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ADMISSIBLE EQUATIONS OF STATE FOR IMMISCIBLE AND MISCIBLE

MIXTURES ∗, ∗∗

Gloria Faccanoni1 and Hélène Mathis2

Abstract. This paper addresses the construction of admissible Equations of State (EoS) for com-
pressible two-phase flows. We investigate two approaches. In the first one, the mixture is treated as a
single fluid with a complex thermodynamic. Most of the time the available EoS are determined exper-
imentally and are often incomplete EoS, i.e. we know only the pressure as a function of the volume
and the temperature. We present here a general framework to compute a complete EoS based on such
an incomplete EoS. In the second approach, each phase is depicted by its own EoS. Following the
Gibbs formalism, the mixture entropy is the sum of the phasic entropies which achieves its maximum
at equilibrium. Depending on the miscibility of the mixture, one gets different geometrical properties
on the resulting mixture entropy. Eventually we address the coupling of mixture EoS with the dynamic
of the fluid. Homogeneous Equilibrium and Relaxation Models (HEM and HRM) are introduced for
an immiscible and a miscible two-phase mixture. Hyperbolicity is ensured taking advantage of the
concavity properties of the mixture entropies.

Key-words. Two-phase flows, equation of state, thermodynamic of equilibrium, phase transition, homogeneous
equilibrium and relaxation model, hyperbolicity.

2010 MCS. 76T10, 80A15, 35Q79, 35L.

1. Introduction

Compressible multiphase flows are involved in many industrial applications, notably in nuclear framework,
for instance in loss of flow or loss of coolant accidents in pressurized water reactor. For the purpose of CFD
calculations, thermodynamic properties must be calculated over a wide range of states. Thus it is mandatory
to provide a consistent Equation of State (EoS) to give a qualitatively and quantitatively correct material
description. This EoS should represent phase equilibria over wide temperature and pressure ranges, in pure
region (liquid or vapor) as well as in the VLE (Vapor-Liquid Equilibrium) region.

The construction of coherent EoS raises several difficult questions:
(1) how to obtain an accurate (and useful in CFD) description of a pure region?
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(2) how to compute a given thermodynamic state by performing calculations with different couples of input
variables?

(3) how to describe accurately the transition from a pure region to the VLE region?
(4) CFD requires extremely fast algorithms to compute thermodynamic properties because such algorithms

are frequently used in the inner iteration cycles of the process calculations. How to balance accuracy
and reasonable computing times?

A classic strategy for the last question (4) is to use an analytical EoS. So the question is to construct such an
analytical EoS while respecting constraints 1-3.

Focusing on a macroscopic description of the compressible two-phase flow, we consider that the dynamic of
the fluid is depicted by an Euler-like system. The two-phase mixture is treated as a single fluid with a complex
thermodynamic.1

In order to define the complex EoS, we consider two main approaches.
• The first possibility is to use an analytical EoS, valid in a wide range of temperatures and pressures.

Such equations are often deduced from measurements and are usually incomplete in the sense that they
define solely the pressure p as a function of the volume τ and the temperature T . However, in the
CFD calculations (based on the Euler equations), it is necessary to specify the pressure as a function
of the volume and the specific internal energy e. To obtain these relation, an idea is to construct
an entropy function (τ, e) 7→ s, which is actually a complete EoS. It is then possible to derive all
incomplete EoS, including the pressure and the temperature. We present this general construction in
Section 2. The section begins by the definitions of the different thermodynamic potentials both in the
extensive and intensive settings. Then in paragraph 2.2 we build a complete EoS starting from the
incomplete law (τ, T ) 7→ p. The principle is to determine a temperature (τ, e) 7→ T and thus an entropy
(τ, e) 7→ s thermodynamically consistent, i.e. they satisfy the first principle of the Thermodynamics
and a differential relation of the form Tds = de+ pdτ .

• The second approach we present consists in assuming that each phase is depicted by its own complete
EoS (for instance its entropy). Out of equilibrium the mixture entropy is the sum of the phasic entropies.
According to the second principle of Thermodynamics, the mixture entropy reaches its maximum at
equilibrium, under the constraints of the mass and energy conservation and a volumic constraint. De-
pending on the miscibility of the mixture, the latter constraint changes leading to different geometrical
properties of the mixture entropy. We present in Section 3 the construction principle in the case of bi-
nary mixture. Note that it can be extend to multiphase mixture, see for instance [21,29] for three-phase
framework. A particular attention is paid on the characterization of the thermodynamic equilibrium
and on the concavity properties of the mixture entropy.

In Section 4, we address the coupling of the admissible EoS computed in Section 3 with the dynamic of
the fluid. We present two Homogeneous Equilibrium Models (HEM) depending on the miscibility of the two-
phase mixture. They consist in Euler type models with the closure laws computed in Section 3. The concavity
properties of the mixture entropies ensure that the models are hyperbolic. However the closure laws is often
difficult to compute and may not be analytical, even for simple phasic EoS. It is then convenient to approximate
the model by a relaxation procedure, see Section 5. One obtains an Homogeneous Relaxation Model (HRM),
with extra equations and relaxation source terms toward the thermodynamic equilibrium, which comply with
the entropy growth criterion. Again we present two models according to the miscibility of the two-phase mixture.

1Note that a way to avoid this definition of the complex EoS is to consider a two-fluid description, which treats each phase as

a separated fluid depicted by balance laws of phasic mass conservation, phasic momentum and energy which are coupled through
exchanging terms and nonconservative terms. Then the modelling difficulties are shifted on the definition of the exchanging terms,
see [2, 17].
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2. Single fluid thermodynamics

2.1. Extensive and intensive notations

Let consider a fluid of mass M ≥ 0 and internal energy E ≥ 0 occupying a volume V ≥ 0. Let us denote

W̃ def=(M,V ) and W def=(V,M,E). As the fluid is homogeneous and at rest, its thermodynamic behaviour is
entirely described by its entropy function:

S : (R+)3 → R
W 7→ S(W ).

This entropy function S is uniquely and smoothly determined by the state vector W ∈ (R+)3. Standard
Thermodynamic requires that S is a concave function of W . Then it is classic to extend it by −∞ outside the
close convex cone (R+)3

S(W ) =

{
S(W ), W ∈ (R+)3,

−∞, elsewhere.

We adopt the assumptions stated in [4] and [10]:

Assumption 1. (Extensive assumptions) The entropy S : (R+)3 → R ∪ { −∞ } is such that

(i) the set of admissible states C def=
{
W ∈ (R+)3

∣∣ S(W ) > −∞
}

is a non-empty close convex domain,
(ii) S is a concave function of W ∈ C,
(iii) S is extensive, i.e. Positively Homogeneous of degree 1 (PH1), that is

∀λ ∈ R+
∗ , ∀W ∈ C, S(λW ) = λS(W ),

(iv) S is upper semi-continuous (u.s.c.) that is

∀W0 ∈ C, lim
W→W0

supS(W ) ≤ S(W0),

(v) S is of class C2 on C and its partial derivative with respect to the internal energy E is strictly positive

∀W ∈ C, ∂S

∂E
> 0.

Assumptions (ii) and (iii) are equivalent to assume (−S) sub-linear [31] or equivalently that the epigraph of
(−S) is a closed set in R3 × R. The set C is not necessarily convex, as it has been studied in [14, 23]. Observe
that the extensive entropy S cannot be strictly concave since it is PH1.

The fundamental extensive thermodynamic relation is

TdS = dE + pdV − µdM, (1)

where W 7→ T is the temperature, W 7→ p the pressure and W 7→ µ the chemical potential given by

T =

(
∂S

∂E

∣∣∣∣
M,V

)−1

, p = T
∂S

∂V

∣∣∣∣
M,E

, µ = −T ∂S

∂M

∣∣∣∣
V,E

. (2)

As derivatives of a PH1 function, this functions are PH0 or intensive potentials. Since S is PH1, it satisfies the
Euler’s relation ∇WS ·W> = S which leads to another characterization of the chemical potential

Mµ = −TS + pV + E. (3)
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Remark 2.1. Following [9], the formula S = S(W ) is called the fundamental equation (or complete equation
of state) of our system, and by definition contains all thermodynamic informations. An identity involving other
derived quantities (such T or p for instance) is an incomplete equation of state, which typically does not contain
all thermodynamic information.

2.1.1. Intensive properties — specific description

By homogeneity of the extensive entropy function, one may introduce the specific entropy s as

s def=
1

M
S(W )

PH1
= S

(
W

M

)
= S

(
V

M
, 1,

E

M

)
. (4)

It corresponds to a complete EoS which is uniquely determined by the specific volume τ def= V/M and the specific

internal energy e def= E/M :

s : (R+)2 → R
(τ, e) 7→ s(τ, e).

(5)

The fundamental intensive thermodynamic relation is

Tds = de+ pdτ, (6)

where the temperature T and the pressure p are now functions of w def=(τ, e):

w 7→ T =

(
∂s

∂e

∣∣∣∣
τ

)−1

, w 7→ p = T
∂s

∂τ

∣∣∣∣
e

(7)

and the chemical potential satisfy

µ = −Ts+ pτ + e.

Assumptions 1 admit their intensive counterpart.

Assumption 2. (Intensive specific assumptions) The specific entropy s is such that

• the set of admissible states c def=
{
w ∈ (R+)2

∣∣ s(w) > −∞
}

is a non-empty close convex domain,

• s is of class C2 on c such that

T =

(
∂s

∂e

∣∣∣∣
τ

)−1

> 0, (8)

• its Hessian matrix is negative definite, that is

det(Hs)
def=

∂2s

∂τ2

∣∣∣∣
e

∂2s

∂e2

∣∣∣∣
τ

−
(
∂2s

∂τ∂e

)2

> 0,
∂2s

∂τ2

∣∣∣∣
e

< 0,
∂2s

∂e2

∣∣∣∣
τ

< 0, (9)

which implies that s is strictly concave (but the converse is wrong).2

2.1.2. Intensive properties — volumic description

The homogeneity of the extensive entropy allows to introduce also the volumic entropy σ satisfying

σ def=
1

V
S(W )

PH1
= S

(
W

V

)
= S

(
1,
M

V
,
E

V

)
. (10)

2Note that the concavity of s may be deduced from the concavity of the extensive entropy S and its homogeneity.
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It is also a complete EoS uniquely determined by the density ρ def= M/V = 1/τ > 0 and the volumic internal

energy ε def= E/V = ρe such that
σ : (R+)2 → R

(ρ, ε) 7→ σ(ρ, ε).
(11)

As a function of w̃ def=(ρ, ε), it complies with the following total differential

Tdσ = dε− µdρ, (12)

where the temperature T and the chemical potential µ are now functions of w̃:

w̃ 7→ T =

(
∂σ

∂ε

∣∣∣∣
ρ

)−1

, w̃ 7→ µ = −T ∂σ

∂ρ

∣∣∣∣
ε

, (13)

and the pressure satisfy
p = Tσ + ρµ− ε. (14)

Assumption 3. (Intensive volumic assumptions) The volumic entropy σ is such that

• the set of admissible states c̃ = {w̃ ∈ (R+)2|σ(w̃) > −∞} is a non-empty close convex domain,
• σ is of class C2 on c̃ such that

T =

(
∂σ

∂ε

∣∣∣∣
ρ

)−1

> 0, (15)

• its Hessian matrix is negative definite, that is

det(Hσ) def=
∂2σ

∂ρ2

∣∣∣∣
ε

∂2σ

∂ε2

∣∣∣∣
ρ

−
(
∂2σ

∂ρ∂ε

)2

> 0,
∂2σ

∂ρ2

∣∣∣∣
ε

< 0,
∂2σ

∂ε2

∣∣∣∣
ρ

< 0, (16)

which implies that σ is strictly concave (but the converse is wrong).3

2.2. From an incomplete to a complete EoS

It is very common to specify the EoS of a material by providing the pressure as a function of the volume
and the temperature: (τ, T ) 7→ p. As noted in Remark 2.1, such an expression does not embody the full range
of thermodynamic informations available from the fundamental equation S = S(W ) (or s = s(w)). However,
in the CFD calculations (based on the Euler equations), one need to specify the pressure as a function of the
volume and the internal energy: (τ, e) 7→ p. To do so, an idea is to construct a complete EoS in the form of a
specific entropy (τ, e) 7→ s, based on the knowledge of the incomplete EoS (τ, T ) 7→ p. Once the complete EoS
is built, all other quantities can be computed thanks to the fundamental thermodynamic relation (6) and the
Maxwell relations (see appendix A).

2.2.1. General construction

In this section, we focus on the specific quantities and present a general method to deduce a complete EoS
(τ, e) 7→ s from an incomplete EoS (τ, T ) 7→ p . This construction involves determining a temperature (τ, e) 7→ T
and thus a specific entropy (τ, e) 7→ s, which are thermodynamically consistent in the sense that it complies
with the fundamental relation (6).

Let us consider a general incomplete EoS (τ, T ) 7→ p of the form

(τ, T ) 7→ p =
rT

τ − b
− aQ(τ), (17)

3Note that the concavity of σ may be deduced from the concavity of the extensive entropy S by homogeneity, or otherwise, from
the concavity of the specific entropy s, since σ = ρs.
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where a and b ≥ 0 are material-specific constants and r > 0 is the universal gas constant. The choice Q(τ) = 1
corresponds to the (Noble-Abel)-Stiffened-Gas (NASG) law [5,26,27], while the choice Q(τ) = τ−2 corresponds
to the van der Waals law [4,25].

Since the specific entropy s is a total derivative which satisfies the fundamental relation (6), its cross deriva-
tives are equal:

∂
(
p
T

)
∂e

∣∣∣∣∣
τ

=
∂
(

1
T

)
∂τ

∣∣∣∣∣
e

. (18)

Using the pressure definition (17), one can exhibit an hyperbolic PDE satisfied by the temperature (τ, e) 7→ T :

∂τT + aQ(τ)∂eT = 0. (19)

Let introduce the characteristic curves τ 7→ χ(τ) associated with the transport equation (19). In the (τ, e)-plane
they are solutions of the Cauchy problem {

χ′(τ) = aQ(τ),

χ(τ0) = χ0,
(20)

that is

χ(τ) = χ0 + a

∫ τ

τ0

Q(x)dx. (21)

The temperature T def= T (τ, e = χ(τ)) is constant along the characteristic curves, hence it holds T (τ) = T (τ0)
and yields

T (τ, e) = T

(
τ0, e− a

∫ τ

τ0

Q(x)dx

)
. (22)

For illustrative purposes, we choose the temperature as

T (τ, e) =
e− a

∫ τ
τ0
Q(τ)dτ

cv
, (23)

with cv the specific heat (which is assumed constant here for sake of simplicity). Finally a complete EoS can
be obtained by integrating the fundamental relation (6)

ds =
p

T
dτ +

1

T
de =

(
cv

e− a
∫
Q(τ)dτ

p(τ, e)

)
dτ +

cv
e− a

∫
Q(τ)dτ

de. (24)

Using (8) and treating τ as a constant, by integrating the relation (24) with respect to e gives

s(τ, e) =

∫
1

T
de+ ω(τ) =

∫
cv

e− a
∫
Q(τ)dτ

de+ ω(τ) = cv ln

(
e− a

∫
Q(τ)dτ

)
+ ω(τ). (25)

In order to determine the function ω, one has to derive (25) with respect to τ . It holds

∂s

∂τ

∣∣∣∣
e

=
p

T
=

r

τ − b
− cv
e− a

∫
Q(τ)dτ

aQ(τ).

Using the general form of the pressure (17) and the temperature definition (23), by identification, the function
ω(τ) satisfies ω′(τ) = r

τ−b and consequently ω(τ) = r ln(τ − b). Finally the specific entropy reads

s(τ, e) = cv ln

(
e− a

∫
Q(τ)dτ

)
+ r ln(τ − b) + s0, (26)
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where s0 is a numerical constant of integration.
We underline that, given τ 7→ Q(τ), the definition of the temperature T is not unique (and, as a consequence,

the specific entropy is not unique as well).

2.2.2. Applications

Considering the aforementioned choices of Q(τ), one obtains the following complete EoS:

• the Noble-Abel-Stiffened-Gas law corresponds to Q(τ) = 1 which leads to

s(τ, e) = cv ln (e+ aτ + const.) + r ln(τ − b) + s0.

Getting const.=−q + ab where q is a constant, we recover the Noble-Abel-Stiffened-Gas EoS described
in [5, 26, 27]. This specific entropy s is a strictly concave function of (τ, e) and complies with Assump-
tions 2.

• The van der Waals law is obtained setting Q(τ) = τ−2 and gives

s(τ, e) = cv ln
(
e+

a

τ
+ const.

)
+ r ln(τ − b) + s0.

Classically const.= 0, see [4,25]. However (τ, e) 7→ s is not concave everywhere. Thus the van der Waals
specific entropy fits into the foregoing framework (Assumption 2) only if we restrict attention to regions
where (τ, e) 7→ s is concave. If we apply the well-know Maxwell area construction, which is equivalent
to replace s by its concave hull (the smallest concave function greater that or equal to s in some region),
the graph contains a line and this geometrical property is related to the physical interpretation of phase
transition (see [4]). In [15, 28] the authors investigate the link between the Legendre Transform (LT)
and the sup-convolution and the concave hull. The sup-convolution is transformed into an addition
by the LT and applying twice a LT to any function is an elegant way to compute its concave hull. A
fast LT algorithm is proposed in [15] in order to compute tabulated Equation of State of mixture with
application to the van der Waals law.

3. Computing admissible EoS for two-phase mixture

We consider an ideally isolated system of fixed mass M ≥ 0, volume V ≥ 0 and internal energy E ≥ 0,
composed of two-phases A and B which are entirely described by their entropy functions Sk, function of their

masses 0 ≤Mk ≤M , volumes 0 ≤ Vk ≤ V and internal energies 0 ≤ Ek ≤ E, k ∈ K def= {A,B }. In the following

we denote Wk
def=(Vk,Mk, Ek) and W̃k

def=(Mk, Ek).
Mass and energy conservations ensure that

M = MA +MB , (27)

E = EA + EB . (28)

Depending on the miscibility of the mixture, the volume constraint should differ:

• as the two phases are immiscible, they are separated by an interface, leading to

V = VA + VB , (29)

so that W = WA +WB ;
• when the two phases are miscible, we assume they are completely intimate and no interface arises,

meaning that they behave like ideal gases in the sense that

V = VA = VB , (30)

so that W̃ = W̃A + W̃B .
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Remark 3.1. Note that in both cases, we assume that no vacuum appears in the model. Otherwise one should
consider that V ≥ VA + VB .

Remark 3.2. As the two phases are immiscible, one should consider VA + VB ≤ V . As explained in [16], if
the phasic pressures pk, k ∈ K, are always strictly positive, then the constraint is necessarily saturated and
boils down to V = VA + VB . In a perfectly miscible case, one should consider VA ≤ V and VB ≤ V . Again
as the phasic pressures and the temperatures are non-negative, the constraint is saturated in the sense that
V = VA = VB .

3.1. Characterization of the thermodynamic equilibrium

Since the fluid system is ideally isolated, the second principle of Thermodynamic states that all internal
processes lead to an increase on the total extensive entropy of the system. When the extensive entropy reaches
its maximum value, the system is at thermodynamic equilibrium. In this section we address the definition of
the extensive equilibrium entropy of the mixture depending on its miscibility.

Out of equilibrium, the mixture entropy S is the sum of the phasic entropies Sk. For (WA,WB) ∈ CA×CB ,
it reads

S (WA,WB) = SA(WA) + SB(WB) = SA(VA,MA, EA) + SB(VB ,MB , EB). (31)

Definition 3.3. (Extensive equilibrium entropy of an immiscible mixture) Let W def=(V,M,E) ∈ (R+)3 be
the state vector of the two-phase immiscible mixture. The equilibrium entropy is:

Simmi(W ) def= max
(WA,WB)∈Ωimmi

S (WA,WB), (32)

where

Ωimmi def= { (WA,WB) ∈ CA × CB | (27), (28) and (29) hold }
= { (WA,WB) ∈ CA × CB |W = WA +WB } .

Definition 3.4. (Extensive equilibrium entropy of a miscible mixture) Let V = V0 > 0 fixed. Let

W̃ def=(M,E) ∈ (R+)2 be the state vector of the two-phase miscible mixture. The equilibrium entropy is

Smi(V0, W̃ ) def= max
(W̃A,W̃B)∈Ωmi

S ((V0, W̃A), (V0, W̃B)), (33)

where

Ωmi def=
{

(W̃A, W̃B) ∈ C̃A × C̃B
∣∣∣ (27) and (28) hold

}
=
{

(W̃A, W̃B) ∈ C̃A × C̃B
∣∣∣ W̃ = W̃A + W̃B

}
.

Remark 3.5. In [16] the authors highlight that the maximization processes (32) and (33) are called sup-
convolution operations. This operation is well-known in convex analysis, see for instance [31], where it is
denoted �. It reads

Simmi(W ) = SA�SB(W ) = sup
WA∈CA

SA(WA) + SB(W −WA),

Smi(V0, W̃ ) = SA�V0
SB(V0, W̃ ) = sup

W̃A∈C̃A
SA(V0, W̃A) + SB(V0, W̃ − W̃A).

Note that in the miscible case, the sup-convolution is partial and acts only on the mass and energy variables,
the volume V0 being fixed. The sup-convolution shares many properties. Among them, it ensures the existence
and the concavity of the equilibrium mixture entropies.
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Remark 3.6. If one assumes that no mass transfer arises between the two phases, then the phasic masses are
fixed. In the case of an immiscible mixture without phase transition, the mixture entropy is also concave with
respect to V,M,E and MA as soon as the phasic entropies Sk are sub-linear, see [23]. As miscible mixture
without phase transition is concerned, the mixture entropy is also a concave function of (V,M,E) since it
corresponds to a linear transformation of a concave function.

Following [23], one can prove that the extensive entropies Simmi, Smi : C → R ∪ { −∞ } are PH1 concave
functions of W ∈ C, where C = CA + CB is a non empty convex cone.

When the equilibrium entropies Sλ, λ = immi or mi, are differentiable with respect to the volume V and the
energy E, one can define the mixture temperature, pressure and chemical potential at equilibrium as follows:

T def=

(
∂Sλ

∂E

∣∣∣∣
M,V

(W )

)−1

, p def= T
∂Sλ

∂V

∣∣∣∣
M,E

(W ), µ def= T
∂Sλ

∂M

∣∣∣∣
V,E

(W ), (34)

leading to the extensive fundamental relation

TdSλ = dE + pdV − µdM. (35)

We now turn to the characterization of the equilibrium. In the definition of the mixture entropy, the max-
imizer may be not unique but the upper value is unique. Besides if the phasic entropies Sk are upper semi-
continuous, then the supremum is actually a maximum.

Proposition 3.7. When the maximum is reached in the interior of the set of constraints, one has:

• the maximum is always characterized by the thermal equilibrium

T = TA = TB ; (36)

• the maximum defining Simmi in the immiscible case is characterized by

p = pA = pB , (37)

while, in the miscible case with Smi, it corresponds to the Dalton’s law [30]:

p = pA + pB ; (38)

• as phase transition occurs in the miscible and miscible mixture, the equilibrium is also characterized by

µ = µA = µB . (39)

We refer to [1, 16, 22] for a proof for the immiscible case and to [15] for both miscible and immiscible cases.
Here we focus on the equilibrium reached in the interior of the domain of Sλ. It can also be reached on the
boundary of the set of constraints. In that case, one should characterized the maximum by inequalities on the
pressures and temperatures. Since the immiscible case is treated in [23] (considering the mass MA is fixed), we
just give some intents in the miscible case, that is V = VA = VB = V0 > 0 fixed. If the maximum is reached at
the point (M,E), the concavity of the entropy leads to

∇(MA,EA)(SA(V0,MA, EA) + SB(V0,M −MA, E − EA))((MA, EA)− (M,E)) ≤ 0. (40)

Assume that the energy constraints is saturated, then one has

• either E = E and
1

TA
− 1

TB
≥ 0;
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• or E = 0 and
1

TA
− 1

TB
≤ 0.

Conversely, if the mass constraint is saturated, one gets

• either M = M and −µA
TA

+
µB
TB
≥ 0;

• or M = 0 and −µA
TA

+
µB
TB
≤ 0.

3.2. Intensive entropies and geometrical interpretation

We now turn to the definition of intensive quantities. The system is now entirely described by its intensive

specific entropy s defined by (5) as a function of w def=(τ, e) ∈ (R+)2 or by its intensive volumic entropy σ defined

by (11) as a function of w̃ def=(ρ, ε) ∈ (R+)2. We assume that they comply with Assumptions 2 and 3 respectively.
Let us introduce the volume fraction αk, the mass fraction ϕk and the energy fraction zk of the phase k ∈ K

defined respectively by

αk
def=
Vk
V
, ϕk

def=
Mk

M
, zk

def=
Ek
E
, (41)

which belong to [0, 1].

• Each phase k ∈ K is depicted by its specific phasic entropy sk defined by

sk(τk, ek) def= Sk(τk, 1, ek). (42)

It is a function of the specific volume τk and a specific internal energy ek such that

τk =
Vk
Mk

=
αk
ϕk
τ, ek =

Ek
Mk

=
zk
ϕk
e, (43)

satisfying the phasic fundamental relation

Tkdsk = dek + pkdτk. (44)

• Eventually the phase k ∈ K may be depicted by its volumic phasic entropy σk defined by

σk(ρk, εk) def= Sk(1, ρk, εk). (45)

It is a function of the density ρk and the volumic internal energy εk such that

ρk =
Mk

Vk
=
ϕk
αk
ρ =

1

τk
, εk =

Ek
Vk

=
zk
αk
ε =

zk
αk
ρe =

ek
τk
, (46)

satisfying the phasic fundamental relation

Tkdσk = dεk − µkdρk. (47)

The extensive constraints (27)-(30) admit their intensive counterparts. The mass and energy conserva-
tions (27) and (28) give the following constraints on the fractions:

1 = ϕA + ϕB , (48)

1 = zA + zB . (49)
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• In the case of an immiscible mixture, the extensive volume constraint (29) translates into

1 = αA + αB , (50)

and, associated to (43), leads to

τ = ϕAτA + ϕBτB , (51)

e = ϕAeA + ϕBeB . (52)

Out of equilibrium, the extensive mixture entropy (31) can be written in intensive specific formulation
using the homogeneity property of the extensive entropies Sk, k ∈ K:

s(wA, wB) def=
S

M
= ϕAsA(wA) + ϕBsB(wB). (53)

• In the miscible case, the extensive volume constraint (30) translates into

1 = αA = αB , (54)

and, associated to (46), we have

ρ = ρA + ρB , (55)

ε = εA + εB . (56)

Out of equilibrium, the extensive mixture entropy (31) can be written in intensive volumic formulation
using the homogeneity property of the extensive entropies Sk, k ∈ K:

σ(w̃A, w̃B) def=
S

V
= σA(w̃A) + σB(w̃B). (57)

We now turn to the description of the intensive mixture entropy at equilibrium. The optimization pro-
cesses (32) and (33) can be derived in an intensive formulation as follows, leading to an elegant geometrical
interpretation.

• As the immiscible case is considered, at equilibrium, the optimization problem (32) reads under its
intensive formulation

simmi(τ, e) = max
1=ϕA+ϕB

w=ϕAwA+ϕBwB

(
s(wA, wB)

)
, (58)

under constraints (48), (51) and (52). One observes that the formulation (58) defines nothing else but
the concave hull of the maximum of the two partial entropies sk, k ∈ K:

simmi(w) = concave hull of max
(
sA(w), sB(w)

)
. (59)

Therefore the mixture entropy is concave but not strictly concave. In a region corresponding to the vapor-
liquid equilibrium, the graph of simmi contains a line of plane. This characterization is highlighted for
instance in [1, 3, 11,12,15,16].

• In the miscible case, the total volume V is fixed and equal to V0 > 0. Then the optimization process
allows to define the volumic mixture entropy as

σmi(w̃) = max
w̃=w̃A+w̃B

(
σ(w̃A, w̃B)

)
, (60)
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under the mass and energy conservation constraints (55) and (56). Observe that the intensive mixture
entropy remains a sup-convolution operation of the phasic entropies

σmi(ρ, ε) = σA�σB(ρ, ε), (61)

see Remark 3.5. The properties of the sup-convolution operation ensure that if the phasic entropies are
strictly concave, then the mixture entropy is strictly concave as well [18, 31]. Note that the thermody-
namic equilibrium is still characterized by Proposition 3.7 that is the equilibrium of the temperature
and the Dalton’s law on the pressures.

The equilibrium entropies properties are stated in the following statement:

Proposition 3.8. Consider the thermodynamic equilibrium with the equilibrium temperature T and the equi-
librium chemical potential satisfying (36) and (39), i.e. T = TA = TB and µ = µA = µB.

• If the mixture is immiscible, the equilibrium pressure p satisfies (37) and the intensive equilibrium
entropy simmi is a concave function of (τ, e) and satisfies

Tdsimmi = de+ pdτ. (62)

• If the mixture is miscible, the equilibrium pressure p complies with the Dalton’s law (38) p = pA + pB
and the volumic equilibrium entropy of the mixture is a concave function of (ρ, ε) and satisfies

Tdσmi = dε− µdρ. (63)

Proof.

• We multiply the phasic Gibbs relations (44) Tkdsk = dek + pkdτk by the mass fractions ϕk and we sum
over k ∈ K:

0 =
∑
k∈K

(ϕkTkdsk − ϕkdek − ϕkpkdτk)
(36)(37)

= T
∑
k∈K

(ϕkdsk)−
∑
k∈K

(ϕkdek)− p
∑
k∈K

(ϕkdτk)

= T
∑
k∈K

d(ϕksk)−
∑
k∈K

d(ϕkek)− p
∑
k∈K

d(ϕkτk)−
∑
k∈K

(Tsk − e− pτk) dϕk

= Tdsimmi − de− pdτ +
∑
k∈K

µkdϕk
(39)
= Tdsimmi − de− pdτ + µd

(∑
k∈K

ϕk

)
= Tdsimmi − de− pdτ + µd(1) = Tdsimmi − de− pdτ.

• We sum the phasic relations (47) for k ∈ K: since the temperatures are equal, see (36), as well as the
chemical potentials, see (39), then

0 =
∑
k∈K

(Tkdσk − dεk − µkdρk)
(36)(39)

= Tdσmi − dε− µdρ,

and ∑
k∈K

pk =
∑
k∈K

(ρkµk + Tkσk − εk)

(36)(39)
= µ

(∑
k∈K

ρk

)
+ T

(∑
k∈K

σk

)
−

(∑
k∈K

εk

)
(55)(56)(57)

= µρ+ Tσ − ε = p

�
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4. Homogeneous Equilibrium for two-phase flows

We now take into account the dynamic of the two-phase mixture assuming that the two-phases have the
same velocity. The aim of this section is to provide an Homogeneous Equilibrium Euler’s system, called HEM
model. The HEM model has to be endowed with appropriate closure laws in agreement with the thermodynamic
equilibria studied in Section 3. Emphasis is given to the hyperbolicity and the entropy structure of the models.
For the sake of simplicity we consider mono-dimensional case.

4.1. Immiscible case

At thermodynamic equilibrium the immiscible two-phase flow is depicted by the multicomponent Euler
system 

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + pimmi) = 0,

∂t(ρE) + ∂x((ρE + pimmi)u) = 0,

E = 1
2u

2 + e,

∀k ∈ K : pk = pk(τk, ek), τk = ρ−1
k ,

(64)

where the flow has a density ρ (we also define the specific volume τ = 1/ρ), a velocity u, a pressure pimmi,
and an internal energy e (E being the total energy). The phase k ∈ K is depicted by its mass fraction ϕk, its
pressure pk, its specific volume τk and its specific internal energy ek, see Section 3.2. All the phases evolve at
the same velocity u.

The multicomponent Euler system admits eight equations and has thirteen unknowns which are{
ρ, u, E , pimmi, e, ϕA, ϕB , τA, τB , eA, eB , pA, pB

}
Thus one has to provide five closure laws. The first two closure laws are given by the constraints (51) and (52).
The three remaining closure laws are given by Proposition 3.7, that is

T immi = TA = TB ,

pimmi = pA = pB ,

µ = µA = µB ,

(65)

where T immi and pimmi are the thermodynamic temperature and pressure of the two-phase flow and pimmi =
pimmi(1/ρ, e).

To prove the hyperbolicity of the system, one would like to apply the Godunov-Mock theorem using the
function η : (τ, u, E) 7→ −simmi(τ, E − u2/2) as a Lax entropy of the system, see for instance [6, 24, 29]. Unfor-
tunately, since the equilibrium entropy simmi is not a strictly concave function of its arguments, this argument
does not apply in our case. One has to study the eigenvalues of the system and to prove that the speed of sound

of the mixture is real. First notice that, for any state vector w def=(τ, e), the speed of sound of the system can be
written as

c2(w) = −τ2T (w) (p(w),−1)Hsimmi(w)

(
p(w)
−1

)
, (66)

where H immi
s (w) denotes the Hessian matrix of simmi. Because simmi is the concave hull of the phasic entropies

sk, k ∈ K, it follows that

• for all w in pure phase regions

v>Hsimmi(w)v < 0, ∀v 6= 0, (67)
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• for all w in the VLE region

it exists a unique v(w) 6= 0, such that (v(w))>Hsimmi(w)v(w) = 0. (68)

The hyperbolicity results is stated in [1, 11,12] by proving the following theorem:

Theorem 4.1. For any state vector w in the VLE region,

v(w) 6≡ (p(w),−1) , (69)

so that the system (64) is strictly hyperbolic.

4.2. Miscible case

We now turn to the miscible case. At thermodynamic equilibrium the miscible two-phase flow is depicted
by the multicomponent Euler system 

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + pmi) = 0,

∂t(ρE) + ∂x((ρE + pmi)u) = 0,

E = 1
2u

2 + ε
ρ ,

∀k ∈ K : pk = pk(ρk, εk).

(70)

The system (70) admits six equations and thirteen unknowns which are

{ρ, u, E , pmi, ϕA, ϕB , τA, τB , eA, eB , pA, pB}.

Hence one has to provide seven closure laws. The first two closure laws are given by the constraints (55)
and (56). The characterization of the equilibrium provides the five remaining closure laws:

Tmi = TA = TB ,

pmi = pA + pB ,

µmi = µA = µB ,

(71)

where pmi is the pressure of the two-phase flow and pmi = pmi(ρ, ε).
The hyperbolicity of the system (70) relies on its entropy structure. Indeed in Section 3.2 we have shown

that the volumic equilibrium entropy is strictly concave as soon as the phasic entropies are. In this case the
Godunov-Mock theorem applies (see for instance [6, 24,29]) and we have the following theorem:

Theorem 4.2. The strictly convex function η(ρ, u, E) 7→ −σ(ρ, ρE−ρu2/2) is a Lax entropy for the system (70)
associated to the entropy flux fη(ρ, u, E) = −uσ. thus the system (70) is strictly hyperbolic.

5. Homogeneous Relaxation two-phase models

The equilibrium two-phase models presented in the previous section are difficult to use for practical compu-
tations. Indeed the determination of the equilibrium mixture pressure law may be tedious, and even worse, it
is not analytical when considering standard phasic EoS such as stiffened gas law, see for instance [11, 12, 28].
In [15] the authors propose to use a Fast Legendre Transform algorithm to compute admissible mixture pressure
laws (see also Remark 3.5). Again the resulting mixture pressure law is not analytical but solely a tabulated
one.



ESAIM: PROCEEDINGS AND SURVEYS 15

In order to avoid the manipulation of a complex pressure law, it is convenient to approximate the equilibrium
Euler system by a Homogeneous Relaxation Model (HRM), following [3,11–13,16,19,20]. It consists in adding
convection equations of additional variables and to modify the pressure to make it depend on these variables.
Relaxation source terms complete the new convection equations. The relaxation structure should be consistent
with the second principle of Thermodynamics. In particular, the source terms have to comply with the entropy
growth criterion and bring the system to thermodynamic equilibrium.

5.1. Immiscible case

Following [3,11,19], the additional variables we consider are the fractions of mass, volume and energy of the

phase A: Y def=(ϕA, αA, zA). Note that one may have chosen another set of variables as well. When no transfer
occurs between the liquid and the vapor, the fractions should be perfectly convected, that is

∂tY + u∂xY = 0. (72)

Combining with the conservation of total mass and adding the source terms to the fraction equations gives
∂t(ρY ) + ∂x(ρuY ) = Q,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0,

(73)

with the closure law

p = p(1/ρ, e, ϕA, αA, zA). (74)

The system (73) admits the concave function

s : (τ, e, ϕA, αA, zA) 7→ ϕAsA

(
αA
ϕA

τ,
zA
ϕA

e

)
+ ϕBsB

(
1− αA
1− ϕA

τ,
1− zA
1− ϕA

e

)
,

already defined in (53), as an entropy function. Recall that its concavity is deduced from the concavity of the
phasic entropies sk, k ∈ K. Moreover it complies with

ds =
∑
k∈K

zk
Tk

de+
∑
k∈K

αk
pk
Tk

dτ +
∑
k∈K

∂ϕksdϕk +
∑
k∈K

∂αksdαk +
∑
k∈K

∂zksdzk. (75)

We can then identify the mixture pressure (74) and the mixture temperature by

p(1/τ, e, ϕA, αA, zA)

T (1/τ, e, ϕA, αA, zA)
=
∑
k∈K

αk

pk

(
αk
ϕk
τ,
zk
ϕk
e

)
Tk

(
αk
ϕk
τ,
zk
ϕk
e

) ,
1

T (1/τ, e, ϕA, αA, zA)
=
∑
k∈K

zk

Tk

(
αk
ϕk
τ,
zk
ϕk
e

) ,
under the constraints (48), (49) and (50) on the fractions.

Weak entropy solutions of the system satisfy

∂t(ρs) + ∂x(ρus) ≥ 0. (76)
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As relaxation towards the equilibrium is infinitely fast, one recovers the equilibrium fractions which satisfy

Y immi(τ, e) def= argmax(ϕA,αA,zA)s(τ, e, ϕA, αA, zA). (77)

As a result the equilibrium pressure is

pimmi(τ, e) = p(τ, e, Y immi(τ, e)). (78)

We now turn to the definition of the relaxation source terms involved in the fraction equations in the
system (73). Actually there is no consensus on their definition [7, 8]. But they must relax towards the correct
thermodynamic equilibrium and comply with the entropy growth criterion (76). Following for instance [3, 12,

13,16], one may choose Q(Y ) def= Y immi(τ, e)− Y . Thus one has

∂t(ρs) + ∂x(ρus) = ∇Y s · (∂tY + u∂xY )

= ∇Y s · (Y immi(τ, e)− Y )

≥ s(τ, e, Y immi)− s(τ, e, ϕA, αA, zA) ≥ 0,

by the concavity of the mixture entropy s. This choice is then in agreement with the entropy growth criterion.

5.2. Miscible case

In the miscible case, the volume fractions are equal to one, see equation (54). Then we consider the additional

advection equations on the mass and energy fractions of the phase A, Ỹ def=(ϕA, , zA)

∂tỸ + u∂xỸ = 0. (79)

Combining with the conservation of total mass and adding the source terms to the fraction equations gives


∂t(ρỸ ) + ∂x(ρuỸ ) = Q̃,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p̃) = 0,

∂t(ρE) + ∂x((ρE + p̃)u) = 0,

(80)

with the closure law

p̃ = p̃(1/ρ, e, ϕA, zA). (81)

The system (80) admits the concave function

s̃ : (τ, e, ϕA, zA) 7→ ϕAsA

(
τ

ϕA
,
zA
ϕA

e

)
+ ϕBsB

(
τ

1− ϕA
,

1− zA
1− ϕA

e

)
,

as an entropy function, which complies with

ds̃ =
∑
k∈K

zk
Tk

de+
∑
k∈K

pk
Tk

dτ +
∑

k=A,B

∂ϕksdϕk +
∑
k∈K

∂zksdzk. (82)
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We can then identify the mixture pressure (81) and the mixture temperature by

p̃(1/τ, e, ϕA, zA)

T̃ (1/τ, e, ϕA, zA)
=
∑
k∈K

pk

(
τ

ϕk
,
zk
ϕk
e

)
Tk

(
τ

ϕk
,
zk
ϕk
e

) ,
1

T̃ (1/τ, e, ϕA, zA)
=
∑
k∈K

zk

Tk

(
τ

ϕk
,
zk
ϕk
e

) ,
under the constraints (48), (49) and (54) on the fractions.

Weak entropy solutions of the system satisfy

∂t(ρs̃) + ∂x(ρus̃) ≥ 0. (83)

As relaxation towards the equilibrium is infinitely fast, one recovers the equilibrium fractions which satisfy

Ỹ mi(τ, e) def= argmax(ϕA,zA)s̃(τ, e, ϕA, zA). (84)

As a result the equilibrium pressure is

p̃mi(τ, e) = p̃(τ, e, Ỹ mi(τ, e)). (85)

Like in the immiscible case, a possible choice for the relaxation source terms on the fractions is Q̃(Ỹ ) =

Ỹ mi(τ, e)− Ỹ which guarantees the entropy growth criterion thanks to the concavity of the mixture entropy s̃.

6. Conclusion & Perspectives

We address in this paper the construction of admissible equations of state for two-phase flows. Considering the
mixture as a single fluid, it is possible to construct a complete EoS based on the knowledge of an incomplete EoS.
This construction allows for instance to build the van der Waals entropy function starting from the pressure law
(τ, T ) 7→ p. However this law does not comply with convexity constraints required by standard Thermodynamics.
Another construction consists in defining the mixture equilibrium entropy as an optimization problem on the
phasic entropies. Depending on the mixture is immiscible or not, the mixture entropy corresponds to the concave
hull of the phasic entropies or to their sup-convolution. Both operations guarantee concavity properties and, as
a consequence, hyperbolicity of the multicomponent Euler system. However the mixture pressure laws are often
difficult to compute and are, at best, tabulated EoS, which are difficult to manipulate and CPU consuming.
One comes back to the remaining question 4 of the Introduction: “How to balance accuracy and reasonable
computing times?” A solution is to consider rather HRM models. Hence the relaxation source terms have to
relax towards the correct thermodynamic equilibrium while complying with the entropy growth criterion.
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A. Legendre Transform and Maxwell Relations — intensive description

The entropy s (or the energy e) are not directly physically measurable, whereas certain of the intensive
variables (e.g. T or p) are. It is consequently convenient to convert the entropy into functions of various
intensive variables. Since s is concave, we can employ ideas from convex analysis to rewrite various formula in
terms of the intensive variables T and p. The main tool will be de Legendre transform.

Assume that f : Rn → (−∞,+∞] is a convex, lower semicontinuous (l.s.c.) and proper function r 7→ f(r).
The Legendre transform of f is the function f∗ : Rn → (−∞,+∞] defined by f∗(q) = supr∈Rn(r · q − f(r)).
The function f∗ is likewise convex, l.s.c. and proper. Furthermore (f∗)∗ = f . Moreover, if f is C2 and strictly
convex then, given q, there exists a unique r which maximizes (r · q − f(r)), namely the unique r = r(q) for
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which q = ∇f(r). In this case we have f∗(q) = r(q) · q− f(r(q)) with r = r(q) solving q = ∇f(r). Furthermore
∇f∗(q) = r + (q −∇f(r))∇qr = r and so r = ∇f∗(q).

In classic Thermodynamics it is convenient to define a complete EoS as the function (s, τ) 7→ e instead of
(e, τ) 7→ s as in the present paper. Because the temperature positivity (8) holds, we can solve s = s(e, τ) and
use e as a C1 function of (s, τ), then we have de = Tds − pdτ and the Hessian matrix of e is positive definite,
that is

det(He)
def=

∂2e

∂τ2

∣∣∣∣
s

∂2e

∂s2

∣∣∣∣
τ

−
(
∂2e

∂τ∂s

)2

> 0,
∂2e

∂τ2

∣∣∣∣
s

> 0,
∂2e

∂s2

∣∣∣∣
τ

> 0. (86)

It implies that the internal energy e is strictly convex in (s, τ). There are three possible Legendre transforms
of (s, τ) 7→ e, according to whether we transform: in the variable s only, in τ only, or in (s, τ) together.
Because it is customary in Thermodynamics to take the opposite of the mathematical Legendre transform (i.e.
− sup { · · · } = inf { − · · · }), the relevant formula are actually the following:

• the Helmholtz free energy (T, τ) 7→ f (sometimes noted a) is

f(T, τ) = inf
s

(e(s, τ)− Ts) = e(s, τ)− Ts,

where s = s(T, τ) solves T = ∂e
∂s

∣∣
τ
; the Helmholtz free energy f is strictly concave in T , strictly convex

in τ ;
• the enthalpy (s, p) 7→ h is

h(s, p) = inf
τ

(e(s, τ) + pτ) = e(s, τ) + pτ,

where τ = τ(s, p) solves −p = ∂e
∂τ

∣∣
s
; the enthalpy h is strictly concave in p, strictly convex in s;

• the Gibbs potential (a.k.a. chemical potential or free enthalpy) (T, p) 7→ µ is

µ(T, p) = inf
(s,τ)

(e(s, τ) + pτ − Ts) = e(s, τ) + pτ − Ts,

where s = s(T, p) and τ = τ(T, p) solve T = ∂e
∂s

∣∣
τ

and −p = ∂e
∂τ

∣∣
s
; the Gibbs free energy µ is strictly

concave in (T, p).

These functions are called “Thermodynamic potentials”. They are complete EoS describing the behaviour of a
system as a function of the so-called “natural variables”. In Table 1 we resume these relations. The Maxwell
relations are obtained by exploiting the exactness of differentials (i.e. the order of the mixed second partial
derivatives does not matter).

Using Legendre’s transform of (e, τ) 7→ s, we can compute three other potentials (and associated Maxwell’s
relations, see Table 2) called Massieu-Planck Functions [32]:

• the function ( 1
T , τ) 7→ j = infe

(
s(e, τ)− e

T

)
= s(e, τ)− e

T where e = e( 1
T , τ) solves 1

T = ∂s
∂e

∣∣
τ
;

• the function (e, pT ) 7→ ? = infτ
(
s(e, τ)− p

T τ
)

= s(e, τ)− p
T τ where τ = τ(e, pT ) solves p

T = ∂s
∂τ

∣∣
e
;

• the function ( 1
T ,

p
T ) 7→ r = inf(e,τ)

(
s(e, τ)− p

T τ −
e
T

)
= s(e, τ) − p

T τ −
e
T where τ = τ( pT , e) and

e = e( pT ,
1
T ) solve p

T = ∂s
∂τ

∣∣
e

and 1
T = ∂s

∂e

∣∣
τ
.

The function j was first introduced by Massieu and it is called Massieu’s potential. The function r was introduced
by Planck and is called Planck’s potential.

Following similar ideas for (ρ, σ) 7→ ε and (ρ, ε) 7→ σ we obtain tables 3 and 4. The function ♣ is sometimes
called Kramer function [32, p.63].

The other functions are unnamed in our knowledge.
Note that, since ε is strictly convex, its conjugate function is precisely −p, function of (T, µ) = ∇ε(σ, ρ).

Note that, since σ is strictly concave, its conjugate function is precisely p
T , function of

(
− µ
T ,

1
T

)
= ∇σ(ρ, ε).
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Table 1. Thermodynamic potentials based on complete EoS (s, τ) 7→ e

Potential
Natural
variables

Conjugate variables Differential
Maxwell
relations

e (s, τ) T =
∂e

∂s

∣∣∣∣
τ

p = − ∂e

∂τ

∣∣∣∣
s

de = Tds− pdτ − ∂p

∂s

∣∣∣∣
τ

=
∂T

∂τ

∣∣∣∣
s

f = e− Ts (T, τ) s = − ∂f

∂T

∣∣∣∣
τ

p = − ∂f

∂τ

∣∣∣∣
T

df = −sdT − pdτ ∂p

∂T

∣∣∣∣
τ

=
∂s

∂τ

∣∣∣∣
T

h = e+ pτ (s, p) T =
∂h

∂s

∣∣∣∣
p

τ =
∂h

∂p

∣∣∣∣
s

dh = Tds+ τdp
∂τ

∂s

∣∣∣∣
p

=
∂T

∂p

∣∣∣∣
s

µ = e− Ts+ pτ (T, p) s = − ∂µ

∂T

∣∣∣∣
p

τ =
∂µ

∂p

∣∣∣∣
T

dµ = −sdT + τdp
∂τ

∂T

∣∣∣∣
p

= − ∂s

∂p

∣∣∣∣
T

Table 2. Thermodynamic potentials based on complete EoS (e, τ) 7→ s.
Note that j = −f/T and r = −µ/T

Potential
Natural
variables

Conjugate variables Differential
Maxwell
relations

s (e, τ) 1
T =

∂s

∂e

∣∣∣∣
τ

p
T =

∂s

∂τ

∣∣∣∣
e

ds = 1
T de+ p

T dτ
∂ pT
∂e

∣∣∣∣
τ

=
∂ 1
T

∂τ

∣∣∣∣
e

j = s− 1
T e ( 1

T , τ) e = − ∂j

∂ 1
T

∣∣∣∣
τ

p
T =

∂j

∂τ

∣∣∣∣
1
T

dj = −ed 1
T + p

T dτ
∂ pT
∂ 1
T

∣∣∣∣
τ

= − ∂e

∂τ

∣∣∣∣
1
T

? = s− p
T τ (e, pT ) 1

T =
∂?

∂e

∣∣∣∣
p
T

τ = − ∂?

∂ pT

∣∣∣∣
e

d? = 1
T de− τd p

T
− ∂τ

∂e

∣∣∣∣
p
T

=
∂ 1
T

∂ pT

∣∣∣∣
e

r = s− 1
T e−

p
T τ ( 1

T ,
p
T ) e = − ∂r

∂ 1
T

∣∣∣∣
p
T

τ = − ∂r

∂ pT

∣∣∣∣
1
T

dr = −ed 1
T − τd p

T

∂τ

∂ 1
T

∣∣∣∣
p
T

=
∂e

∂ pT

∣∣∣∣
1
T
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Table 3. Thermodynamic potentials based on complete EoS (σ, ρ) 7→ ε.

Note that ♦ = ρf and ♥ (14)
= −p

Potential
Natural
variables

Conjugate variables Differential
Maxwell
relations

ε (σ, ρ) T =
∂ε

∂σ

∣∣∣∣
ρ

µ =
∂ε

∂ρ

∣∣∣∣
σ

dε = Tdσ + µdρ
∂µ

∂σ

∣∣∣∣
ρ

=
∂T

∂ρ

∣∣∣∣
σ

♦ = ε− Tσ (T, ρ) σ = − ∂♦
∂T

∣∣∣∣
ρ

µ =
∂♦
∂ρ

∣∣∣∣
T

d♦ = −σdT + µdρ
∂µ

∂T

∣∣∣∣
ρ

= − ∂σ

∂ρ

∣∣∣∣
T

O = ε− µρ (σ, µ) T =
∂O
∂σ

∣∣∣∣
µ

ρ = − ∂O
∂µ

∣∣∣∣
σ

dO = Tdσ − ρdµ − ∂ρ

∂σ

∣∣∣∣
µ

=
∂T

∂µ

∣∣∣∣
σ

♥ = ε− Tσ − µρ (T, µ) σ = − ∂♥
∂T

∣∣∣∣
µ

ρ = − ∂♥
∂µ

∣∣∣∣
T

d♥ = −σdT − ρdµ
∂ρ

∂T

∣∣∣∣
µ

=
∂σ

∂µ

∣∣∣∣
T

Table 4. Thermodynamic potentials based on complete EoS (ε, ρ) 7→ σ.
Note that � = ρj and ♥ = −T♣, that is ♣ = −p/T

Potential
Natural
variables

Conjugate variables Differential
Maxwell
relations

σ (ε, ρ) 1
T =

∂σ

∂ε

∣∣∣∣
ρ

µ
T = − ∂σ

∂ρ

∣∣∣∣
ε

dσ = 1
T dε− µ

T dρ −
∂ µT
∂ε

∣∣∣∣
ρ

=
∂ 1
T

∂ρ

∣∣∣∣
ε

� = σ − 1
T ε ( 1

T , ρ) ε = − ∂�

∂ 1
T

∣∣∣∣
ρ

µ
T = − ∂�

∂ρ

∣∣∣∣
1
T

d� = −εd 1
T −

µ
T dρ

∂ µT
∂ 1
T

∣∣∣∣
ρ

=
∂ε

∂ρ

∣∣∣∣
1
T

♠ = σ + µ
T ρ (ε, µT ) 1

T =
∂♠
∂ε

∣∣∣∣
µ
T

ρ =
∂♠
∂ µT

∣∣∣∣
ε

d♠ = 1
T dε+ ρd µT

∂ρ

∂ε

∣∣∣∣
µ
T

=
∂ 1
T

∂ µT

∣∣∣∣
ε

♣ = σ − 1
T ε+ µ

T ρ ( 1
T ,

µ
T ) ε = − ∂♣

∂ 1
T

∣∣∣∣
µ
T

ρ =
∂♣
∂ µT

∣∣∣∣
1
T

d♣ = −εd 1
T + ρd µT

∂ρ

∂ 1
T

∣∣∣∣
µ
T

= − ∂ε

∂ µT

∣∣∣∣
1
T
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