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Solving Unbounded Quadratic BSDEs
by a Domination method ∗

Khaled Bahlali

Université de Toulon, IMATH, EA 2134,
83957 La Garde Cedex, France.

Abstract We introduce a domination argument which asserts that: if we can dominate the
parameters of a quadratic backward stochastic differential equation (QBSDE) with continuous
generator from above and from below by those of two BSDEs having ordered solutions, then
also the original QBSDE admits at least one solution. This result is presented in a general
framework: we do not impose any integrability condition on none of the terminal data of the
three involved BSDEs, we do not require any constraint on the growth nor continuity of the
two dominating generators. As a consequence, we establish the existence of a maximal and
a minimal solution to BSDEs whose coefficient H is continuous and satisfies |H(t, y, z)| ≤
αt + βt|y| + θt|z| + f(|y|)|z|2, where αt, βt, θt are positive processes and the function f is
positive, continuous and increasing (or even only positive and locally bounded) on R. This is
done with unbounded terminal value. We cover the classical QBSDEs where the function f is
constant ([10], [12], [23], [25]) and when f(y) = yp ([21]) and also the cases where the generator
has super linear growth such as y|z|, e|y|k |z|p, ee|y| |z|2, (k ≥ 0, 0 ≤ p < 2) and so on. In
contrast to the works [10, 12, 21, 23, 25], we get the existence of a a maximal and a minimal
solution and we cover the BSDEs with at most linear growth (take f = 0). In particular,
we cover and extend the results of [22] and [24]. Furthermore, we establish the existence and
uniqueness of solutions to BSDEs driven by f(y)|z|2 when f is merely locally integrable on R.

AMS 2000 Classification subjects: 60H10, 60H20, 60H30, 91G10

Keywords : Superlinear backward stochastic differential equations, Quadratic backward stochas-
tic differential equations, unbounded solutions. maximal and a minimal

1 Introduction

Let (Wt)0≤t≤T be a d–dimensional Brownian motion defined on a complete probability space
(Ω,F ,P). We denote by (Ft)0≤t≤T the natural filtration of W augmented with P-negligible
sets. Let H(t, ω, y, z) be a real valued Ft-progressively measurable process defined on [0, T ]×
Ω× R× Rd. Let ξ be an FT -measurable R-valued random variable. Consider the BSDE

Yt = ξ +

∫ T

t
H(s, Ys, Zs)ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T (eq(ξ,H))

ξ is called the terminal value and H is called the generator or the coefficient. A BSDE with
data (ξ,H) will be labeled eq(ξ,H) or BSDE (ξ,H) or BSDE(ξ,H).
∗Partially supported by PHC Toubkal/18/59.

1



Definition 1.1. (i) We say that eq(ξ,H) is quadratic if H has at most a quadratic growth in
its z-variable.

(ii) A solution to eq(ξ,H) is a process (Y, Z) which satisfies eq(ξ,H) on [0, T ] and such
that Y is continuous,

∫ T
0 |Zs|

2ds <∞ a.s and
∫ T
0 |H(s, Ys, Zs)|ds <∞ a.s.

(iii) A positive solution is a solution (Y,Z) such that Yt ≥ 0. We Symmetrically define a
negative solution. A bounded solution is a solution (Y,Z) such that Y is bounded

eq(ξ,H) is related to partial differential equations (PDEs), optimal stochastic control and
mathematical finance (risque measure, utility maximization, etc.). The Quadratic BSDEs were
studied in many papers, among them one can cite the works [6, 7, 10, 12, 13, 17, 19, 21, 23,
25, 28].

In this paper, we are concerned with the existence of solutions to BSDEs whose generator
H satisfies |H(t, y, z)| ≤ αt + βt|y| + θt|z| + f(|y|)|z|2, where αt, βt, θt are positive processes
and the function f is positive on R+ and locally bounded but not globally integrable on R. We
are motivated by the fact that the BSDEs driven by H(t, y, z) = g(ct, y) + f(|y|)|z|2 appears
in stochastic differential utility, see [17]. This type of BSDEs are also related to quadratic
PDEs appearing in financial markets, see [18]. Let us present another motivation : it has
been recently shown in [6, 7] that the BSDEs driven by a generator H satisfying |H(t, y, z)| ≤
α+β|y|+θ|z|+f(|y|)|z|2 have solutions when f is globally integrable and α, β, θ are constant.
However, these two works can not cover the classical BSDEs driven by |z|2, since they assume
that f is integrable on R . Thus, the following questions naturally arise:

1) Are there BSDEs whose generator H satisfying |H(t, y, z)| ≤ αt+βt|y|+θt|z|+f(|y|)|z|2
that have solutions without assuming the global integrability of f ?

2) If yes, what integrability condition we should require on the terminal value ξ ?

The following example gives a positive answer to the first question. It moreover shows that
neither global integrability of f nor integrability of ξ are necessary to the existence of solutions.

Example 1.1. Consider the BSDE

Yt = ξ +

∫ T

t
11R+(Ys)|Zs|2ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T. (1.1)

where for a set A, 11A denotes the indicator function of A.
Equation (1.1) is not covered by the works [10, 12, 17, 13, 19, 21, 23, 25, 28], since 11R+ is

neither constant nor continuous. It is also not covered by the works [6, 7, 17], since the function
11R+ is not globally integrable. Nevertheless, equation (1.1) admits a solution without any
integrability condition on ξ. Indeed, the function u(y) := 1

2(e2y − 1)11R+(y) + y11R∗−(y) belongs
to the Sobolev space W 2

1, loc(R) and solves the differential equation 1
2u
′′(y) − 11R+(y)u′(y) = 0

on R∗. Therefore, using Itô-Krylov’s formula for BSDEs (see [6, 7]) one can show that equation
(1.1) has a solution if and only if the following equation has a solution.

Ȳt = u(ξ)−
∫ T

t
Z̄sdWs, 0 ≤ t ≤ T. (1.2)

By Dudley’s representation theorem [16], equation (1.2) has a solution without any integrability
condition on u(ξ). Since u is a one to one function from R onto R, we deduce that equation
(1.1) has a solution without any integrability of ξ. If moreover, u(ξ) is integrable then equation
(1.1) has a unique solution (Y,Z) such that u(Y ) belongs to class (D). Other examples will be
presented later.
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The aim of this paper is to introduce a domination method which allows to solve eq(ξ,H)
when ξ is unbounded and |H(t, y, z)| ≤ αt+βt|y|+θt|z|+f(|y|)|z|2, where αt, βt, θt are positive
processes and the function f is positive on R+ and locally bounded but not globally integrable
on R. Our strategy is divided into five stages each of which has its own interest:

In the first step (i), we establish existence, uniqueness and comparison of solutions to BSDEs
driven by f(y)|z|2 when f is locally integrable, this covers the classical case where f is constant.
It will be shown that when uf (R) = R, then the BSDE (ξ, f(y)|z|2) has a solution without any
integrability condition on the terminal value, and when uf (R) 6= R, then the condition uf (ξ)
integrable is necessary to the existence of solutions for eq(ξ, f(y)|z|2). We also show that the
uniqueness as well as the comparison hold for BSDE(ξ, f(y)|z|2) in the class of solutions such
that uf (Y ) belongs to class (D).

In order to explain the other steps, we precise some notation, definitions and assumptions.

Some notation. For given real numbers a and b, we set a∧b := min(a, b), a∨b := max(a, b),
a− := max(0,−a) and a+ := max(0, a).

For given positive processes α and β we denote ξα,β :=
(
|ξ|+

∫ T
0 αsds

)
e
∫ T
0 βsds.

We define ξ+α,β and ξ−α,β in likewise manner.

For p > 0, we denote by Lploc(R) (Lploc in short) the space of (classes) of functions u defined
on R which are p-integrable on bounded set of R. We also denote,

W 2
p, loc := the Sobolev space of (classes) of functions u defined on R such that both u and

its generalized derivatives u′ and u′′ belong to Lploc(R).

C := the space of continuous and Ft –adapted processes.

Sp := the space of continuous, Ft –adapted processes ϕ such that E
(
sup0≤t≤T |ϕt|p

)
<∞.

L2 := the space of Ft –adapted processes ϕ satisfying
∫ T
0 |ϕs|

2ds < +∞ P–a.s.

Mp:= the space of Ft–adapted processes ϕ satisfying E
[(∫ T

0 |ϕs|
2ds
) p

2

]
< +∞.

We say that the process ϕ := (ϕs)0≤s T belongs to class (D) if sup0≤τ≤T |Yτ | <∞, where
the supremum is taken over all stopping times τ such that τ ≤ T .

BMO is the space of uniformly integrable martingalesM satisfying supτ ||E
(
|MT−Mτ |/Fτ

)
||∞ <

∞, where the supremum is taken over all stopping times τ .

For a given locally integrable function f defined on R, we put

uf (y) :

∫ y

0
exp

(
2

∫ x

0
f(r)dr

)
dx. (1.3)

The properties of the function uf are given in Lemma 5.1 of Apendix.

Consider the following assumptions.

(A1) H is continuous in (y, z) for a.e (t, ω) and satisfies,

|H(t, y, z)| ≤ αt + βt|y|+ f(|y|)|z|2

where αt, βt are some (Ft)-adapted processes which are positive and f is a real valued function
which is continuous, increasing and positive on R+

(A2) uf (ξα,β) is integrable,
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where uf is defined by (1.3).

In step (ii), we introduce the domination argument (Lemma 3.1 below) which is an abstract
result that gives the existence of solutions to BSDEs without integrability condition on the
terminal value. It asserts that: if (ξ1, H1) and (ξ2, H2) are two BSDEs which respectively admit
two solutions (Y1, Z1) and (Y2, Z2) such that (ξ1, H1, Y1) ≤ (ξ2, H2, Y2), then any Quadratic
BSDE (ξ,H) with continuous generator and satisfying (ξ1, H1) ≤ (ξ,H) ≤ (ξ2, H2) has at least
one solution (Y,Z) such that Y1 ≤ Y ≤ Y2. Moreover, among all solutions which lie between Y1
and Y2, there are a maximal and a minimal solution. The proof of this result do not need any
a priori estimate nor approximation. It is based on the remarkable work [20] on the existence
of reflected QBSDEs without any integrability condition on the terminal value. Actually, we
derive the existence of our QBSDE from a suitable reflected QBSDE.

In steps (iii)–(iv), we use the domination argument to show that when assumptions (A1),
(A2) are satisfied then eq(ξ,H) admits a maximal and a minimal solution satisfying some
conditions which will be precised later. We cover the results obtained in [10, 12, 21, 23] and
also the cases where the generator has super linear growth such as y|z|, e|y||z|p (0 ≤ p < 2)
e|y||z|2 and more generally the case |H(y, z)| ≤ αt+βt|y|+ g(|y|)|z|p+ f(|y|)|z|2 where f and g
are continuous, increasing and positive on R+, and 0 ≤ p < 2. In all these cases, the existence
of solutions is established with an unbounded terminal value. Although the case where the
function f is globally integrable is not covered by assumption (A1), one can again use the
domination argument to show that if H satisfies (A1) with f globally integrable and ξα,β is
integrable, then eq(ξ,H) has a maximal and a minimal solution; this extends the result of [6, 7]
to the case where α, β are processes and ξ is merely in L1.

In step (v), we establish the existence of solutions to eq(ξ,H) under the the following
assumptions:

(A3) H is continuous in (y, z) for a.e (t, ω) and satisfies,

|H(t, y, z)| ≤ αt + βt|y|+ θt|z|+ f(|y|)|z|2

where αt, βt are some (Ft)-adapted processes which are positive and f is a real valued function
which is continuous, increasing and positive on R+

(A4) sup
π∈

∑E
(
Γπ0,Tuf (ξα,β)

)
:= sup

π∈
∑E

(
e
∫ T
0 θrπrdWr− 1

2

∫ T
0 θ2r |πr|2druf (ξα,β)

)
< +∞

where
∑

:=

{
π ∈ L2, |π| ∈ {0, 1}, a.e. and ess sup

ω

∫ T

0
θ2r |πr|2dr < +∞

}
.

In this case, we use again the domination argument to reduce the solvability of eq(ξ,H) to that
of eq

(
uf (ξα,β

)
, θt|z|) and then to deduce the existence of solutions to eq(ξ,H). It should be

noted that the works [6, 7, 10, 12, 17, 13, 21, 23, 25, 28] consider only the case θt = 0. To the
best of our knowlege, the case θt 6= 0 is considered only in [7, 19] and in the present paper.
We emphasize that assumptions (A1)-(A2) are covered by (A3)-(A4). However, for the sake of
clarity and to make the paper easy to read, we separately treat these two situations.

Let us now present our method and their advantages when θt = 0: In order to establish
the existence of solutions, we first only assume (A1) then we prove that the solvability of
eq(ξ,H) is reduced to the positive solvability (i.e. Y ≥ 0) of the two BSDEs eq

(
uf (ξ+α,β), 0

)
and eq

(
uf (ξ−α,β), 0

)
(see the proof of Proposition 3.1). We finally show that the latter two

BSDEs have simultaneously positive solutions if and only if assumption (A2) is satisfied. This
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shows how assumption (A2) is not a priori imposed here but is generated along the proof. Our
method makes it possible to control more precisely the integrability condition we should impose
to the terminal value.

Here are some other advantages of the domination method: instead of eq(ξ,H), we only
work with the dominating equations eq(ξ1, H1) and eq(ξ2, H2) which are more simple than the
initial one (ξ,H). In contrast to the papers [10, 12, 25, 23, 28], our method allows to get
the existence of a maximal and a minimal solution. It moreover allows to deal with all one
dimensional BSDEs up to quadratic ones and seems unify their treatment. Note also that,
the three involved terminal data ξ, ξ1 and ξ2 are not necessary integrable, the two dominating
coefficients H1, H2 are merely measurable and can have arbitrarily growth. Only H(t, y, z)
should be continuous on (y, z) and of at most quadratic growth in z. In return, the solutions
lie in C × L2 and hence not necessary integrable.

We summarize the results of some previous works in the light of assumptions (A1)-(A2). The
case where f is constant and α, β do not depend on ω has been considered in [23] where the ex-
istence of bounded solutions is established provided that the terminal value is bounded. In [12],
the existence of solutions is obtained when α, β and f are constant (f(y) = γ

2 ) provided that
exp(γ|ξ|eβT ) is integrable. The authors of [10] consider the case where f is constant(f(y) = γ

2 )
and established the existence of solutions when exp

[
γ(|ξ|+

∫ T
0 αsds)e

∫ T
0 βsds

]
is integrable. In

[19], the authors consider a generalized QBSDE and the function f is replaced by a contin-
uous process rt, the existence of solution is then obtained provided, when α = β = 0, that
exp(CT |ξ|)−1

CT
11{CT>0} + |ξ|11{CT=0}, with CT = sup

s≤T
rs. The authors of [6, 7] consider the case

where α, β are constant and f is globally integrable and they established the existence of
solutions in S2 ×M2 when the terminal value is merely square integrable.

Let us briefly describe the principal methods used in some previous papers. When the
function f is constant, two methods have been essentially developed in order to establish the
existence of solutions. The first one is the monotone stability [10, 12, 23, 25]. The second
approach is based on a fixed point argument and has been introduced in [28]. In the latter, the
uniqueness is also obtained but it requires that the generator satisfies the so-called Lipschitz-
quadratic condition. These two methods use some a priori estimates and approximations which
are sometimes difficult to obtain. It should be noted that, the papers [10, 12, 23, 25, 28] consider
the cases where the terminal value is bounded or at least with some exponential moments. An
alternative method was recently developed in [6, 7]. This method are based on the work
[20] where the existence of reflected QBSDEs is established without any integrability of the
terminal value. The idea, used in [6, 7], consists then in deriving the existence of BSDEs from
the existence of a suitable reflected BSDEs when the solutions belong to S2 ×M2.

We now compare our method with those of [10, 12, 21, 23, 25, 28]. In the latter, the
authors proceed as follows: they first impose some integrability (or boudedness) condition on
the terminal value ξ. Next, they establish some a priori estimates for the solutions by using the
integrability (or the boundedness) of ξ. This allows them to prove the existence of solutions by
using a suitable approximation.

Our approach is completely different: in order to prove the existence of solutions, we only
use Lemma 3.1 and some change of variables formulas. We do not need to establish any a priori
estimates of the solutions. We do not need to construct any approximation. In contrast to the
previous papers, the integrability of the terminal value is not a priori imposed but obtained by
solving an inverse problem. In contrast to the works [10, 12, 21, 23, 25, 28], our result covers
the BSDEs with at most linear growth, and in particular it extends the results of [24] and [22]
by taking f = 0.
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The paper is organized as follows. In section 2, we establish the existence and uniqueness for
the BSDE (ξ, f(y)|z|2) when f is locally integrable on R, we also give some examples of BSDEs
which have solutions without any integrability of the terminal value ξ. In section 3, we begin by
introducing the domination argument then we use it to establish the existence of solutions to
eq(ξ,H) under conditions (A1)-(A2) and also under assumption (A3)-(A4). Some integrability
properties are also established for the solutions of eq(ξ,H) under additional assumptions which
will be specified below in section 3. In section 4, we treat the BSDEs with at most logarithmic
growth y ln |y|. Using the domination argument and some change of variables, we show that
these equations can be solved by using the quadratic BSDEs and vice-versa. Insection 5, some
auxiliary results are given.

Since our approach consists in reducing the solvability of eq(ξ,H) under assumptions (A1)
[resp. (A3)] to the positive solvability (Y ≥ 0) of eq(uf (ξ+α,β), 0) [resp. eq(uf (ξ+α,β), θt|z|)], the
following two propositions which study the existence of positive solutions to these two simple
BSDEs are then useful.

1.1 Two basic BSDEs

The following proposition is useful in studying the solvability of (eq(ξ,H) when assumption
(A1) is satisfied. It characterizes the existence of positive solutions to a BSDE driven by a null
generator.

Proposition 1.1. The BSDE (ζ, 0).
I) According to Dudley’s theorem [16], the following BSDE has a solution for any FT –

measurable random variable ζ.

yt := ζ −
∫ T

t
zsdWs (1.4)

Furthermore,

(i) If ζ is integrable, then equation (1.4) has a unique solution (y, z) such that y belongs to
class (D) given by Yt = E(ζ/Ft). Furthermore, z belongs toMp for each 0 < p < 1.

(ii) If ζ is positive and (1.4) has a positive solution, then ζ is necessary integrable.

(iii) If ζ 6= 0, then for any process z, (0, zt) could not be a solution to the BSDE (ζ, 0).

Proof Assertion (i) can be proved by using a usual localization and Fatou’s lemma. We
prove Assertion (ii). Dudley’s representation theorem allows us to show that eq(ζ, 0) has at
least a solution (y, z) in C × L2. Since ζ is integrable, then yt := E(ζ/Ft) is a solution which
belongs to class (D). It follows that the stochastic integral

∫ .
0 zsdWs is a uniformly integrable

martingale. Using Proposition 4.7, Chap. IV of [27] (see also [14]) and the Burkholder-Davis-
Gundy inequality we show that z belongs to Mp, for each 0 < p < 1. We shall prove that the
process (y, z) we just constructed is actually the unique solution such that y belongs to class
(D). Let (y1, z1) and (y2, z2) be two solutions such that y1 and y2 belong to class (D). It follows
that y1 − y2 belongs to class (D) and hence the stochastic integral (

∫ t
0 (z1s − z2s )dWs)0≤t≤T is a

martingale in class (D). It follows that y1 = y2. Using the Burkholder-Davis-Gundy inequality,

we show that E
[(∫ T

0 |z
1
s − z2s |2

)p/2]
= 0. Assertion (ii) is proved. We shall prove (iii). Let

ζ 6= 0. Assume that there exists a process z such that (0, z) is a solution to eq(ζ, 0). Then for
any t ≤ T , 0 = ζ −

∫ T
t zsdWs which implies that ζ = 0 by putting t = T .
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The following proposition, which is taken from [19] (Proposition 6.1 of [19]), gives a nec-
essary and sufficient condition which ensures the existence of positive solutions to the BSDEs
driven by the generator θt|z|. This proposition is useful when assumption (A3) is satisfied.

Proposition 1.2. ( [19], Proposition 6.1). The BSDE (ζ, θt|z|2). Let ζ be a positive FT –
measurable random variable. The BSDE

yt = ζ +

∫ T

t
θs|zs|ds−

∫ T

t
zsdWs , t ≤ T (1.5)

has a positive solution if and only if

sup
π∈

∑E
(
Γπ0,T ζ

)
:= sup

π∈
∑E

(
e
∫ T
0 θuπudWu− 1

2

∫ T
0 θ2u|πu|2duζ

)
< +∞ (1.6)

where
∑

:=

{
π ∈ L2, |π| ∈ {0, 1}, a.e. and ess sup

ω

∫ T

0
θ2u|πu|2du < +∞

}
In this case, there exist z̄ ∈ L2 and ȳt := ess sup

π∈
∑E(Γπt,T ζ|Ft) such that (ȳ, z̄) is the minimal

solution of Equation (1.5). Furthermore, ȳt ≥ E(ζ|Ft) ≥ 0, for each t ∈ [0, T ].

2 The BSDE(ξ, f(y)|z|2)
The BSDE(ξ, f(y)|z|2) will be used in order to solve the general equation (ξ,H) with |H(t, y, z)| ≤
αt|y|+βt|y|+θt|z|+f(|y|)|z|2. However, since eq(ξ, f(y)|z|2) is interesting itself and do not need
the domination argument, we give in this subsection a complete study of this equation in the
case where the function f is locally integrable but not necessary continuous. A characterization
of the existence of solution is given for this equations. This is related to the function uf , and
for instance, when uf (R) = R then the BSDE(ξ, f(y)|z|2) has a solution for each terminal value
ξ. No integrability is required to the terminal value ξ. We start this section by some examples
which are covered by the present work and not covered by those of [6, 7, 10, 12, 19, 21, 23, 25, 28].

2.1 Some examples of QBSDEs with non integrable terminal value

Example 2.1. Let f1 be a bounded function which is globally integrable on R. We assume
that f is bounded by 1 for simplicity. Clearly, the generator H1(y, z) := f1(y)|z|2 satisfies
|H(y, z)| ≤ |z|2. Hence, H1(y, z) is of quadratic growth. It was shown in [6, 7] that the
QBSDE (ξ, f1(y)|z|2) has a solution without any integrability condition on the terminal value ξ.
Moreover, when ξ is square integrable then eq(ξ, f1(y)|z|2) has a unique solution in S2 ×M2.

Indeed, for a given locally integrable function f , the transformation uf defined in (1.3) is
a one to one function from R onto R. Both uf and its inverse belong to the Sobolev space
W 2

1, loc. Using Itô-Krylov’s formula for BSDEs (see [6, 7]), it follows that eq(ξ, f1(y)|z|2) has a
solution if and only if eq(uf1(ξ), 0) has a solution. Since f1 is globally integrable, then uf1 and
its inverse are uniformly Lipschitz. It follows that uf1(ξ) is square integrable if and only if ξ is
square integrable. Therefore, eq(ξ, f1(y)|z|2) has a unique solution in S2 ×M2 whenever ξ is
merely square integrable. This also shows that the convexity of the generator is not necessary
to the uniqueness.
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Example 2.2. The functions

f2(y) := ey and f3(y) := 11{y>0} + 11{y≤0}e
y (2.1)

are not globally integrable on R. However, the same argument shows that eq(ξ, fi(y)|z|2) has a
solution without any integrability of ξ, for i ∈ {2, 3}. Note that f2 is neither globally integrable
nor bounded.

2.2 Existence of BSDE(ξ, f(y)|z|2) with f locally integrable

Let f : R −→ R be a locally integrable function. The goal of this part is to explain how some
eq(ξ, f(y)|z|2) has solutions without integrability of ξ and others need the integrability of ξ.

Consider the QBSDE

Yt = ξ +

∫ T

t
f(Ys)|Zs|2ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T. (2.2)

The function uf defined by (1.3) belongs to the Sobolev spaceW 2
1,loc(R). Therefore, applying

Itô-Krylov’s formula to uf (see [6, 7]), one can show that (Y, Z) is a solution to equation (2.2)
if and only if (Ȳ , Z̄) := (uf (Y ), u′f (Y )Z) is a solution to the BSDE

Ȳt = uf (ξ)−
∫ T

t
Z̄sdWs, 0 ≤ t ≤ T. (2.3)

According to Dudley’s representation theorem, eq(uf (ξ), 0) has a solution for any FT -
measurable random variable uf (ξ). No integrability is required to uf (ξ). But, our problem
is to solve eq(ξ, f(y)|z|2). This is the subject of the following proposition.

Proposition 2.1. Let f be a locally integrable function and ξ a FT -measurable random variable.
(i) If uf (R) = R, then eq(ξ, f(y)|z|2) has a solution. No integrability is needed for ξ.
(ii) Let uf (R) 6= R. If f is positive, uf (y) is then increasing and lim

y→∞
uf (y) = +∞.

Assume that lim
y→−∞

uf (y) = c > −∞. Then, necessary ūf (ξ) := uf (ξ)− c is integrable. In this

case, eq(ξ, f(y)|z|2) has a solution given by Ys = ū−1f (E[ūf (ξ)/Fs]). The case f negative goes
similarly.

Proof Assertion (i) is simple. We prove assertion (ii). The function ūf (y) := uf (y) − c
belongs to the Sobolev space W 2

1,loc(R) and it is one to one from R into R+. Hence, Itô-
Krylov’s formula applied to ūf shows that (Y,Z) is a solution to equation (2.2) if and only if
(Ȳ , Z̄) := (ūf (Y ), ū′f (Y )Z) is a solution to the BSDE

Ȳt = ūf (ξ)−
∫ T

t
Z̄sdWs, 0 ≤ t ≤ T. (2.4)

Since Ȳ := ūf (Y ) is positive, Therefore, eq(ξ, f(y)|z|2) has a solution if and only if ūf (ξ) is
integrable. We then deduce that for any s ≤ T , Ys = ū−1f (E[ūf (ξ)/Fs]).

2.3 Uniqueness and comparison for eq(ξ, f(y)|z|2) with f locally integrable

Proposition 2.2. Let f : R −→ R be locally integrable. Let uf be the function defined in
Lemma 5.1-I, v the function defined in Lemma 5.1-II and w the fonction defined in Lemma
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5.1-III. Assume that uf (ξ) is integrable. Then, the BSDE(ξ, f(y)|z|2) has a unique solution
(Y,Z) such that uf (Y ) belongs to class (D).
If moreover,

(i) v(Y ) belongs to class (D), then E
∫ T
0 |Zs|

2ds <∞.
(ii) w(Y ) belongs to class (D), then E

∫ T
0 |f(Ys)||Zs|2ds <∞.

Proof The BSDE(ξ, f(y)|z|2) has a solution if and only if the BSDE (uf (ξ), 0) has a solution.
But eq(uf (ξ), 0) has a solution by Dudley’s representation theorem. This gives the existence
of solutions. We prove the uniqueness. Let Y 1 and Y 2 be two solutions of eq(ξ, f(y)|z|2) such
that uf (Y 1) and uf (Y 2) belong to class (D). Arguing as in the proof of Proposition 1.1, we
show that uf (Y 1) = uf (Y 2) which implies that Y 1 = Y 2 since uf is one to one. Arguing again
as in the proof of Proposition 1.1, we show that

∫ T
0 |Z

1
s − Z2

s |2ds = 0 a.s, since u′f is strictly
positive.

We prove (i). Let v be the map defined in Lemma 5.1-II). For N > 0, let τN := inf{t > 0 :
|Yt| +

∫ t
0 |v
′(Ys)|2|Zs|2ds ≥ N} ∧ T . Set sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0. Since

the map x 7→ v(|x|) belongs to W 2
1, loc(R), then thanks to Itô-Krylov’s formula for BSDEs (see

[6, 7]), we have for any t ∈ [0, T ],

v(|Y0|) = v(|Yt∧τN |) +

∫ t∧τN

0

[
sgn(Ys)v

′(|Ys|)f(Ys)|Zs|2 −
1

2
v′′(|Ys|)|Zs|2

]
ds

−
∫ t∧τN

0
sgn(Ys)v

′(|Ys|)ZsdWs .

Lemma 5.1-II) allows us to deduce that for any N > 0,

1

2
E
∫ t∧τN

0
|Zs|2ds ≤ E

[
v(|Yt∧τN |)

]
(2.5)

≤ sup
τ≤T

E
[
v(|Yτ |)

]
(2.6)

where the supremum in the first right hand term, is taken over all stopping times τ ≤ T .
Since the process [v(|Yt|)] belongs to class (D), the proof is completed by using Fatou’s

lemma.
We prove (ii). Without loss, we assume that f is positive. Let w be the map defined in

Lemma 5.1-III). For N > 0, let τN := inf{t > 0 : |Yt| +
∫ t
0 |w

′(Ys)|2|Zs|2ds ≥ N} ∧ T . Set
sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0. Since the map x 7→ w(|x|) belongs to W 2

1, loc(R),
then thanks to Itô-Krylov’s formula for BSDEs (see [6, 7]), we have for any t ∈ [0, T ],

w(|Y0|) = w(|Yt∧τN |) +

∫ t∧τN

0

[
sgn(Ys)w

′(|Ys|)f(Ys)|Zs|2 −
1

2
w′′(|Ys|)|Zs|2

]
ds

−
∫ t∧τN

0
sgn(Ys)w

′(|Ys|)ZsdWs.

Assumption (A1) and Lemma 5.1-III) allow us to show that for any N > 0,

1

2
E
∫ t∧τN

0
f(Ys)|Zs|2ds ≤ E[w(|Yt∧τN |)] (2.7)

where the supremum in the first right hand term, is taken over all stopping times τ ≤ T .
Since w(Y ) belongs to class (D), the proof is completed by sending N to ∞ and using Fatou’s
lemma. Proposition 2.2 is proved.
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Remark 2.1. (i) Propositions 2.1 and 2.2 give the existence of solution in C × L2 with and
without integrability of uf (ξ). If one wants to get more integrability of the solutions, then it
is sufficient to impose more integrability on uf (ξ). For instance, when ξ is bounded then the
solution (Y,Z) is such that Y is bounded and (

∫ t
0 ZsdWs)0≤t≤T is a BMO martingale.

(ii) Note that, in contrast to [6, 7], the integrability of uf (ξ) is not equivalent to that of ξ.

Proposition 2.3. (Comparison) Let ξ1, ξ2 be FT –measurable. Let f1, f2 be elements of
L1
loc(R). Assume that uf1(xi1) and uf2(xi2) are integrable. Let (Y f1 , Zf1), (Y f2 , Zf2) be re-

spectively the unique solution in class (D) of eq(ξ1, f1(y)|z|2) and eq(ξ2, f2(y)|z|2). Assume
that ξ1 ≤ ξ2 a.s. and f1 ≤ f2 a.e. Then Y f1

t ≤ Y
f2
t for all t P–a.s.

Proof According to Proposition 2.2, the solutions Y f1 and Y f2 belong to class (D). Arguing as
in the proof of Proposition 2.2, one can show that the processes

( ∫ t
0 u
′
f1

(Y f1
s )Zf1s dWs

)
0≤t≤T and( ∫ t

0 u
′
f2

(Y f2
s )Zf2s dWs

)
0≤t≤T are uniformly integrable martingales. Using the Burkhölder-Davis-

Gundy inequality and the fact that f1 ≤ f2, we show that the process
( ∫ t

0 u
′
f1

(Y f2
s )Zf2s dWs

)
0≤t≤T

is a uniformly integrable martingale. The rest of the proof can be performed as that of Propo-
sition 3.2. in [7].

3 BSDE(ξ,H)

To deal with more general BSDEs, we need the domination argument which will be present in
the following subsection.

3.1 The domination argument

The domination argument implicitly appears in [6, 7] in a particular situation where the two
dominating solutions belong to S2 ×M2, the function f is globally integrable on R, the three
terminal values are square integrable, the two dominating coefficients H1, H2 are of quadratic
growth in z and of linear growth in y. Here, this argument is presented in a general framework,
that is: the two dominating solutions lie in C × L2, the three involved terminal data ξ, ξ1 and
ξ2 are not necessary integrable, the two dominating coefficients H1, H2 are merely measurable
and can have arbitrarily growth. Only H(t, y, z) should be continuous on (y, z) and of at most
quadratic growth in z.

Definition 3.1. (Domination conditions) We say that the data (ξ,H) satisfy a domination
condition if there exist two (Ft) progressively measurable processes H1 and H2, two (FT ) mea-
surable random variables ξ1 and ξ2 such that:
(D1) ξ1 ≤ ξ ≤ ξ2
(D2) eq(ξ1, H1) and eq(ξ2, H2) have two solutions (Y 1, Z1) and (Y 2, Z2) such that:

(a) Y 1 ≤ Y 2,
(b) for every (t, ω), y ∈ [Y 1

t (ω), Y 2
t (ω)] and z ∈ Rd,

(i) H1(t, y, z) ≤ H(t, y, z) ≤ H2(t, y, z)

(ii) |H(t, ω, y, z)| ≤ ηt(ω) + Ct(ω)|z|2

where C and η are Ft-adapted processes such that C is continuous and η satisfies for each ω,∫ T
0 |ηs(ω)|ds <∞.
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Lemma 3.1. (Existence by domination) Let H be continuous in (y, z) for a.e. (t, ω). Assume
moreover that (ξ,H) satisfy the domination conditions (D1)–(D2). Then,

(i) The BSDE (ξ,H) has at least one solution (Y,Z) such that Y 1 ≤ Y ≤ Y 2.
(ii) Among all solutions which lie between Y 1 and Y 2, there exist a maximal and a minimal

solution.

This lemma directly gives the existence of solutions. We do not need any a priori estimates
nor approximation. The idea of the proof consists in deriving the existence of solutions for
the BSDE without reflection from solutions of a suitable QBSDE with two reflecting barriers.
To this end, we use the remarkable result of Essaky & Hassani ([20], Theorem 3.2) which
establishes the existence of solutions for reflected QBSDEs without assuming any integrability
condition on the terminal value. For the self-contained, this result is stated in Theorem 5.1 in
Appendix.

Proof of Lemma 3.1 Using Theorem 3.2 in [20] (see Theorem 5.1 in Apendix) with L = Y H1

and U = Y H2 , there exists a process (Y,Z,K+,K−) such that (Y,Z) belongs to C × L2 and
(Y, Z,K+,K−) satisfies the following reflected BSDE, for t ∈ [0, T ],

(i) Yt = ξ +

∫ T

t
H(s, Ys, Zs)ds−

∫ T

t
ZsdBs

+

∫ T

t
dK+

s −
∫ T

t
dK−s

(ii) ∀ t ≤ T, Y H1
t ≤ Yt ≤ Y H2

t ,

(iii)

∫ T

0
(Yt − Y H1

t )dK+
t =

∫ T

0
(Y H2
t − Yt)dK−t = 0, a.s.,

(iv) K+
0 = K−0 = 0, K+,K− are continuous nondecreasing,

(v) dK+⊥dK−.

(3.1)

Moreover, equation (3.1) has a minimal solution and a maximal solution.
It remains to show that dK+ = dK− = 0. Since Y H2

t is a solution to the BSDE eq(ξ2, H2),
then Tanaka’s formula applied to (Y H2

t − Yt)+ shows that

(Y H2
t − Yt)+ = (Y H2

0 − Y0)+ +

∫ t

0
11{Y H2

s >Ys}
[H(s, Ys, Zs)−H2(s, Y

H2
s , ZH2

s )]ds

+

∫ t

0
11{Y H2

s >Ys}
(dK+

s − dK−s ) +

∫ t

0
11{Y H2

s >Ys}
(ZH2

s − Zs)dWs

+ L0
t (Y

H2 − Y )

where L0
t (Y

H2 − Y ) is the local time at time t and level 0 of the semimartingale (Y H2 − Y ).

Since (Y H2
t − Yt)+ = (Y H2

t − Yt), then by identifying the terms of (Y H2
t − Yt)+ with those of

(Y H2
t − Yt) one can show that:

(Zs − ZH2
s )11{Y H2

s =Ys}
= 0 for a.e. (s, ω)

and∫ t

0
11{Y H2

s =Ys}
(dK+

s − dK−s ) = L0
t (Y

H2 − Y ) +

∫ t

0
11{Y H2

s =Ys}
[H2(s, Y

H2
s , ZH2

s )−H(s, Ys, Zs)]ds

11



Since
∫ t

0
11{Y H2

s =Ys}
dK+

s = 0, it holds that

0 ≤L0
t (Y

H2 − Y ) +

∫ t

0
11{Y H2

s =Ys}
[H2(s, Y

H2
s , ZH2

s )−H(s, Ys, Zs)]ds = −
∫ t

0
11{Y H2

s =Ys}
dK−s ≤ 0

Hence,
∫ t
0 11{Y H2

s =Ys}
dK−s = 0, which implies that dK− = 0. Similar arguments allow to show

that dK+ = 0. Therefore (Y, Z) is a solution to the (non reflected) BSDE eq(ξ,H).
As byproducts of the domination lemma, we establish in this section the existence of so-

lutions to eq(ξ,H) first when (A1)-(A2) are satisfied and next when (A3)-(A4) hold. Some
integrability properties of the solutions are also established under additional assumptions which
will be specified below.

3.2 BSDE(ξ,H) with |H(t, y, z)| ≤ αt + βt|y|+ f(|y|)|z|2

The goal is to solve eq(ξ,H). If one try to follow the proofs given in [10, 12], we should establish
some a priori estimates of solutions then use a suitable approximation. This way is not efficient
in our situation and in particular the exponential transformation can not be applied because f
is not constant. Furthermore, in contrast to the domination argument, the method of [10, 12]
can not be applied when the integrability of the terminal value is not a priori fixed. For the
same reason, the argument developed in [21, 13, 28] are also not effective in our situation. Note
moreover that the methods used in [10, 12, 21, 13, 28] can not allow to prove the existence of a
maximal and a minimal solution. The method used in [6, 7] does not work in our situation since
f is not globally integrable. The questions which then arise are : what condition we should
impose to the terminal value ξ in order to get the existence of solution when f is not globally
integrable? How do we proceed in this case ? This is the subject of the next subsection. To
prove the existence of solutions to eq(ξ,H), our strategy consists in using Lemma 3.1 which
allows to work without any a priori integrability condition on the terminal value ξ. Therefore,
we start by assuming that only (A1) is satisfied. Let

g(t, y, z) := αt + βt|y|+ f(|y|)|z|2 (3.2)

According to Lemma 3.1, to establish the existence of solutions to eq(ξ,H), it is enough to
show that eq(ξ+, g) has a solution (Y g, Zg) and eq(−ξ−,−g) has a solution (Y −g, Z−g) such
that

Y −g ≤ Y g. (3.3)

In [6, 7], the fact that ξ is assumed square integrable and f is globally integrable make simple
the solvability of eq(ξ+, g) and eq(−ξ−,−g) in S2×M2 from which we easly deduce inequality
(3.3). Question:

how to prove inequality (3.3) when we do not have any information on the integrability of ξ
nor on the integrability of the solutions?

We emphasize that the comparison theorem does not work in this situation. But we need to
prove inequality (3.3) in order to establish the existence of solutions to eq(ξ,H). We proceed as
follows : we assume that (A1) holds, we force Y −g to be negative and Y g to be positive then we
deduce the integrability condition [namely (A2)] which we should impose to the terminal value
ξ in order to get the existence of solution. Hence, assumption (A2) is generated by solving an
inverse problem. Lemma 3.1 plays a key role in our proof. In particular, it allows us to reduce
the solvability of eq(ξ+, g) to that of eq(ξ+α,β, 0) from which we derive assumption (A2).
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3.2.1 The BSDE (ξ, αt + βt|y|+ f(|y|)|z|2)

The goal of this subsection is to show that the BSDE (ξ+, g) has a positive solution and
the BSDE (ξ−,−g) has a negative solution. The method used in [6, 7] to show this consists in
reducing the solvability of these two BSDEs to the solvability of two BSDEs with linear growth.
These computations do not work in our situation, since f is not globally integrable. The proof
of following proposition shows how to get the existence of a positive to eq(ξ+, g) by using the
domination argument when we do not have information on the integrability terminal value ξ.
It also allows the determine the integrability of we should impose to ξ by solving an inverse
problem.

Proposition 3.1. Let ξ be an FT−measurable random variable. Let f be as in assumption
(A1) and g be the function defined by (3.2).

(i) The BSDE (ξ+, g) has a positive solution if the BSDE
(
uf (ξ+α,β), 0

)
has a positive

solution (Y,Z) such that Y ≥ uf
[
e
∫ T
0 βsds

(∫ T
0 αsds

)]
.

(ii) The BSDE (−ξ−,−g) has a negative solution if the BSDE(
uf (ξ−α,β), 0

)
has a positive solution (Y,Z) such that Y ≥ uf

[
e
∫ T
0 βsds

(∫ T
0 αsds

)]
.

(iii) If moreover assumption (A2) is satisfied, then eq(ξ+, g) has a positive solution and
eq(ξ−,−g) has a negative solution.

Proof (i) For the simplicity of notations, we assume that α and β are constant. Note that
(Y,Z) is a positive solution to eq(ξ+, g) if and only if (Y, Z) is a positive solution to the BSDE

Yt = ξ+ +

∫ T

t
α+ βYs + f (Ys) |Zs|2ds−

∫ T

t
ZsdWs. (3.4)

Therefore, it is enough to prove that: if eq(uf [eβT (ξ+ + αT )], 0) has a solution (Y 0, Z0) such
that Y 0 ≥ uf (αTeβT ) then equation (3.4) has a positive solution.

Return back to BSDE (3.4). By putting (Y 1
t , Z

1
t ) := (Yt + αt, Zt), we see that equation

(3.4) has a positive solution if and only if the BSDE

Y 1
t = ξ+ + αT +

∫ T

t
β(Y 1

s − αs) + f
(
Y 1
s − αs)

)
|Z1
s |2ds−

∫ T

t
Z1
sdWs (3.5)

has a solution (Y 1, Z1) such that for each t, Y 1
t ≥ αt.

Consider now the BSDE

Yt = αT −
∫ T

t
ZsdWs (3.6)

Clearly

• (Y,Z) = (αT, 0) is a solution to the BSDE (3.6),

• 0 ≤ ξ+ + αT ≤ ξ+ + αT ,

• for any y ≥ αT , 0 ≤ β(y − αs) + f (y − αs) |z|2 ≤ βy + f (y) |z|2 since f is increasing.

Therefore, using Lemma 3.1 [with ξ1 = 0, ξ = ξ+ + αT = ξ2, H1 = 0 and H2 = βy + f(y)|z|2],
we show that equation (3.5) has a solution (Y 1, Z1) satisfying Y 1 ≥ αT if the BSDE

Y 2
t = ξ+ + αT +

∫ T

t
β(Y 2

s ) + f
(
Y 2
s

)
|Z2
s |2ds−

∫ T

t
Z2
sdWs (3.7)
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has a solution (Y 2, Z2) satisfying Y 2 ≥ αT .
But, Itô’s formula shows that (Y 2, Z2) is a solution to equation (3.7) satisfying Y 2 ≥ αT if

and only if the process (Y 3
t , Z

3
t ) := (Y 2

t e
βt, Z2

t e
βt) is a solution to the BSDE

Y 3
t = (ξ+ + αT )eβT +

∫ T

t
f
(
Y 3
s e
−βs)

)
|Z3
s |2e−βsds−

∫ T

t
Z3
sdWs (3.8)

satisfying Y 3 ≥ αTeβT .
Since f is increasing and continuous then, as previously, we use again Lemma 3.1 [with ξ1 =

0, ξ = (ξ++αT )eβT = ξ2, H1 = 0 andH2 = f(y)|z|2], to show that equation (3.8) has a solution
(Y 3, Z3) such that Y 3 ≥ αTeβT if eq([ξ+ +αT ]eβT , f (y) |z|2) has a solution (Y 4, Z4) satisfying
Y 4 ≥ αTeβT . Applying Itô’s formula to uf (Y 4

t ), we show that eq([ξ+ + αT ]eβT , f (y) |z|2) has
a solution (Y 4, Z4) such that Y 4 ≥ αTeβT if and only if eq(uf [ξ+ + αT ]eβT ), 0) has a solution
(Y 5, Z5) satisfying Y 5 ≥ uf (αTeβT ). According to Proposition 1.1, the latter is equivalent to
the fact that uf [eβT (ξ+ + αT )] is integrable. Assertion (i) is proved.

Assertion (ii) can be proved similarly, since (Y,Z) is a negative solution to eq(−ξ−,−g) if
and only if (Y ′, Z ′) := (−Y,−Z) is a positive solution to the BSDE

Y ′t = ξ−
∫ T

t
α+ βY ′s + f

(
Y ′s
)
Z2
sds−

∫ T

t
Z ′sdWs (3.9)

Proposition 3.1 is proved.

3.2.2 The BSDE (ξ,H) with |H(t, y, z)| ≤ α+ β|y|+ f(|y|)|z|2

The following theorem is deduced from Proposition 3.1 and Lemma 3.1. It covers the previous
results established in [10, 12, 13, 21, 23] and many others situations which are not covered
by the previous works on QBSDE. For instance, we cover the cases: H(y, z) = y|z| and also
H(y, z) = αt+βt|y|+h(|y|)|z|p+ f(|y|)|z|2 with 0 < p < 2 and f , h continuous, increasing and
positive on R+.

Theorem 3.1. (i) Assume that H and ξ satisfy (A1)-(A2). Then, eq(ξ,H) has at least one
solution (Y,Z) which satisfies for any t,

−u−1f
(
E
[
uf
(
ξ−α,β

)
/Ft
])
≤ Yt ≤ u−1f

(
E
[
uf
(
ξ+α,β

)
/Ft
])
. (3.10)

In particular, we have

−E
[
uf
(
ξ−α,β

)]
≤ E[uf (Yt)] ≤ E

[
uf
(
ξ+α,β

)]
. (3.11)

(ii) Among all solutions satisfying (3.10), there are a maximal and a minimal solution. Note
also that, among all solutions satisfying Y −g ≤ Y ≤ Y g, there also exists a maximal and a
minimal solution.

The following remark will be used later. It can be proved as Theorem 3.1.

Remark 3.1. Under the assumptions of Theorem 3.1, it also holds that

−u−1f
(
E
[
uf
(
ξ−α,β

)
/Ft
])
≤
(
Yt +

∫ t

0
αsds

)
e
∫ t
0 βsds ≤ u−1f

(
E
[
uf
(
ξ+α,β

)
/Ft
])
. (3.12)

And in particular

−E
[
uf
(
ξ−α,β

)]
≤ E

(
uf

[(
Yt +

∫ t

0
αsds

)
e
∫ t
0 βsds

])
≤ E

[
uf
(
ξ+α,β

)]
. (3.13)
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Corollary 3.1. Theorem 3.1 remains valid when the function f is continuous but not necessary
increasing. In this case, assumption (A2) should be slightly modified as follows:

(A2bis) E
[
uφ
(
ξα,β

)]
<∞ where φ(y) := sup

0≤x≤y
f(x).

Proof Since the function φ is increasing and continuous, the result follows.

Remark 3.2. Note that when f is merely locally bounded but not necessary continuous, then
Theorem 3.1 remains valid with the following condition in place of assumption (A2).

(A2ter) E
[
uϕ
(
ξα,β

)]
<∞, where ϕ is the smallest continuous, increasing function such that

ϕ ≥ f .

Proposition 3.2. (Integrability property of solutions) (i) Let the assumptions of Theorem 3.1
be satisfied. Assume moreover that there exists p > 1 such that

E
[(
uf [ξα,β]

)p]
<∞. (3.14)

then the BSDE(ξ,H) has a solution (Y,Z) which satisfies

E

(
sup

0≤t≤T

[
uf

([
|Yt|+

∫ t

0
αsds

]
e
∫ t
0 βsds

)]p)
≤ E

(
[uf (ξα,β)]p

)
. (3.15)

(ii) If moreover, v(|Y |) belongs to class (D) and sup0≤s≤T E [|Ys|v′(|Ys|)] < ∞ then, the
BSDE(ξ,H) has a solution (Y, Z) which satisfies

E
∫ T

0
|Zs|2ds <∞, (3.16)

here v is the function defined in Lemma 5.1-II).

Remark 3.3. (i) Let v be the function defined in Lemma 5.1-II). Since for y large enough,
v′(|y|) ≤

[
u′(|y|)

]p, |y|v′(|y|) ≤ [u′(|y|)]p and we know by Theorem 3.1 that

|Yt| ≤ u−1f
(
E
[
uf
(
ξα,β

)
/Ft
])
,

then the conditions v(|Y |) belongs to class (D) and sup0≤s≤T E [|Ys|v′(|Ys|)] < ∞ are satisfied
when

sup
0≤t≤T

E
{

(αt + βt)
(
u′f

[
u−1f

(
E
[
uf
(
ξα,β

)
/Ft
])])p}

<∞, (3.17)

and

E

([
sup
t≤T

(
u′f
[
u−1f

(
E
[
uf
(
ξα,β

)
/Ft
]) ])]p)

<∞. (3.18)

(ii) Conditions (3.17) and (3.18), which seem be complicated, cover those used in previous
works. For instance, when αt, βt and f are constant with f(y) = γ

2 (see [12]), one can take
uf (y) = exp(γy). And in this case, conditions (3.17) and (3.18) become E[epγ(ξα,β)] < ∞ for
some p > 1, which is the condition imposed in [12].

Proof of Theorem 3.1. The existence of (a maximal and a minimal) solutions follows from
Proposition 3.1 and Lemma 3.1. Indeed, the two solutions we constructed in Proposition 3.1
satisfy Y −g ≤ Y g. We then use Lemma 3.1 with ξ1 = −ξ−, ξ2 = ξ+, H1 = −g and H2 = g to
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get the existence of solutions. We shall prove estimate (3.10). For simplicity, we assume that
α and β are constant. Since uf [eβT (ξ+ + αT )] is integrable, then the solution we constructed
in the proof of assertion (i) of Proposition 3.1 satisfies for any t,

uf ([Y g + αt]eβt) ≤ E(uf [eβT (ξ+ + αT )]/Ft).

This shows the first inequality of (3.10). A similar argument allows us to prove the second
inequality. Theorem 3.1 is proved.

Proof of Proposition 3.2. Assertion (i). Note that the solution (Y 5, Z5) we constructed in
the proof of Proposition 3.1 satisfies the BSDE

Y 5
t = uf [eβT (ξ+ + αT )]−

∫ T

t
Z5
sdWs (3.19)

Since there exists p > 1 such that inequality (3.14) holds, then equation (3.19) has a unique
solution (Y 5, Z5) such that (details can be found in [3, 4]):

E( sup
0≤t≤T

[Y 5
t ]
p
) ≤ E

([
uf
(
eβT [|ξ|+ αT ]

)]p)
. (3.20)

But, since uf [eβt(Y g
t + αt)] ≤ Y 5, we then have, E

(
sup0≤t≤T

[
uf
([
Y g
t +

∫ t
0 αsds

]
e
∫ t
0 βsds

)]p) ≤
E
([
uf
(
eβT [|ξ|+ αT ]

)]p).
Similarly, we get E

(
sup0≤t≤T

[
uf
([

(−Y g
t ) +

∫ t
0 αsds

]
e
∫ t
0 βsds

)]p) ≤ E
([
uf
(
eβT [|ξ|+ αT ]

)]p).
Assertion (i) is proved.

We shall prove assertion (ii). Let v be the function defined in Lemma 5.1-II). For N > 0, let
τN := inf{t > 0 : |Yt|+

∫ t
0 |v
′(Ys)|2|Zs|2ds ≥ N} ∧ T . Set sgn(x) = 1 if x ≥ 0 and sgn(x) = −1

if x < 0. Since the map x 7→ v(|x|) belongs to C2(R), then thanks to Itô’s formula, we have for
any t ∈ [0, T ]

v(|Y0|) = v(|Yt∧τN |) +

∫ t∧τN

0

[
sgn(Ys)v

′(|Ys|)H(s, Ys, Zs)−
1

2
v′′(|Ys|)|Zs|2

]
ds

−
∫ t∧τN

0
sgn(Ys)v

′(|Ys|)ZsdWs .

Assumption (A1) and Lemma 5.1-II) allow us to show that for any N > 0,

1

2
E
∫ t∧τN

0
|Zs|2ds ≤ E

[
v(|Yt∧τN |)

]
+ E

∫ T

0

[
αtv
′(|Ys|) + βt|Ys|v′(|Ys|)

]
ds (3.21)

Since the processes v(|Y |) and |Y |v′(|Y |) belong to class (D), the proof is completed by using
Fatou’s lemma. Proposition 3.2 is proved.

Corollary 3.2. (BMO property) (i) Let (A1) be satisfied. Assume moreover that ξ,
∫ T
0 αsds

and
∫ T
0 βsds are bounded. Then, every solution (Y,Z) satisfying inequalities (3.10) is such that

Y is bounded and the process (
∫ t
0 ZsdWs)0≤t≤T is a BMO martingale.

Proof (i) Let (Y,Z) be a solution to eq(ξ,H) such that Y satisfies inequalities (3.10). Since
ξ,
∫ T
0 αsds and

∫ T
0 βsds are bounded, then clearly Y is bounded. Arguing as in the proof of

Proposition 3.2 (ii), one can show that Z belongs to M2. We shall prove that the process
(
∫ t
0 ZsdWs)0≤t≤T is a BMO martingale. Let v be the function defined in Lemma 5.1-II). Since
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the map x 7−→ v(|x|) belongs to C2(R), then Itô’s formula shows that for any Ft–stopping time
τ ≤ T ,

v(|YT |) = v(|Yτ |) +

∫ T

τ

[
1

2
v′′(|Ys|)|Zs|2 − sgn(Ys)v

′(|Ys|)H(s, Ys, Zs)

]
ds

+

∫ T

τ
sgn(Ys)v

′(|Ys|)ZsdWs .

Since Y is bounded and Z belongs toM2, it follows that the stochastic integral in the right hand
side term of the previous equality is a square integrable Ft–martingale. Passing to conditional
expectation, one can show that there exist positive constants K1 and K2 such that

E
(∫ T

τ
|Zs|2ds/Fτ

)
≤ K1 + E

(∫ T

τ

[
(αs + βs|Ys|)v′(|Ys|)

]
ds/Fτ

)
We complete the proof by noticing that the processes Y ,

∫ T
0 αsds and

∫ T
0 βsds are bounded.

Assertions (ii) and (iii) can be proved similarly.

Remark 3.4. Let |H(t, y, z)| ≤ αt+βt|y|+f(y)|z|2, with f continuous, positive and increasing
but not globally integrable. Then, the condition which ensures the existence of solution is:

E
(
uf (ξ+α,β)) <∞ and E

(
exp

[
(ξ−)e

∫ T
0 βsds2f(0)

])
<∞ (3.22)

Proof We assume that α and β are constants for simplicity. As previously, thanks to Lemma
3.1, eq(ξ,H) has a solution if eq(ξ+, α+β|y|+f(y)|z|2) has a positive solution and eq(−ξ−,−[α+
β|y| + f(y)|z|2]) has a negative solution. The first inequality in (3.22) can be proved as in
Proposition 3.1. To prove the second inequality of (3.22), we see that (Y,Z) is a negative
solution to eq(−ξ−,−[α+ β|y|+ f(y)|z|2]) if (Y ′, Z ′) := (−Y,−Z) is a positive solution to the
BSDE

Y ′t = ξ− +

∫ T

t
[α+ βY ′s + f(−Y ′s )|Z ′s|2]ds−

∫ T

t
Z ′sdWs.

Since f is increasing, we use Lemma 3.1 to show that the previous BSDE has a positive solution
if the BSDE Y 1

t = ξ− +
∫ T
t [α+ βY 1

s + 2f(0)|Z1
s |2]ds−

∫ T
t Z1

sdWs has a positive solution. The
sequel of the proof goes as in Theorem 3.1.

The following corollary extends the result of [6, 7] to the case where ξα,β is only integrable
and the coefficients α, β, γ are positive processes.

Corollary 3.3. Let (A1) be satisfied with f globally integrable and locally bounded. Assume
that ξα,β is integrable. Then, eq(ξ,H) has a solution such that for every t

−E
(
ξ−α,β/Ft

)
≤ Yt ≤ E

(
ξ+α,β/Ft

)
. (3.23)

(ii) Among all solutions satisfying (3.10), there are a maximal and a minimal solution. Note
also that, among all solutions satisfying Y −g ≤ Y ≤ Y g, there also exists a maximal and a
minimal solution where the function g is defined by (3.2).

Proof Let g be the function defined by (3.2).
Since f is globally integrable uf and its inverse are uniformly Lipschitz. Hence, arguing

as in the proof of Proposition 3.1 one show that eq(ξ+, g) has a positive solution Y g such
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that: 0 ≤ Y g
t ≤ E

(
ξ+α,β/Ft

)
. Symmetrically, we show that eq(−ξ−,−g) has a negative

solution Y −g which satisfied : −E
(
ξ−α,β/Ft

)
≤ Y −gt ≤ 0. Since f is locally bounded,

then according to the proof of Theorem 4.1 of [7], there exists a continuous function f̄ such
that f ≤ f̄ . Therefore, we can apply Lemma 3.1 with ηt = αt + βt(|Y −gt | + |Y g

t |) and
Ct = sups≤t supa∈[0,1] |f̄(aY −gs + (1− a)Y g

s )|. Corollary 3.3 is proved.

3.2.3 BSDE(ξ,H) with |H(t, y, z)| ≤ αt + βt|y|+ θt|z|+ f(|y|)|z|2

As in the previous subsection, we use Lemma 3.1 to reduce the solvability of eq(ξ,H) to the
positive solvability (Y ≥ 0) of the simple BSDEs (uf (ξ+α,β), θt|z|) and (uf (ξ−α,β), θt|z|) then
apply Proposition 1.2 to conlude. We put

h(t, y, z) := αt + βt|y|+ θt|z|+ f(|y|)|z|2 (3.24)

Proposition 3.3. Assume that (A3), (A4) are satisfied. Then,
(i) eq(ξ,H) has at least one solution such that

−u−1f

(
ess sup

π∈
∑E

(
Γπt,Tuf (ξ−α,β)/Ft

))
≤ Yt ≤ u−1f

(
ess sup

π∈
∑E

(
Γπt,Tuf (ξ+α,β)/Ft

))
(3.25)

(ii) Among all solutions satisfying inequalities (3.25) there are a maximal and a minimal
solution.

(iii) Assume moreover that exp(
∫ T
0 θ2sds) is integrable, and ξα,β is bounded. Then all

solutions satisfying inequalities (3.25) are bounded.

Remark 3.5. One may wonder what is the usefulness of assumption (A3) since it can be
reduced to assumption (A1) by the operation αt +βt|y|+ θt|z|+ f(|y|)|z|2) ≤ αt + 1

2θ
2 +βt|y|+

[12 + f(|y|)]|z|2). It should be noted that in this case the integrability requested to the terminal
value will be higher.

Proof of Proposition 3.3. Since H satisfies (A3), then according to Lemma 3.1, it is enough
to show that eq(ξ+, αt + βt|y| + θt|z| + f(|y|)|z|2) has a positive solution. Arguing as in the
proof of Theorem 3.1, one can show that eq(ξ+, αt + βt|y| + θt|z| + f(|y|)|z|2) has a positive
solution if eq(uf (ξ+α,β), θt|z|) has a solution which is greater than uf (αTeβT ). This implies,
thanks to Proposition 1.2, that assumption (A4) is satisfied. Proposition 3.3 is proved.

Remark 3.6. (i) Taking f = 0 in Proposition 3.25, we get the existence of one dimensional
BSDEs with a stochastic linear growth. This covers the results of [24] and [22].

(ii) We emphasize that Proposition 1.5 combined with Lemma 3.1 allows to directly prove
the existence of solutions to BSDEs whose generators satisfy

|H(t, y, z)| ≤ αt + βt|y|+ θt|z| (3.26)

and ξ satisfies assumption (A3) with f = 0.
This constitute a new result on the existence of solutions to BSDEs with at most linear

growth which for instance covers the recent result [22], with a simpler proof.
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Remark 3.7. Since the transformation uf does not impact Z, we then have
If |H(t, y, z)| ≤ αt+βt|y|+θt|z|+f(|y|)|z|2 with α, β, f satisfy (A3) and E

∫ T
0 eqγsds <∞

for some q > 0, then arguing as in Proposition 3.3 and using [3, 4], one can show that eq(ξ,H)

has a solution (Y,Z) in Sp ×Mp provided that exp(12
∫ T
0 γse

βsds)uf (ξα,β) is p–integrable for
some p > 1.

Corollary 3.4. (BMO property) (i) Let (A3) be satisfied. Assume moreover that ξ,
∫ T
0 αsds,∫ T

0 βsds and
∫ T
0 γ2sds are bounded. Then, every solution (Y,Z) satisfying inequalities (3.25) is

such that Y is bounded and the process (
∫ t
0 ZsdWs)0≤t≤T is a BMO martingale.

(ii) When H is dominated by αt + θt|z|+ f(|y|)|z|2 with ξ,
∫ T
0 αsds and

∫ T
0 γ2sds bounded,

then we have the same conclusion as (i) with f locally integrable and increasing but not contin-
uous.

(iii) When H is dominated by θt|z|+ f(|y|)|z|2 with ξ,
∫ T
0 αsds and

∫ T
0 γ2sds bounded, then

we have the same conclusion as (i) with f merely locally integrable but neither increasing nor
continuous.

The following Corollary can be proved by combining the proof of Corollary 3.3 with that
of Proposition 3.3.

Corollary 3.5. Let (A3) be satisfied with f globally integrable and locally bounded. Assume
that ξα,β satisfies

sup
π∈

∑E
(
Γπ0,T (ξα,β)

)
:= sup

π∈
∑E

(
e
∫ T
0 θuπudWu− 1

2

∫ T
0 θ2u|πu|2du(ξα,β)

)
< +∞

Then, eq(ξ,H) has a solution such that for every t

−ess sup
π∈

∑E
(

Γπt,T (ξ−α,β)/Ft
)
≤ Yt ≤ ess sup

π∈
∑E

(
Γπt,T (ξ+α,β)/Ft

)
(3.27)

(ii) Among all solutions satisfying inequalities (3.27) there are a maximal and a minimal
solution.

Note also that, among all solutions satisfying Y −h ≤ Y ≤ Y h, there also exists a maximal
and a minimal solution where the function g is defined by (3.24).

4 Quadratic BSDEs and BSDEs with logarithmic nonlinearity

The aim of this subsection is to study the BSDE (ξ,H) with H continuous and with lLogl-
growth. That is : there exist positive constants a, b and c such that for every t, y, z

|H(t, y, z) ≤ a+ b|y|+ c|y|| ln |y|| (4.1)

Using Lemma 3.1, we show that that of eq(ξ,H) is equivalent to the solvability of eq(ξ, α +
β|y|+ γ

2 |z|
2), for suitable α, β and γ. According to Theorem 3.1, the BSDE (ξ, α+β|y|+ γ

2 |z|
2)

has a solution when exp(γeαT |ξ|) is integrable, and we have the following propositions.

Proposition 4.1. The BSDE (ξ, α + β|y| + γ
2 |z|

2) has a solution if and only if the BSDE
(eγξ, γαy + γβy| ln y|) has a solution.
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Proof Let
g(t, y, z) := α+ β|y|+ γ

2
|z|2. (4.2)

Applying Itô’s formula to u(y) := eγy, we show that (Yt, Zt) is a solution to eq(ξ, g) if and only
if (Ȳt, Z̄t) := (eγYt , γeγYtZt) is a solution to eq(eγξ, γαy + γβy| ln y|). Indeed: Let (Y,Z) be a
solution of eq(ξ, g). By Itô’s formula we have,

e γYt = e γYT +

∫ T

t
γeγYsg(s, Ys, Zs)ds−

∫ T

t
γeγYsZsdWs −

γ2

2

∫ T

t
eγYs |Zs|2ds

= e γξ +

∫ T

t
γeγYs(α+ β|Ys|+

γ

2
|Zs|2)ds−

∫ T

t
γeγYsZsdWs −

γ2

2

∫ T

t
eγYs |Zs|2ds

= e γξ +

∫ T

t
γeγYs(α+ β|Ys|)ds−

∫ T

t
γeγYsZsdWs

It is clear that Ȳ > 0 and (Ȳ , Z̄) satisfies the BSDE

Ȳt = e γξ +

∫ T

t
γ
(
αȲs + βȲs| ln Ȳs|

)
ds−

∫ T

t
Z̄sdWs.

Proposition 4.1 is proved.

Proposition 4.2. Let ξ be an FT−measurable random variable. Let G be defined by

G(y) := a+ b|y|+ c|y|| ln |y|| (4.3)

(i) If eq(e(a+b+2c)ec T (ξ+ + 1)e
c T
, 0) has a positive solution, then eq(ξ+, G) has a positive

solution.
(ii) (Y, Z) is a negative solution of eq(−ξ−,−G) if and only if (−Y,−Z) is a positive

solution to eq(ξ−, G). Therefore, if eq(e(a+b+2c)ec T (ξ−+1)e
c T
, 0) has a positive solution, then

eq(−ξ−,−G) has a negative solution.
(iii) If |ξ|ecT is integrable, then eq(ξ+, G) has a positive solution and eq(−ξ−,−G) has

a negative solution, and therefore eq(ξ,H) has at least one solution (Y, Z) which belongs to
SecT ×M2. Moreover, according to see [?], the uniqueness holds in Se2cT+1×M2 provided that
|ξ|e2cT+1 is integrable.

Proof Let G(y) := a + b|y| + c|y|| ln |y||. Let Y G be a positive solution to eq(ξ+, G). This is
equivalent to say that Y G is a positive solution to the BSDE (a+ by+ cy| ln y|). Applying Itô’s
formula to the function u(Y G

t ) := ln(Y G
t + 1), we obtain

u(Y G
t ) = ln(ξ+ + 1) +

∫ T

t

([
a+ bY G

s + c Y G
s | ln(Y G

s )|
] 1

1 + Y G
s

+
1

2

|ZGs |2

(1 + Y G
s )2

)
ds

−
∫ T

t

1

1 + Y G
s

ZGs dWs. (4.4)

The process (Ȳ , Z̄) := (ln(1 + Y G), ZG

1+Y G
) satisfies the BSDE

Ȳt = ln(ξ+ + 1) +

∫ T

t
H̄(s, Ȳs, Z̄s)ds−

∫ T

t
Z̄s dWs , (4.5)
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where

H̄(t, y, z) :=
[
a+ b(ey − 1) + c (ey − 1) | ln(ey − 1)|

] 1

ey
+

1

2
|z|2. (4.6)

Since the function x| ln(x)| < 1 for each x in [0, 1] and strictly increasing in [1, +∞), we then
have

(
x| ln(x)|

)
1

1+x ≤ 1 + | ln(x+ 1)|. Hence

(
a+ bx+ cx| ln(x)|

) 1

1 + x
≤ a+ b+ c+ c| ln(x+ 1)| (4.7)

It follows that

0 ≤ H̄(t, y, z) ≤ a+ b + c+ c y +
1

2
|z|2 (4.8)

According to Lemma 3.1, it is enough to show that eq(ln(ξ+ + 1), a+ b+ c+ c y+ 1
2 |z|

2) has a
positive solution. But from Proposition 3.1, eq(ln(ξ+ +1), a+ b+ c+ c y+ 1

2 |z|
2) has a positive

solution when eq(e(a+b+2c)ec T ee
c T ln(ξ++1), 0) has a positive solution, which is equivalent to

say that eq(e(a+b+2c)ec T (ξ+ + 1)e
c T
, 0) has a positive solution. This implies that (ξ+ + 1)e

c T

is integrable. Assertions (ii) can be proved as assertion (i). Lemma 3.1 allows to establish
existence of solutions of assertion (iii).

Remark 4.1. (Uniqueness). According to assertion (iii) of Proposition 4.2, eq(ξ, a + b|y| +
c|y|| ln |y||) has a unique solution (Y, Z) which belongs to Se2cT+1×M2 provided that |ξ|e2cT+1 is
integrable. Therefore, eq(ξ, α+β|y|+γ

2 |z|
2) has a unique solution provided that exp

(
γξ(e2βT + 1)

)
is integrable. We moreover have, sup

0≤s≤T
exp

(
γ|Ys|(e2βs + 1)

)
is integrable. This gives a sim-

ple proof to the uniqueness of eq(ξ, α + β|y| + γ
2 |z|

2) without using the convexity (in z) of the
generator.

Remark 4.2. The uniqueness of solutions under assumptions (A1)-(A2) as well as under
assumptions (A3)-(A4), and the existence of viscosity solutions to the related partial differential
equation are in progress.

5 Appendix.

We recall the result of Essaky & Hassani ([20]) on the two barriers reflecting QBSDEs. It
establishes the existence of solutions for reflected QBSDEs without assuming any integrability
condition on the terminal datum. This result is used in the proof of Lemma 3.1.

Theorem 5.1. ([20], Theorem 3.2) Let L and U be continuous processes and ξ be a FT –
measurable random variable. Assume that

1) for every t ∈ [0, T ], Lt ≤ Ut
2) LT ≤ ξ ≤ UT .
3) there exists a continuous semimartingale which passes between the barriers L and U .
4) The generator h is continuous in (y, z) and satisfies for every (s, ω), every y ∈ [Ls(ω), Us(ω)]

and every z ∈ Rd.

|h(s, ω, y, z)| ≤ ηs(ω) + Cs(ω)|z|2

where η and C are two Ft–adapted processes such that E
∫ T
0 ηsds <∞ and C is continuous.
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Then, the following RBSDE has a maximal and a minimal solution.

(i) Yt = ξ +

∫ T

t
h(s, Ys, Zs)ds−

∫ T

t
ZsdWs

+

∫ T

t
dK+

s −
∫ T

t
dK−s for all t ≤ T

(ii) ∀ t ≤ T, Lt ≤ Yt ≤ Ut,

(iii)

∫ T

0
(Ys − Ls)dK+

s =

∫ T

0
(Us − Ys)dK−s = 0, a.s.,

(iv) K+
0 = K−0 = 0, K+,K− are continuous nondecreasing.

(v) dK+⊥dK−

(5.1)

The following lemma allows to remove the quadratic term from eq(ξ, αt + βt|y| + θt|z| +
f(|y|)|z|2

Lemma 5.1. I) Let f ∈ L1
loc(R) but not necessarily continuous. Then the function

uf (x) :=

∫ x

0
exp

(
2

∫ z

0
f(r)dr

)
dz (5.2)

satisfies the differential equation 1
2u
′′
f (x) − f(x)u′f (x) = 0 a.e on R, and has the following

properties:
(j) uf is a one to one function. Both u and its inverse u−1f are locally Lipschitz, that is for

every R > 0 there exist two positive constants mR and MR such that, for any |x|, |y| ≤ R,
mR |x− y| ≤ |uf (x)− uf (y)| ≤MR |x− y|

(jj) Both uf and its inverse function u−1f belong to W 2
1, loc(R). If moreover f is continuous,

then both uf and u−1f belong to C2(R).

II) Set

K(y) :=

∫ y

0
exp

(
−2

∫ z

0
f(r)dr

)
dz.

Then, the function

v(x) :=

∫ x

0
K(y) exp

(
2

∫ y

0
f(r)dr

)
dy (5.3)

satisfies the differential equation 1
2v
′′(x) − f(x)v′(x) = 1

2 a.e. on R and has the following
properties:

(jjj) v and v′ are positive on R+ and v belongs to W 2
1, loc(R).

(jv) The map x 7−→ v(|x|) belongs to W 2
1, loc(R), and belongs to C2(R) if f is continuous.

III) Set G(z) :=
∫ z
0 f(x)e−2

∫ x
0 f(r)drdx. The function

w(y) :=

∫ y

0
G(z)e2

∫ x
0 f(r)drdz (5.4)

has the following properties :

(vj) the map x 7−→ w(|x|) belongs to W 2
1, loc

(vjj) w satisfies the following differential equation

1

2
w′′(x)− f(x)w′(x) =

1

2
f(x) a.e. on R. (5.5)
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Proof I) Clearly, uf and its inverse u−1f are continuous, one to one, strictly increasing
functions and we have 1

2u
′′
f (x) − f(x)u′f (x) = 0 a.e. on R. Since u′f (x) := exp(2

∫ x
0 f(t)dt),

then,

for every |x| ≤ R, exp
(
−2‖f‖L1([−R, R])

)
≤ |u′f (x)| ≤ exp

(
2‖f‖L1([−R, R])

)
. (5.6)

This shows that uf and u−1f are locally Lipschitz.
We prove (jj). Using inequality (5.6), one can show that both uf and u−1f belong to C1.

Since the second generalized derivative u′′f satisfies u′′f (x) = 2f(x)u′f (x) for a.e. x, we get that
u′′f belongs to L1

loc(R). Therefore uf belongs to W 2
1, loc(R). Using again assertion (j), we prove

that u−1f belongs to W 2
1, loc(R).

II) Obviously v and v′ are positive on R+ and v satisfies the differential equation 1
2v
′′(x)−

f(x)v′(x) = 1
2 a.e. on R. Since f is locally integrable on R, one can easily check that v belongs

to W 2
1, loc(R). This proves assertions (jjj), from which we deduce assertion (jv). The proof of

III) is similar.
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