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Abstract

This work is devoted to the numerical simulation of flows in partially saturated porous media.
We describe the Richards equation governing the subsurface flow and discuss its range of
applicability. A discontinuous Galerkin formulation is used to approximate the steady-state
Richards equation. To this end, we present the mathematical framework and a procedure for
solving the nonlinear equation. Numerical tests are carried out to highlight properties of the
discontinuous Galerkin method and a test case is compared to experimental data to validate
the model.

Keywords: Discontinuous Galerkin method, Richards equation, nonlinear resolution, unsaturated
porous media.

1 Introduction

This work enters into a long-term research project aiming to simulate the interactions between
waves and groundwater in sandy beaches. Recent studies in laboratory [1, 2] and field studies [3, 4]
provided a good experimental understanding of groundwater dynamics and shown a circulation
pattern below the swash zone. Up to now, few models have been suggested and their scope remains
limited [5, 6]. New numerical developments are necessary to capture a maximum of physical
processes, in particular to resolve all along the wave phase the complex dynamics of saturation
and pressure fields. The numerical simulation is quite hard to achieve because it requires to solve
both nonlinear equations for subsurface water flow and the shallow water equations for surface
flow. Additionally, these models has to be coupled in a suitable way in order to respect the
physics of the problem. Indeed, on one hand, the dynamics of incoming waves is very fast due
to wave run-up and run-down which are covering and uncovering alternatively the beach. But,
on the other hand, groundwater circulation is particularly slow [4] because of sediments acting as
low-pass filter. Thereby, infiltrations/exfiltrations of the swash zone, sand saturation fluctuations,
multiple timescales and various spacescales require a robust and accurate methodology for both
numerical schemes and algorithms as well as a careful insight into the modelling.

In the present work, we first focus on the subsurface flow which is assumed to occur in a partially
saturated porous medium and can be described by Richards equation. The latter takes into account
the actions of gravity (advection) and capillarity (diffusion) but neglecting the flow of the non-
wetting phase, namely the air [7]. Richards equation has been widely used to simulate water
flow in unsaturated porous media [8–10]. Nevertheless, its derivation is generally rather roughly
introduced, which leads us to first set out the main steps to underline some issues in regards
to our model problem. Richards equation is a nonlinear parabolic equation but it degenerates
into an elliptic equation under saturated conditions. Nonlinearities are due to constitutive laws
and, consequently, the solution includes sharp moving fronts with dynamic smooth regions which
challenge numerical methods to obtain robust and efficient solutions of Richards equation [9].
Extensive efforts have been made to overcome these difficulties, in particular to find efficient
nonlinear solvers for Richards equation [11–13].

Current research into Richards equation consists in advanced spatial and temporal discretiza-
tions [9] allowing construction of adaptive approximations in size and/or in order for space and
time. A primary focus on spatial discretization can be outlined [9, 10, 14] with the use of finite
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differences, finite volumes, finite elements, mixed finite elements and discontinuous Galerkin. A
fundamental step is to tackle this aspect, that is the reason why we consider a steady-state Richards
equation. We choose to use discontinuous Galerkin method because it offers suitable advantages
for adaptivity and the treatment of flow dynamics [15]. Indeed, discontinuous Galerkin methods
may be seen as a method sharing properties both from finite elements and finite volumes : they are
based on a variational formulation but in an element-wise fashion. So they are locally conservative
which is crucial in fluid dynamics and explains why the method is more and more used for prob-
lems in porous media. Moreover, it enables to change the degree of polynomial approximation and
to use non-conforming mesh (hanging node). This is an important benefit since it is possible to
handle high-order accuracy and hp-adaptation. Various forms of discontinuous Galerkin methods
[16] can be used for Richards equation which can be discretized in a primal or mixed formulation.
Here, we will focus on primal interior penalty discontinuous Galerkin methods.

The first part of the paper recalls the Richards equation in a comprehensive review along with
some classic constitutive laws. Then, a class of primal formulations of discontinuous Galerkin
methods are presented as well as linearization methods to solve the nonlinear model problem. The
last part of the paper is devoted to the validation of the numerical methods, through the simulation
of a water table recharge experiment.

2 Model problem for unsaturated porous media

2.1 Governing equation

Richards equation is a classic nonlinear parabolic equation to describe flow occurring in the un-
saturated zone of an aquifer [7, 9]:

∂t(θ(ψ))−∇ · (K(ψ)∇(ψ + z)) = 0 (1)

where ψ denotes the pressure head (m), K the tensor of hydraulic conductivity (m/s), z the
elevation (m) and θ the water content.
Richards equation is a widely used model for water flow in unsaturated soils and rocks and thus
will be a priori suitable to model groundwater flow in sandy beaches. However, in order to keep
in mind its limitations, a synthetic derivation is recalled here. We start with mass conservation
principle applied on a two-phase flow in porous medium:

α ∈ {air; water},


∂t(ραΦSα) +∇ · (ραqα) = 0

qα = −kikr,α(Sα)

µα
∇(pα + ραgz)

(2)

where Φ denotes the porosity, S the saturation, ρα the density (kg/m3), qα the Darcy velocity
(m/s), ki the tensor of intrinsic permeability (m2), kr,α the relative permeability (m2), µα the
dynamic viscosity (Pa ·s), pα is pressure (Pa) and g is gravitational acceleration (m/s2). Here, qα
is modelled as an extension of Darcy’s law to diphasic system, sometimes called Darcy-Buckingham
law. It was initially based on the results of experiments but some theoretical derivations were
undertaken via homogenization techniques such as in Whitaker [17]. In any case, underlying
assumptions are made about the nature of flows and porous media, in particular, related to Stokes
flow.
Additionally, two closure conditions go along with equations (2):{

Sair + Swater = 1, by definition

pair − pwater = Pc(Swater)
(3)

Pc is capillary pressure (Pa), an invertible function known from experiment. Then, the main
hypothesis for Richards equation is used to eliminate the equation for air in Equations (2). Indeed,
air viscosity is considered about 55 times smaller than the water viscosity [7] in that case, resulting
in the same factor for mobility if relative permeabilities are similar for both fluids. Consequently,
pressure gradients balance faster in air than in water phase. Moreover, it is assumed that the air
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phase is connected continuously at every points with the atmosphere, and patm is known up to a
constant so one can write patm = 0 for convenience and thus:

Pc = pair − pwater = patm − pwater = −pwater (4)

Now, for the sake of simplicity, we omit the subscript �water. Some additional assumptions are
usually taken into account that is to say the solid skeleton is not deformable, water density is
homogeneous and water is incompressible. This leads to write:

Φ∂tS −∇ ·
(
kikr(S)

µ
∇(p+ ρgz)

)
(5)

By introducing θ(S) = ΦS, K(S) = kikr(S)
ρg

µ
and ψ =

p

ρg
, we recover the original Richards

equation (1). It is called the mixed formulation of Richards equation and present better numerical
behaviour than water content formulation or head formulation because it is a conservative form,
defined for complete saturation and allowing heterogeneous soils [9].
In regards to our situation, Richards equation is a good choice because extensive experience are
available in the community especially for its numerical resolution and its coupling with surface
flows. Nevertheless, we have to be aware that any effect involving air phase could not be captured
such as trapped air pockets. Moreover, fast dynamics due to incoming waves at the boundary
for interface condition may cause some troubles with the validity of assumptions taken for Darcy-
Buckingham law, in particular, the one for Stokes flow.

2.2 Constitutive laws

Two constitutive laws, for water content and relative permeability (part of hydraulic conductivity),
are needed to close the model problem. They are originally functions of saturation but they are
often given in function of pressure head. This substitution is possible given that pressure head is
linked by definition to capillary pressure and the latter can be expressed from saturation with (3).
These relationships are provided by several models among which Van Genuchten, Brooks and
Corey or Haverkamp’s relations are the most commonly encountered [8]. They are extensively
used even though experiment shows that these relations are actually hysteretic [7, 18] and that
their parameters are given with a degree of uncertainty [18].
For Richards equation (1), we express K and θ with a classical analytical expression [19]:

(K(ψ); θ(ψ)) =


(

KsA

A+ |ψ|B
;

θsC

C + |ψ|D

)
, if ψ ≤ 0 (unsaturated zone)

(Ks; θs), if ψ > 0 (saturated zone)

(6)

where A, B, C and D are empirical parameters, Ks is hydraulic conductivity at saturation, θs is
water content at saturation.

3 Discontinuous Galerkin approach

3.1 Primal formulation

Steady-state Richards equation (1) is reduced to a non-linear elliptic equation:

−∇ · (K(ψ)∇(ψ + z)) = 0 (7)

There are many discontinuous Galerkin methods [16] but they can be viewed according to two
approaches: primal or mixed formulation. Primal formulation is written as one single equation
such as (7) whereas mixed formulation is written as two coupled equations through an intermediate
variable such as: {

∇ · q = 0

q = −K(ψ)∇(ψ + z)
(8)
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For Richards equation, mixed formulation has been already considered through the Local Discon-
tinuous Galerkin method [20, 21] or SIPG mixed formulation [10]. Here, we consider a primal
formulation for Richards equation as matter of interest.
Now, we set some definitions for the discontinuous Galerkin formulation. More careful develop-
ments can be found in Doleǰśı and Feistauer [22] or Rivière [15]. We consider the space Ω in R2

with ∂Ω = ΓD ∪ ΓN . The model problem is:
−∇ · (K∇u) = f, in Ω

u = gD, on ΓD

K∇u · n = gN , on ΓN

(9)

K is symmetric, positive definite and bounded, f is in L2(Ω), uD is in L2(ΓD) and uN is in L2(ΓN ).
Ω is subdivided into elements E which forms the tessellation denoted by Eh. Elements are made
of faces F . FIh stands for the set of interior faces, FDh for the set of Dirichlet boundary faces and
FNh for the set of Neumann boundary faces.
Let be two neighbouring elements El and Er sharing one face F . There are two traces of u along F

denoted by ul and ur. We denote the jump across a face JuK = ul−ur, the mean ⦃u⦄ =
1

2
(ul + ur)

and n is the normal vector oriented from El to Er.
The model problem (Eq. (9)) is multiplied by a test function v and integrated on each element E.
Then, we use Green’s theorem and sum all equations to obtain the following variational formulation
on the broken Sobolev space Hs(Eh), s > 3/2:

Find u ∈ Hs(Eh) such that ∀v ∈ Hs(Eh), aΘ,σ0,σ1

h (u, v) = LΘ,σ0

h (v) where (10)

aΘ,σ0,σ1

h (u, v) =
∑
E∈Eh

∫
E

K∇u · ∇v dx (11)

−
∑
F∈FI

h

∫
F

⦃K∇u · nF⦄JvK ds −
∑
F∈FD

h

∫
F

K (∇u · nF ) v ds

−Θ
∑
F∈FI

h

∫
F

⦃K∇v · nF⦄JuK ds −Θ
∑
F∈FD

h

∫
F

K (∇v · nF )uds

+
∑
F∈FI

h

∫
F

σF1
|F |

JuKJvK ds +
∑
F∈FD

h

∫
F

σF0
|F |

uv ds

LΘ,σ0

h (v) =
∑
E∈Eh

∫
E

fv dx−Θ
∑
F∈FD

h

∫
F

K(∇v · nF )gD ds+
∑
F∈FD

h

∫
F

σF0
|F |

gDv ds (12)

+
∑
F∈FN

h

∫
F

KgNv ds

Θ is a parameter to symmetrize the formulation, σ0 is a boundary penalty parameter to enforce
Dirichlet boundary conditions and σ1 is an interior penalty parameter to penalize jump of the
functions and mimic continuity. We can derive several discontinuous Galerkin methods as described
in table 1.

Symmetrization

Θ = −1 Θ = 0 Θ = 1

Penalization
σ = 0 OBB method - global element method

σ 6= 0 NIPG IIPG SIPG

NIPG: Non-symmetric Interior Penalty Galerkin SIPG: Symmetric Interior Penalty Galerkin

IIPG: Incomplete Interior Penalty Galerkin OBB method: Oden-Baumann-Babuška method

Table 1: Different types of discontinuous Galerkin methods

Prague, February 20-22, 2019_______________________________________________________________________56



The finite element subspace is taken to be D(Eh) =
{
v ∈ L2(Ω : ∀E ∈ Eh, v

∣∣
E
∈ Pp(E)

}
where

Pp(E) denotes the space of polynomials of total degree less than or equal to p. Let N be the number
of elements and Nloc the local dimension depending on p and the type of reference element. Let Φ
be the global basis functions of the space D(Eh), ϕ the local basis functions on each element and
U expansion coefficients. Then, approximation solution uh expands as:

∀x ∈ Ω, uh(x) =
N−1∑
n=0

Nloc∑
j=0

U j
nΦjn(x) where Φjn(x) =

{
ϕjn(x) if x ∈ E
0 otherwise

(13)

The choice for values of σ0 and σ1 alongside Θ is crucial because it assures stability of the method
among others. One can refer to [15, 16, 22, 23] for a complete analysis of discontinuous Galerkin
methods.

3.2 Linearization techniques

Richards equation is a nonlinear equation usually solved by an iterative procedure such as fixed-
point iteration or Newton-Raphson method whose choice is determining for computation time
performances and convergence.
Studies have been carried out to compare these methods for solving Richards equation [11–13],
both for steady-state and transient simulations. They emphasize that fixed-point iteration and
even Newton-Raphson’s scheme are very sensitive and do not converge systematically according to
Richards equation’s formulations, initial and boundary conditions.
In this section, the iterative procedure used in the code is described. The variational formulation
(10) is written under a matrix system:

K(u)u = f (14)

For Newton-Raphson’s solver, residual matrix is defined as R(u) := K(u)u − f and the tangent
stiffness matrix by:

Kt(u) :=
∂R(u)

∂u
=
∂(K(u)u− f)

∂u
= K(u) +

∂K(u)

∂u
u (15)

If we suppose to have obtained at iteration i − 1 an approximation ui−1 of solution u then, at
iteration i, Newton-Raphson’s scheme is:{

Kt(u
i−1)δui = −R(ui−1)

ui = ui−1 + δui
(16)

The stopping criterion is max

(
‖R(u)‖L2(Ω)

‖u‖L2(Ω)

,
‖δu‖L2(Ω)

‖K(u)u‖L2(Ω)

)
< ε where ε is a user-defined toler-

ance and if u or K(u)u do not degenerate.
As example for the construction of Kt, if uj and ul denote local expansion coefficient (13) for a
given element, we are writing its tangent volume local contribution Mt which corresponds to the
first term of (12):

(Mt)1≤i,j≤Nloc
=
∑
l

∂Mil

∂uj
ul =

∑
l

∂

∂uj

(∫
E

K(u)∇ϕi∇ϕl dx
)
ul =

∑
l

(∫
E

∂K(u)

∂uj
∇ϕi∇ϕl dx

)
ul

(17)

=
∑
l

(∫
E

∂K(u)

∂u

∂u

∂uj
∇ϕi∇ϕl dx

)
ul =

∑
l

(∫
E

K′(u)ϕj∇ϕi∇ϕl dx
)
ul (18)

=

∫
E

K′(u)ϕj

(∑
l

ul∇ϕl

)
∇ϕi dx =

∫
E

K′(u)ϕj∇u∇ϕi dx (19)

To have a simple fixed-point iteration scheme, the algorithm stays unchanged except that the

tangent stiffness matrix defined in (15) is replaced by Kt(u) =
∂(K(u)u)

∂u
≈ K(u).
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4 Numerical validations

4.1 One-dimensional convergence results

We are considering the following system:
−∆u(x) =

(
4x3 − 4x2 − 6x+ 2

)
exp
(
−x2

)
, ∀x ∈ (0, 1)

u(0) = 1

u(1) = 0

(20)

whose the analytical solution is u(x) = (1− x) exp
(
−x2

)
.

We compute numerical error in L2 norm and get convergence results for NIPG, SIPG and IIPG
methods with linear to cubic polynomial approximations. Penalty values are such that σ0 = σ1 = 1
for NIPG, IIPG and SIPG with p = 3 but σ0 = σ1 = 2 for SIPG with p < 3. Uniform meshes of
size h are considered.

Linear approximation Quadratic approximation Cubic approximation

Method h ‖eh‖L2(0,1) Order ‖eh‖L2(0,1) Order ‖eh‖L2(0,1) Order

NIPG

1/2 9.7104E-02 - 1.2899E-02 - 6.2398E-04 -

1/4 2.6019E-02 1.8999 4.1564E-03 1.6339 4.2126E-05 3.8887

1/8 6.5796E-03 1.9835 1.2318E-03 1.7545 2.7853E-06 3.9188

1/16 1.6361E-03 2.0078 3.2297E-04 1.9314 1.7792E-07 3.9685

1/32 4.0652E-04 2.0088 8.1698E-05 1.9830 1.1217E-08 3.9875

SIPG

1/2 1.6443E-01 - 2.0337E-02 - 6.0659E-04 -

1/4 3.4034E-02 2.2724 2.4644E-03 3.0448 2.3031E-05 4.7191

1/8 7.0833E-03 2.2645 1.7036E-04 3.8545 1.1354E-06 4.3423

1/16 1.3566E-03 2.3844 1.4595E-05 3.5450 5.3777E-08 4.4000

1/32 2.4925E-04 2.4444 1.2907E-06 3.4992 2.4664E-09 4.4465

IIPG

1/2 1.37511E-01 - 4.4606E-02 - 4.4968E-03 -

1/4 3.53440E-02 1.9600 7.3239E-03 2.6066 2.2775E-04 4.3034

1/8 8.67816E-03 2.0260 1.5210E-03 2.2676 1.3408E-05 4.0863

1/16 2.11935E-03 2.0338 3.5286E-04 2.1079 8.1252E-07 4.0445

1/32 5.20962E-04 2.0244 8.5108E-05 2.0517 4.9747E-08 4.0297

Table 2: Numerical errors and order of convergence for solution of problem (20)

Convergence rates of primal discontinuous Galerkin method for uniform meshes in one dimen-
sion are [15, 22]:

Method NIPG SIPG IIPG

Theoretical order
p+ 1 if p odd

p if p even
p+ 1

p+ 1 if p odd

p if p even

Table 3: Therotical convergence rates for 1D uniform meshes

Our numerical experiments are in good agreement with theoretical order and with those made
in [15] on the same problem. This demonstrates the capability to reach high order approximation
using discontinuous Galerkin method.
The code is written to work either from monomial basis or Lagrangian basis functions (classic
finite elements basis functions). Results do not differ in both case which is in accordance with
discontinuous Galerkin method because basis functions of D(Eh) have their support contained in
one element. Therefore, any polynomials satisfying a desired orthogonality property to compute
basis functions can be chosen. Nevertheless, in order to obtain approximation solution at a par-
ticular point, one has to use expansion (13) by computing each coefficient U and basis functions.
Moreover, basis will be chosen to be easily adapted to order of accuracy.
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(a) Numerical solution for σ0 = σ1 = 2 (b) Numerical solution for σ0 = σ1 = 1015

Figure 1: Numerical error for model problem (20) with SIPG method and p = 1

Numerical results for SIPG method with linear approximation on a grid with 32 elements are
presented in figure 1 for two cases.
One observation made during tests is there is a well-known threshold value of penalty values for
stability and convergent results. However, it appears that some spurious effects occur for a great
penalty values beyond a threshold value such as in figure 1b. This aspect will be tackled in future
investigations.

4.2 Two-dimensional numerical errors

We are considering the following system, where (x, y) ∈ Ω = [0, 1]× [0, 1]:{
−∆u(x) = 8π2 sin(2πx) sin(2πy) in Ω

u = 0 on ∂Ω
(21)

whose the analytical solution is u(x, y) = sin(2πx) sin(2πy).
Here, we focus on the property of discontinuous Galerkin method to treat non-conforming mesh.
We focus on SIPG method seeing that there is no difference between the different methods in this
case. High order elements could be used but we limit ourselves to linear approximation for brevity.
Numerical results are presented for SIPG method with σ0 = σ1 = 20 in the figure 2.

(a) Conforming mesh (b) Non-conforming mesh

Figure 2: Numerical error for model problem (21) with SIPG method and p = 1

First of all, numerical solution is computed on a conforming mesh of 1024 elements on which
‖eh‖Ω = 1.6085 × 10−3 (figure 2a). Then, a non-conforming mesh is used. The half part on the
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right is refined. Mesh is made of 696 elements and ‖eh‖Ω = 3.2272× 10−3 (figure 2b). Numerical
comparison with the example given in [22] is in good agreement even though we use a quadrilateral
mesh instead of triangles. An interesting point of view about the influence of mesh nature can be
found in Wirasaet et al. [24].
We observe that, when mesh is refined with only a difference of refinement level equal to one,
discontinuous Galerkin method has good properties with higher numerical errors in the coarser
mesh. Hanging nodes do not affect quality of solution. However, a difference of level refinement
equal to two makes the solution unstable around hanging nodes. This result is consistent with
results obtained in [25] for finite volumes method. In the future, difference of refinement level
throughout the mesh should be limited to one. Therefore, we are able to perform mesh adaptation
as in [25, 26].

4.3 Comparison with water table recharge experiment

Water flow through a slab of soil is simulated in Vauclin et al. [19] in which experimental details
and results can be found. K and θ are taken from (6) with A = 2.99× 106, B = 5.0, C = 40.000,
D = 2.90, Ks = 35 cm/h and θs = 0.30. We simulate this experiment with the numerical model (7)
to obtain the steady-state solution. h stands for hydraulic head (cm) given by h = ψ+z. Boundary
conditions on the left, at the bottom, on the right for z > 65 cm, on the top for x > 50 cm are
∇h · n = 0. At the top for x ≤ 50 cm, we prescribe a flux −K(ψ)∇h · n = 14.8 cm/h. On the
right for z ≤ 65 cm, the level is kept constant in the ditch: h = 65.0 cm.

Numerical simulation is performed with linear approximation p = 1, σ0 = σ1 = 20 on a mesh
of 2367 elements. Zones around the expected position of water table and boundary recharge flux
are refined. Water table location matches ψ = 0 and capillary fringe location is established at
θ(ψ) = 0.05 θs. Numerical results are shown in figure 3. Values and red contour lines of hydraulic
head h together with distribution of flux are displayed. Calculated water table and capillary fringe
are respectively represented by a blue solid line and a blue dotted line. Those of Vauclin et al. are
represented by an orange solid line and an orange dotted line.

Figure 3: Numerical simulation with distributions flux and hydraulic head h

We observe that water table, initially at z = 65 cm, raises because of the recharge which
moistens the unsaturated zone. Compared to experiment [19], distribution of flux as well as
positions of water table and capillary fringe are in good agreement even though a small shift is
to notice. This may be caused by the depth of the seepage boundary condition prescribed by
Vauclin et al. above the hydraulic head boundary condition. Distribution of hydraulic head is
consistent with experiment within the saturated zone and under the recharge zone. However, on
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the top left-hand area, hydraulic head is higher than one measured and obtained by Vauclin et
al. [19]. We will carry out new investigations by increasing polynomial approximation through
Adaptive-Mesh-Refinement framework [25, 26].

5 Conclusion

In this study, a derivation of Richards equation was undertaken to note some issues which might
be debatable if fast dynamics occur, for example, in zones close to the boundary. By choosing
a discontinuous Galerkin method, we want to use an easy and efficient hp-adaptation which is
one part of the answer, at least numerically. We also consider a Newton-Raphson’s method and
a fixed-point iteration method to linearise the steady-state Richards equation. Through test-
cases, we present convergent results which show interesting numerical properties and guidelines
for optimization of penalty parameters σ0 and σ1. Finally, results agree favourably compared to
experimental data of a two-dimensional water table recharge problem even if some features need
to be improved.

Further developments are an extension to a time-dependant problem to fully recover the
Richards equation and derive some theoretical background modelling to explain fast dynamics
at the interface with surface flows.
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