (n− 1)
α

∆R
(1 + U)n+1

n + 1

Gn(U) =
α

∆R
(1 + U)n+1

−
( α

∆R

)2
(

U
(1 + U)n+1

n + 1
− (1 + U)n+2

(n + 1)(n + 2)

)
Finally as this contribution to the central PSF spot corre-

sponds to odd numbers of reflections in both xz and yz planes:

Ω2d = 4ηγ2
c S2

odd(α, ∆R) (12)

with :

Sodd(α, ∆R) =
+∞

∑
k=0

S2k+1 (13)

Ω2d (equation 12) is proportional to the product of the square
of the critical angle and of a function which only depends on
α and ∆R. It is important to note that this main contribution
to the effective solid angle does not depend on ls ( as will be
illustrated later in figure 9) . The reason is that the 1/(ls− t/2)2

dependence of the single pore effective solid angle ( equation
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7) is perfectly compensated by the (ls − t/2)2 dependence of
the number of pores involved ( equation 8). Figure 5 shows
Sodd(α, ∆R) for a set of values of ∆R going from the maximum
value 0 to the minimum value -1, and a range of values of α.
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Fig. 5. Plots of S2
odd(α, ∆R) as a function of α for different val-

ues of ∆R showing the influence of absorption and roughness
induced loss on Ω2d

In the paper of Chapman et al. [11] only the extreme cases are
considered, ∆R = 0 in the case of high energies and ∆R = −1
for low energies. The refinement brought by the new two
parameters reflectivity curve separates the effect of absorp-
tion/roughness from the effect of the energy dependent critical
angle. In the case of heavy reflecting materials for example, the
absorption is neither low nor high in a wide energy range, hence
using this 2-parameter reflectivity curve is a necessity.

When considering a particular reflecting material the depen-
dence of ∆R and γc with the X-ray energy can be calculated.
The example of Ir is shown on figure 6. The refractive index
has a simple 1/E dependence with the X-ray energy, with the
exception of the energy region of the M absorption edges. ∆R is
a more complex function of the X-ray energy: it is much more
sensitive to the presence of absorption edges such as the Ir L
edges in the 11-13 keV range and the M absorption edges in the
2-3 keV range. It is also clearly dependent on the surface root
mean square roughness σ. In the 2-3 keV region it was necessary
to use effective values of ∆R and γc, in the case of Ir with a 2nm
rms roughness, calculated using equations 4.

Using the data shown on figure 6, it is possible to plot Ω2d as
a function of the X-ray energy on one axis and the ratio t/D on
the other axis. The map obtained in the case of an Ir layer with a
rms roughness of 2nm is shown in figure 7. This map can be a
guide for the choice of the MPO t/D ratio, which will depend on
the spectral band of interest. For example large values might be
chosen for higher fluorescence energies. As already mentioned
there is no dependence of Ω2d on the working distance ls so for
a particular reflecting material all the information on Ω2d is in
this map.

The Ω1d contribution to the PSF central spot coming from
the row and column of pores shown in dark blue in figure 4. It
corresponds to an odd number of reflections in one direction and
a direct transmission in the other. A one dimensional integration
is carried out in this case, giving for the row in the x direction:

Θ1x(nx) =
∫ +∞

θx=−∞

√
η(ls− t/2)

D
δnx (θrx)

(ls − t/2)
Rnx (θx)dθx

= 2
√

ηγcSnx

0

0.02
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γ c (
ra

d
)
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Fig. 6. External total reflection critical angle γc and reflectivity
loss ∆R as a function of energy in the case of Ir reflective mate-
rial. ∆R is shown for two values of the root mean square sur-
face roughness σ. The insert shows the 2-3 keV region where
effective values γceff ( equation 4 ) replace in the case of the
2nm roughness ( dotted line) the critical angle value used in
the case of a perfect flat surface ( continuous line). In this re-
gion and in the case of the 2nm rms roughness, ∆R = ∆Reff is
constant and equal to -1.

Fig. 7. Ω2d as a function of X-ray energy and t/D in the case
of an Ir top layer with a 2nm root mean square roughness.
Discontinuities induced by M and L absorption edges of Ir are
clearly visible
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and an equivalent relation obtained by substitution of x by y
for Θ1y(ny) corresponding to the column in the y direction. The
resulting total solid angle collected by the row and column and
focused in the central PSF spot is :

Ω1d =
D

ls + t/2 ∑
k

(
Θ1x(2k + 1) + Θ1y(2k + 1)

)
(14)

=
4D
√

ηγc

ls + t/2
Sodd(α, ∆R) =

2D
ls + t/2

√
Ω2d (15)

Ω1d has a lower dependence to X-ray energy than Ω2d because
it depends linearly on γc which is roughly proportional to the
X-ray wavelength and also because Sodd changes with X-ray
energy are lower than the changes of S2

odd. Ω1d depends on ls,
shorter distances will increase this contribution.

The last contribution is related to the pinhole-like transmis-
sion by the central pore:

Ω0d =
D2

(ls + t/2)2 (16)

which shows no spectral dependence and a stronger dependence
with the working distance ls.

Finally the total effective solid angle collection of the MPO is
given by:

Ωeff = 4ηγ2
c S2

odd(α, ∆R) +
4D
√

ηγc

ls + t/2
Sodd(α, ∆R) +

D2

(ls + t/2)2

=
2

∑
n=0

g(n) [
√

ηγcSodd(α, ∆R)]n
(

D
ls + t/2

)2−n
(17)

where g(n) is a kind of degree of degeneracy, g(n) = 4 for
n = 1 or n = 2 and g(0) = 1. It corresponds to the number of
equivalent regions for the three different contributions, which
are visible on figure 4.
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c as a function of α = tγc/D. Variations of α are

obtained, for each energy, by changing the MPO thickness t, D
being constant. Ray tracing simulations results (symbols) are
compared with the model of equation 17 (continuous lines).
Parameters : Ir layer with σ = 2nm, ls = 10cm, t = 1.2mm,
D = 20µm, T = 26µm.

Ray tracing results are compared in figure 8 with the model
of equation 17 in a case where the dominant term in Ωeff is Ω2d,
because ls is large ( ls = 0.1m). For this reason the plots of figure
8 are similar to the ones of figure 5. The influence of the two
other terms Ω1d and Ω0d is visible on figure 9. Ω2d does not
depend on ls so the ls dependency of Ωeff clearly visible on this
figure is related to Ω1d and Ω0d.
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Fig. 9. Ωeff, Ω2d, Ω1d and Ω0d dependence with ls. Ray trac-
ing simulations results (symbols) are compared with the
model of equations 17, 12,14, 16 ( continuous lines). Parame-
ters : Ir layer with σ = 2nm, t = 1.2mm, D = 20µm, T = 26µm,
E = 6400eV.

D. PSF central spot profile
The general shape of the central spot is a pyramid, taking the
intensity as a third dimension. However, this is the shape re-
lated specifically to Ω2d, the two other contributions to the PSF
central spot having different profiles. These three profiles can be
calculated using the same simplified reflectivity model that was
used to determine Ωeff. For this purpose two functions of x or y
have to be calculated.

P1x(x) =


√

ηγc

D′|∆R|
+∞

∑
k=0

[
− (1−U)2(k+1)

2(k + 1)

]Umax(k,x)

Umin(k,x)

|x|
D′

< 1

0
|x|
D′
≥ 1

P2x(x) =


1

2ls
|x| < D

ls
ls + t/2

0 otherwise

(18)

where

D′ =
1

1− t/(2ls)
D

Umin(k, x) = (2k + |x|/D′)|∆R|/α

Umax(k, x) = min(Um(k, x), max(|∆R|, Umin(k, x)))

Um(k, x) = (2(k + 1)− |x|/D′)|∆R|/α

The equivalent functions P1y(y) and P2y(y) are obtained by sim-
ple substitution of x by y. The three components P2d, P1d, P0d of
the profile Peff are then given by:

P2d(x, y) = P1x(x)P1y(y)

P1d(x, y) = P1x(x)P2y(y) + P2x(x)P1y(y)

P0d(x, y) = P2x(x)P2y(y) (19)

The following equation can be used to determine the total effec-
tive solid angle in a small dxdy surface element ( a detector pixel
for example ) :

d2Ωeff(x, y) = Peff(x, y)dxdy
= (P2d(x, y) + P1d(x, y) + P0d(x, y))dxdy (20)
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Fig. 10. Central spot profiles for a series of MPO thicknesses
t. Ray tracing simulations results (symbols) are compared
with the model of equation, 20 ( continuous lines). Parameters:
dS = 0.25µm2, Ir layer with σ = 2nm, ls = 0.1m, D = 20µm,
T = 26µm, E = 6400eV.

The profiles obtained using equation 20 in the x direction for
y = 0 are compared with the results of ray tracing simulations
in figure 10. This figure shows that the modifications induced in
the central spot profile by varying the MPO thickness are well
reproduced by the model.

Figure 11 shows the integral breadth ( the integrated intensity
divided by the maximum intensity, close to the full width at half
maximum here ) of the central spot in the x ( or equivalently y)
direction as a function of α for different energies. For α > 1.5 the
central spot integral breadth is almost constant and equal to the
pore size D, while for values between 0 and 1 there is a linear
increase of the integral breadth with α. The consequence is that,
for a particular MPO thickness, pore size and material, there
will be a critical energy below which the central spot size will be
constant, and above which it will decrease. We have however to

0 1 2 3 4 5 6 7

α
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0.5

1

1.5

W
/D
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3.2keV
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Fig. 11. Central spot x direction profile relative integral
breadth W/D as a function of t represented as a function of
α = tγc/D for three different energies : ray tracing simulations
results (symbols) and model of equation 20 ( continuous lines
). Parameters: Ir layer with σ = 2nm, ls = 0.1m, D = 20µm,
T = 26µm.

keep in mind that this study focuses on perfect MPO structures,
while the central spot profile is sensitive to some MPO defects,
in particular the pore orientation dispersion.

E. PSF cross arms and pseudo background
An important feature of the PSF is the presence of a cross cen-
tered on the main spot (figure 3). This cross having detrimental
effects on image resolution, it is interesting to see how its inten-
sity and reach, which should be both minimized, is influenced
by instrumental parameters. It is however a complex task be-
cause the PSF cross arms result from the concentration of all the
rays undergoing an odd number of reflections in one direction
(x or y) and their dispersion in the other direction because of
an even number of reflections (including 0). Furthermore the
intensity and eventually the reach of the cross arms in the region
around the PSF central spot depend on the direct transmission
by the MPO, which is a purely geometrical factor, and on the
reflectivity which changes with the material and X-ray energy.

To evaluate the effect of PSF cross arms, we will use three
quantities: Ωarms the integrated cross arms intensity, Ωarms0
the intensity of the cross arms close to the PSF central spot
corresponding to (odd,0) and (0,odd) reflections, and the local
cross arm intensity within the central spot estimated using Ω1d
( equation 14). The two first quantities can be calculated using
equations 9, 10 and 11:

Ωarms = 8ηγ2
c Seven(α, ∆R)Sodd(α, ∆R)−Ω1d (21)

Ωarms0 = 4η
γ2

c
α

Sodd(α, ∆R)−Ω1d (22)

In these two expressions Ω1d is subtracted from the cross arms
intensity because it is considered as a part of the PSF central
spot. This subtraction can be neglected if ls � D

√
Ω2d. Sodd

and Seven are defined by equations 13 and 23, respectively.

Seven(α, ∆R) =
+∞

∑
k=0

S2k (23)

The following part is restricted to the case where ls � D
√

Ω2d.
To evaluate the cross arms intensity relative to the intensity of
the central spot, we can calculate the ratio :

Ωarms

Ωeff
≈ Ωarms

Ω2d
= 2

Seven

Sodd
(24)

Ωarms0
Ωeff

≈ Ωarms0
Ω2d

=
1

αSodd
(25)
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Fig. 12. Ωarms/Ω2d : (a) as a function of α for values of ∆R in
the range 0 to -1, (b) as a function of energy for different values
of t/D, (60,120,240,480), in the case of an Ir layer with a 2nm
surface rms roughness. Continuous lines are obtained using
equation 24, symbols are results from ray tracing simulations.

Figure 12(a) shows that, for α > 2, the ratio of the cross
arms intensity over the central spot intensity is roughly constant
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while it increases sharply when α is reduced below 1. Given
fixed values of t/D and a particular reflecting material, α and ∆R
will only depend on the X-ray energy. As a result, it is possible to
plot the cross arms relative intensity as a function of the energy.
Figure 12(b) shows that in the case of an Ir reflecting surface with
a 2nm RMS roughness a t/D ratio in the 200-400 range will give
small changes in this relative intensity over a 3-20 keV range. It
is a t/D range where Ω2d changes are also minimized as it was
shown on figure 7.

The last contribution to the PSF is the direct transmission
and rays undergoing (even,even) reflections, called pseudo-
background for its 2-dimensional nature as opposed to the 0-
dimensional central spot and 1-dimensional cross arms. The
ratio between its integrated intensity and the central spot inten-
sity when ls � D

√
Ω2d is written as:

Ωp.background

Ωeff
≈

Ωp. background

Ω2d
=

S2
even

S2
odd

=
1
4

(
Ωarms

Ω2d

)2
(26)

Large values of Ωarms/Ω2d will correspond to even larger values
of Ωp. background/Ω2d as this ratio is always greater than one.

The reach of the cross and pseudo background is:

Wcross = max(4lsD/t, 4lsγc)

It is proportional to ls and depends on the X-ray energy below
a critical energy influenced by reflecting material and D/t ( see
figure 13 in the case of Ir). The size of the cross and pseudo-
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Fig. 13. Relative reach of the cross and pseudo background as
a function of X-ray energy for t/D ratios ranging from 60 to
480

background region tends to be higher at low energy, but their
intensity with respect to the central spot intensity tends to be
lower. Figure 13 also shows that lower values of the cross arms
and pseudo background reaches are obtained with higher values
of the t/D ratio.

4. DISCRETE MODEL AND SEMI-CONTINUOUS MODEL
IN THE CASE OF SHORT ls DISTANCES

For decreasing values of ls, some situations result in a limited
number of pores contributing to the PSF and, as a consequence,
integrations have to be replaced by discrete sums over the pores
and integrations within each pore. For these lower ls values the
periodic nature of the PSF is more visible as shown in an extreme
case in figure 14.

(a) (b)

Fig. 14. Ray tracing simulation showing the enhancement of
the periodic nature of the MPO point spread function at short
distance (a) Source. (b) Image showing a periodic modulation
at places where the source is uniform . Reflective material : Ir.
E = 6400eV, ls = 1.2mm, D = 20µm, t = 1.2mm

Let us consider the pore (i,j) at a distance (xi, yj) from the
optical axis, with xi = x0 + iT and yj = y0 + jT. −x0 and −y0
are the coordinates of the optical axis in the plane of the MPO
with respect to the center of the nearest pore ( see figure 1 (b) ).
Restricting first the analysis to the (xz) plane ( see figure 15), its
angular position θi and angular aperture ∆θ can be written as:

θi =
|xi|

ls − t/2

∆θ =
D

ls − t/2

The minimum and maximum angles of the rays entering in the
pore i are, as illustrated in figure 15 and in the case where i 6= 0:

θmin(i) = θi − ∆θ/2

θmax(i) = θi + ∆θ/2

The case of i = 0 is a little bit more complicated. If |x0| ≥ D/2
the formula above apply. In the case where |x0| < D/2 the
optical axis is inside the pore, and we split the pore in two parts,
noted with the exponents + and -, with :

θ+min(0) = 0

θ+max(0) = θi + ∆θ/2

θ−min(0) = 0

θ−max(0) = −θi + ∆θ/2

xi

ls

t

θn0+1θmin

θn0+2

D

θmax

∆θ

Fig. 15. Side view of a channel with the distances and angles
used in the discrete model

From θmin(i) and θmax(i), the minimum and maximum num-



Research Article Applied Optics 9

bers of reflections of rays entering the pore i can be calculated:

nmin(i) =
⌊

θmin(i)t
D

⌋
nmax(i) =

⌊
θmax(i)t

D

⌋
+ 1

where the symbols b c indicates the floor integer value. For a
particular position of pore xi and a particular number of reflec-
tions n 6= 0 in the (xz) plane, the effective source angular range
going through the pore can be written as :

∆θeff(n, xi) =
∫ θ2

θ1

Rn(λ, γ)dγ

=
γc

∆R

[
(1 + U)n+1

n + 1

]∆Rθ2/γc

∆Rθ1/γc

(27)

where

θ1, θ2 =


min(θmin, γc), min(θxi (nmin + 1), γc) n = nmin

min(θxi (n), γc), min(θxi (n + 1), γc) nmin < n < nmax

min(θxi (nmax), γc), min(θmax, γc) n = nmax

with :
θxi (n) =

1
ls + t/2

[|xi|+ (n− 1/2)D]

As opposed to the continuous model the ray angle and the
reflectivity changes within a single pore are taken into account.
Similar equations can be written for reflections in the (yz) plane
and the pore position yi, simply replacing x by y.

Using the approximated expression of reflectivity of equa-
tion 3 for the integrals of equations 27, two quantities are then
calculated :

Σx,odd =
+∞

∑
i=−∞

+∞

∑
k=0

∆θeff(2k + 1, xi)

Σy,odd =
+∞

∑
j=−∞

+∞

∑
k=0

∆θeff(2k + 1, yj)

In each of the sums over the pores ( indices i and j) the even-
tual splitting of the central pore in two parts, along x and/or y
direction, has to be taken into account.

Two other quantities are necessary for the full calculation cor-
responding to the part of the direct transmission which reaches
the image plane at (∆x, ∆y) from the optical axis, with |∆x| ≤ D
and |∆y| ≤ D.

Σx,0 = ∑
k, nminx=0

[min(θxk (1), D/(2ls))−min(θmin-xk, D/(2ls))]

Σy,0 = ∑
k, nminy=0

[
min(θyk (1), D/(2ls))−min(θmin-yk, D/(2ls))

]
The sums are carried out over the pores for which the minimum
number of reflections in each plane is equal to 0, and take again
into account the eventual splitting of the central pore in two or
four parts. The effective collected solid angle then becomes :

Ωeffective,d = (Σx,odd + Σx,0)(Σy,odd + Σy,0) (28)

This discrete model was tested first by comparing the in-
tensity profile obtained using ray tracing by moving the MPO
along the x direction, changing x0, with y0 equal to 0 to the one

-1 0 1
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Fig. 16. Ωeff as a function of x for y = 0. The continuous line
was calculated using equation 28. The first series of ray tracing
simulations was carried out using the simplified reflectivity
curve ( circles), the second series using the real reflectivity
(squares). The x profile is quite sensitive to the exact reflec-
tivity profile. Parameters : Ir, energy = 6400eV, σ = 2nm,
ls = 5mm,t = 2.4mm, D = 20µm, T = 26µm.

obtained using equation 28 ( figure 16) . Two sets of ray trac-
ing simulations were carried out, the first set ( ray tracing 1 on
the figure) using the exact reflectivity curve while the second
set ( ray tracing 2 on the figure) used the approximated curve.
The points obtained using this second set are very close to the
model demonstrating that the quantitative differences observed
between the model and the first set are related to the shape of
the reflectivity curve used in the model.

As the approximated reflectivity is closer to the real reflec-
tivity when absorption is lower, it is expected that the discrete
model works better at higher energies. Figure 17 shows that the
two kinds of ray tracing simulations give almost the same results
above 10keV and are very close to the discrete model. Below that
value there are visible differences. The difference between the
discrete model and the ray tracing of type 2 comes from the fact
that, at low values of ls and at low energy, other combinations
of reflections than the ones considered in the model should be
taken into account. At larger distances the rays undergoing these
combinations of reflections are not reaching the central PSF spot.
When ls = t/2 every ray that is not absorbed contributes to the
central spot which is actually the whole PSF. For intermediate
and short values of ls a part of these rays will be in the central
spot. We did not try to make a model for these specific situations,
leaving them to ray tracing.

A. Validity of the semi-continuous model at short distance ls
when using a square source

Although simulations with a point source and the discrete model
presented above are useful in showing the modulation of the
PSF with the source position, it is interesting with respect to
fluorescence imaging to know the PSF averaged over the MPO
unit cell. It can be obtained using a source emitting uniformly
over a square of size T ( the MPO period), and it can be shown
that it is equivalent to the integration of the semi-continuous
model. If Ns is the total number of photons emitted by this
source in the 4π solid angle, the number of photons emitted in
the solid angle element dΩ by the surface element of the source
dS is:

d4n =
Ns

4πT2 dSdΩ =
Nsη

4πD2 dSdΩ
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Fig. 17. Ωeff as a function the X-ray energy in the case of a
short ls distance. RT1 and RT2 are ray tracing simulations
using two kinds of reflectivity curves ( see text). These ray trac-
ing simulations were done using a point source at x = 0,y = 0
(square symbols), a point source at x = T/2,y = T/2 ( dia-
mond symbols) or a uniform square source of side length T
(circle symbols). The ray tracing simulations are compared
with the discrete and the semi-continuous model (lines). Pa-
rameters : Ir, ls = 2.5mm, σ = 2nm, t = 2.4mm, D = 20µm,
T = 26µm.

Because of the source size, for any source-MPO distance ls and
any pore size D, a full pore will be illuminated in any direction
(θx, θy). In this direction the element of surface of the source
providing photons undergoing (nx, ny) reflections will be exactly
dS = δnx(θx)δny(θy) that can be calculated using equations 5
and 6. At the exit of the MPO, the number of photons, incoming
in the solid angle dΩ = dθxdθy at angles (θx, θy) and having
experienced (nx, ny) reflections, is given by:

d2n = δnx(θrx)δny(θry)Rnx (θx)Rny (θy)
Nsη

4πD2 dθxdθy

If we calculate this quantity for NS/(4π) equal to 1, we find
the product Ωp(θx, θy)d2N(θx, θy) of the two quantities given
by equations 7 and 8. We obtain the important result that even
for a short working distance equation 17 remains valid with an
extended square source having for size the MPO period T. The
local variations of the PSF can only be predicted by a discrete
model, but the average over a MPO period can be calculated
using the semi-continuous model.

The comparison of ray tracing simulations using a square
source (figure 17, red circle symbols) with the semi-continuous
model shows a good agreement at a low ls distance - except at
low energy for the reason exposed above in the case of a point
source.

5. IMAGING

We have examined in details and explained the influence of the
parameters of an MPO imaging experiment on the MPO point
spread function using two different models. This section aims to
show that the trends outlined in this analysis are visible when
imaging extended objects. For that purpose, a Siemens star and a
regular grid are used as monochromatic extended X-ray sources
in ray-tracing simulations.

Figure 18 shows images of a Siemens star obtained at different
energies. The most visible feature is the decrease in intensity

Fig. 18. Ray-tracing simulations of a Siemens star imaged
at different energies using an MPO for a relatively large dis-
tance ls = li = 100mm. MPO parameters : Ir with a 2nm rms
roughness as reflecting material, pore size D = 20µm, period
T = 26µm, thickness 1.2mm. The number of rays generated
and the intensity scale are the same for the four simulations.

when increasing energy, which is predicted by equation 12 and
illustrated in figure 7. At each energy a cross is visible in the
central part of the image, it is directly connected to the PSF cross
seen on figure 3. The effect of the cross is also noticeable in the
region outside of the circle containing the Siemens star, creating
a background intensity which does not change substantially
when increasing energy. It means that the contrast is decreasing
with energy, in agreement with equation 24 which predicts an
increase with energy in the ratio between the cross integrated
intensity and the central spot intensity.

Figure 19 shows the increase in intensity when decreasing
ls = li as predicted by equation 17 and illustrated by figure
9. For the lower distances the spatial dependence of the PSF
explained by the discrete model ( equation 28) is more and more
visible.

Finally figure 20 is an illustration of the dependence of the
central spot size - and thus image resolution - with the MPO
t/D ratio predicted by equation 20 and illustrated by figures 10
and 11. Two grid orientations are used : the numerical exper-
iment shows that the grid starts to be visible for higher MPO
thicknesses when the grid is parallel to the MPO square array
than when it is at 45 degrees because of the anisotropy of the PSF.
We remind the reader that MPO are considered as perfect in this
publication and that the relatively high resolution predicted in
some cases might be difficult to achieve due to pores imperfect
orientations or slope errors. Figure 20 is also an illustration of
the increase in the ratio between the PSF cross integrated inten-
sity and the PSF central spot that might occur when decreasing
the ratio t/D.

6. PROPOSED IMPROVEMENTS

Two features of the PSF have a negative impact when using
MPO for imaging: the cross related to odd/even reflections
on adjacent pore sides and the PSF spatial dependence. The
cross might be transformed in a more isotropic feature by two
different means. The first approach involves an array of square
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Fig. 19. Ray-tracing simulations of the MPO imaging of a
Siemens star for different distances ls = li. MPO parameters
: Ir with a 2nm rms roughness is the reflecting material, X-ray
energy is 6400eV, pore size D = 20µm, period T = 26µm, thick-
ness 2.4mm. The number of rays generated and the intensity
scale are the same for the four simulations.

Fig. 20. Ray tracing simulations of a grid imaged with MPOs
of different thicknesses. For each MPO thickness two images
with a different grid orientation ( 0 degree and 45 degree)
are shown. The pitch of the grid is 10 microns, the holes are
squares with a side length of 5 microns. MPO parameters : Ir
with a 2nm rms roughness is the reflecting material, X-ray en-
ergy is 6400eV, pore size D = 20µm, period T = 26µm. The
intensity is normalized for each image.

(b)

(a)

(c)

Fig. 21. Ray-tracing simulations of the MPO point spread func-
tion. (a) using a standard MPO with a fixed orientation. (b)
using a modified static MPO with a random orientation of the
pores square cross section. (c) a standard MPO with a continu-
ous rotation. The rotation axis is parallel to the pore axis with
a position at 150 microns from the PSF center. MPO param-
eters : ls = li = 100mm,Ir with a 2nm rms roughness is the
reflecting material, pore size D = 20µm, period T = 26µm,
thickness 1.2mm. The number of rays generated and the inten-
sity scale are the same for the three simulations.

pores with a random orientation of the square cross section. This
pore packing scheme was already proposed by R. Willingale et
al. [17] as well as other pore orientation patterns for the BEPI-
COLUMBO spectrometer. As outlined in this reference the pore
open fraction η has to be reduced in this case, the consequence
being an overall reduction of the intensity of all the parts of
the PSF. The second method consists in a rotation of a regular
MPO, precise enough to achieve a negligible precession of the
PSF. Figure 21 shows the PSF resulting from these two kind
of modifications ( labeled b and c, respectively ) compared to
the regular MPO PSF (a). In the case of the rotation the results
depend on the position of the rotation axis, but changing this
position gives similar results. Both new configurations are quite
efficient in making the PSF more isotropic.

The efficiency of the two modified configurations are eval-
uated by imaging a Siemens star ( figure 22 ). It is interesting
to see that both configurations have a similar effect at large
distance ( 100 mm here), but that only the rotation provides a
good result at short distance ( 5mm here). As a matter of fact
the image obtained using the randomly oriented squares is not
very different at short distance than the image obtained using a
regular MPO. This can be explained by the limited number of
channels involved for each point of the extended source, which
is also the origin of the periodicity of the PSF discussed above in
the case of a regular MPO.
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Fig. 22. Effect of a random square orientation ( central row)
or a MPO rotation (bottom row) on imaging for two working
distances (100mm, left column and 5mm, right column), com-
pared to the standard MPO (top row). MPO parameters : Ir
with a 2nm rms roughness is the reflecting material, pore size
D = 20µm, period T = 26µm, thickness 1.2mm. The intensity
is normalized for each image.

7. CONCLUSION

Analytical expressions of the main PSF features of perfect pla-
nar MPOs were obtained using a semi-continuous model. This
model is based on a two parameters approximation of the X-ray
reflectivity curve and takes into account two contributions which
were not considered in previous models. It was validated against
results of ray tracing simulations by varying several parameters
of a X-ray fluorescence imaging experiment: MPO parameters
such as the thickness and ratio between the pore size and the
thickness, and experimental parameters such as X-ray energy
and working distance. The benefit of this analytical model is
to evidence the influence of these parameters on the intensity
and spatial resolution of an X-ray fluorescence experiment. It
was also shown that, for short distances, it is necessary to use a
discrete model which has however the disadvantage of clouding
the influence of the different parameters.

Series of images of extended sources such as a Siemens star
or a grid are interpreted in the light of the semi-continuous and
the discrete models we have developed and solutions are also
proposed to improve the quality of these images through an
isotropization of the PSF.

Finally, it is worth noting that real MPOs show imperfections
that might add another level of complexity to this analysis and
bring important modifications to the behavior of MPOs [18].
These imperfections were purposely not considered here because
it appeared necessary to first establish precise models of a perfect
MPO.

8. FUNDING INFORMATION

NASA MatISSE16_2-0005
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