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Abstract

We prove the existence of a weak solution to the compressible Navier–Stokes system with
hard sphere possibly non-monotone pressure law involving, in particular, the Carnahan–Starling
model [2] largely employed in various physical and industrial applications. We take into account
large velocities prescribed at the boundary of a bounded piecewise C2 domain and large densities
prescribed at the inflow boundary without any restriction neither on the shape of the inflow/outflow
boundaries nor on the shape of the domain.
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1 Introduction

We consider the problem of identifying the non-steady motion of a compressible viscous fluid driven
by the general in/out flux boundary conditions on general bounded domains. Specifically, the mass
density % = %(t, x) and the velocity u = u(t, x), (t, x) ∈ QT ≡ I × Ω, I = (0, T ) of the fluid satisfy the
Navier–Stokes system,

∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (1.2)

S(∇xu) = µ
(
∇xu +∇t

xu
)

+ λdivxuI, µ > 0, λ ≥ 0, (1.3)

in Ω ⊂ Rd, d = 2, 3, where p = p(%) is the hard sphere pressure. The system is endowed with initial
conditions

%(0) = %0, %u(0) = %0u0. (1.4)

We consider the general boundary conditions,

u|∂Ω = uB, %|Γin
= %B, (1.5)

where
Γin =

{
x ∈ ∂Ω

∣∣∣ uB · n < 0
}
, Γout =

{
x ∈ ∂Ω

∣∣∣ uB · n > 0
}
. (1.6)

In [3], it was established that a weak solution to the problem (1.1)–(1.6) with the barotropic pressure
law (including isentropic pressure p(%) = a%γ, a > 0) exists. The goal of this paper is to establish
the existence of a weak solution (%,u) to the problem (1.1)–(1.6) for general large boundary data %B
and uB under the following physically grounded hypothesis (see Carnahan and Starling [2] among many
others):

• Molecular hypothesis (hard sphere model). The specific volume of the fluid is bounded below
away from zero. Equivalently, the fluid density cannot exceed a limit value % > 0. Accordingly,
the pressure p = p(%) satisfies

lim
%→%

p(%) =∞.

Although apparently satisfied by any real fluid, this condition eliminates the more standard equations
of state used for the isentropic gases.

Since we focus on the inflow/outflow phenomenon, we deliberately omit the contribution of external
forces %f . Nevertheless, all the results of this paper are valid even when there are external forces.

It is important to investigate the equations in this setting and to get better insight in many real-world
applications. In fact, this is a natural and basic abstract setting for flows in some specific examples
such as pipelines, wind tunnels, and turbines. In spite of this fact, the literature on this problem is in
a short supply. To the best of our knowledge, this is the first work treating this system with the hard
sphere pressure law for large boundary data in a very large class of bounded domains.

2



The most of available theories of weak solutions on arbitrary large time interval (0, T ) deals with
the above system endowed with zero outflow and inflow boundary conditions, and with the barotropic
pressure law: we mention monographs [17], [20], [6], [7] and references quoted there. Monographs [17]
and [20] treat in the same context also the stationary problem. The case of fluid flow in the barotropic
regime with large general inflow/outflow boundary conditions without restrictions on the shape of the
boundary received an exhausting answer only recently in [3]. Papers by Novo [19] and by Girinon [15]
deal with the same problem as [3], but there are severe restrictions on the boundary and the boundary
data. The existence of strong solutions for the problem (1.1)–(1.6) on a short time interval and/or
with small boundary data are better investigated since several decades, see e.g. Valli, Zajaczkowski
[25] among others. Existence of weak stationary solutions in the barotropic regime is still open. The
only available results in the steady regimes are those with small boundary data, see Plotnikov, Ruban,
Sokolowski [23], [24], Mucha, Piasecki [18], Piasecki [21], Piasecki and Pokorny [22] among others.

The results about the existence of weak solutions for the hard sphere model are in a short supply.
The existence of weak solutions for the problem without inflow/outflow is investigated in Feireisl, Zhang
[10] and Feireisl, Lu, Málek [11]. The same problem with arbitrary large outflow and inflow data is so
far open: its solution is the subject of the present paper. The stationary solutions in this situation have
been constructed only recently in [8].

Clearly, the fact that the density is a priori expected to be confined to a bounded interval [0, %)
facilitates the formal analysis. On the other hand, the presence of non-zero boundary data makes the
analysis more difficult. The rigorous proof of the confinement of the density to the interval [0, %) as
well as of the uniform bound and equi-integrability of the pressure are far to be obvious. Once the
latter property is proved, one may employ the standard procedure of compactness for these equations
involving effective viscous flux identity and DiPerna Lions transport theory [5] modified in [3] in order
to accommodate the non-homogenous boundary conditions.

The paper is organized as follows. The main results are announced in Theorem 2.4 and Theorem
2.5 in Section 2. Theorem 2.4 provides the local in time existence of weak solutions while Theorem
2.5 provides global-in-time result. Both theorems hold under the condition on the existence of a
convenient extension of the boundary velocity field. The condition for local-in-time existence is less
severe than that for global existence. Both theorems are proved in Sections 3–4. The singular pressure
is set to be constant at distance ε > 0 left from % and extended through the barotropic law with a
large adiabatic coefficient at a positive distance right from %. The approximate system (with large non-
homogenous boundary data and the above regularized barotropic pressure) is introduced in Section 3.
It benefits from an existence theorem due to [3], and as such admits a weak solution. The existence
of a weak solution and its properties are recalled in Theorem 3.1. Uniform estimates for the sequence
of weak solutions are derived in Section 4.1; they allow to pass to the limit in the continuity equation
and to show the boundedness of density in Section 4.2. Uniform integrability of the pressure sequence is
derived in Section 4.3. Once this is known, the equi-integrability of the pressure is derived in Section 4.4.
Section 4.5 deals with the limit in the momentum equation and Section 4.6 is devoted to the effective
viscous flux identity, while Section 4.7 concludes the proof by evaluating the oscillations in the density
sequence by using the renormalized continuity equation.

This paper provides a quite complete picture on the conditions for local/ global-in-time existence of
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weak solutions in terms of the total velocity flux
∫
∂Ω

uB ·ndSx through the boundary. Loosely speaking,
if the total velocity flux through the boundary is positive, then there is a global-in-time weak solution,
while if it is negative, then a weak solution may fail to exist on an arbitrarily large time interval.
If the total velocity flux through the boundary is zero, there is always at least a local in time weak
solution. In Section 5, these problems are investigated and corresponding underlying extensions are
also constructed.

The existence of (even) local-in-time weak solutions in the case∫
∂Ω

uB · ndSx < 0

and the existence of global-in-time weak solutions in the case∫
∂Ω

uB · ndSx = 0

are eminent open problems. In the latter case, there is only a positive answer in a “trivial” situation,
uB = 0 (cf. [10] and [11]).

2 Main result

We suppose, for the sake of simplicity, that the boundary data satisfy

%B ∈ C(∂Ω), uB ∈ C2(∂Ω;R3), (2.1)

where
Ω ∈ Rd, d = 2, 3 is a bounded domain of class C2. (2.2)

In agreement with what was mentioned in the introduction, we assume that

p = p− p

where p ∈ C[0, %) ∩ C1(0, %) satisfies

p(0) = 0, p′ > 0, p(%) ∼%→%− |%− %|−β for some β > 5/2 (2.3)

and
p ∈ C2

c [0, %), p ≥ 0, p(0) = p′(0) = 0, where 0 < % < %. (2.4)

In the above a(s) ∼s→s0± b(s) means that c1a(s) ≤ b(s) ≤ c2(s) in a right(+), left (−) neighborhood
of s0. Moreover, we may suppose 1 < % < % <∞ without loss of generality.

We consider the general non-monotone pressure. The usual monotone hard sphere pressure law is a
particular case when the component p of the pressure is identically zero.

We begin with the definition of weak solutions to system (1.1)–(1.6) with (2.3)–(2.4).

Definition 2.1 We say that (%,u) is a bounded energy weak solution of the problem (1.1)–(2.4) on
a time interval (0, T ) if the following four conditions are satisfied.
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1. It belongs to the following functional spaces:

0 ≤ % < % a.a. in (0, T )× Ω, p(%) ∈ L1(0, T ;L1
loc(Ω)) (2.5)

u ∈ L2(0, T ;W 1,2(Ω;R3)), u|I×∂Ω = uB.

2. The function % ∈ Cweak([0, T ], L1(Ω))1 satisfies the integral identity∫
Ω

%(τ, ·)ϕ(τ, ·) dx−
∫

Ω

%0(·)ϕ(0, ·) dx

=

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dxdt−

∫ τ

0

∫
Γin

%BuB · nϕ dSxdt
(2.6)

for any τ ∈ [0, T ] and ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin)).

3. The function %u ∈ Cweak([0, T ], L1(Ω;R3)) satisfies the integral identity∫
Ω

%u(τ, ·) ·ϕ(τ, ·) dx−
∫

Ω

%0u0(·) ·ϕ(0, ·) dx

=

∫ τ

0

∫
Ω

(
%u · ∂tϕ + %u⊗ u : ∇xϕ + p(%)divxϕ− S(∇xu) : ∇xϕ

)
dxdt

(2.7)

for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× Ω;R3).

4. There is a Lipschitz extension u∞ ∈ W 1,∞(Ω) of the vector field uB such that the following energy
inequality holds∫

Ω

(1

2
%|u− u∞|2 +H(%)

)
(τ) dx+

∫ τ

0

∫
Ω

S(∇x(u− u∞)) : ∇x(u− u∞) dxdt

+

∫ τ

0

∫
Ω

p−(%)divu∞ dxdt+

∫ τ

0

∫
K

p+(%)divu∞dxdt

≤
∫

Ω

(1

2
%0|u0 − u∞|2 +H(%0)

)
(τ) dx−

∫ τ

0

∫
Ω

%u · ∇xu∞ · (u− u∞) dxdt

−
∫ τ

0

∫
Ω

S(∇xu∞) : ∇x(u− u∞) dxdt−
∫ τ

0

∫
Γin

H(%B)uB · ndSxdt

−H
∫ τ

0

∫
Γout

uB · ndSxdt

(2.8)

for a.a. τ ∈ (0, T ) with any compact K ⊂ Ω, where

p−(%) = min{p(%), 0}, p+(%) = max{p(%), 0}

H(%) = %

∫ %

1

p(z)

z2
dz, H := inf

%>0
H(%).

(2.9)

1We say that f ∈ Cweak([0, T ], Lp(Ω)) iff
∫

Ω
fϕ dx ∈ C[0, T ] for all ϕ ∈ Lp′

(Ω).

5



Remark 2.1. 1. A brief inspection of (2.9) gives the estimate of value H,

H ≥ − sup
%∈(0,1)

p(%)− % sup
%>1

p(%) > −∞

provided suppp ⊂ [0, %]. Likewise,

inf
%>0

p−(%) ≥ p ≥ − sup
%>0

p(%) > −∞.

2. The continuity equation (2.6) yields the total mass inequality∫
Ω

%(τ) dx ≤
∫

Ω

%0 dx−
∫ τ

0

∫
Γin

%BuB · ndSxdt. (2.10)

for all τ ∈ [0, T ]. It can be obtained by taking in (2.6) test functions ϕ = ϕε as in (4.47) and then
by letting ε→ 0.

Definition 2.2 We say that a couple (%,u) satisfying 0 ≤ % ≤ % < ∞ and u ∈ L2(0, T ;W 1,2(Ω, R3))
is a renormalized solution of the continuity equation if for any b ∈ C1[0, %], functions % and b(%) ∈
Cweak([0, T ];L1(Ω)), and it satisfies, in addition to the weak formulation of the continuity equation
(2.6), also the weak formulation of the renormalized equation,∫

Ω

(b(%)u)(τ, ·)ϕ(τ, ·) dx−
∫

Ω

(b(%0)u0)ϕ(0, ·) dx

=

∫ τ

0

∫
Ω

(
b(%)∂tϕ+ b(%)u · ∇xϕ− ϕ (b′(%)%− b(%)) divxu

)
dxdt

−
∫ τ

0

∫
Γin

b(%B)uB · nϕ dSxdt

(2.11)

for any ϕ ∈ C1([0, T ] × (Ω ∪ Γin)). A weak solution to the problem (1.1)–(1.6) satisfying in addition
renormalized continuity equation (2.11) is called a renormalized weak solution.

Remark 2.2. 1. In fact any couple (%,u) in class (2.5) veryfying continuity equation (2.6) verifies
also the renormalized continuity equation (2.11). This follows from the DiPerna–Lions transport
theory [5] reshaped for the case of non-homogenous boundary conditions in [3, Lemma 4.4]. This
lemma adapted to the present situation states:

Lemma 2.3. Suppose that Ω ⊂ R3 is a bounded Lipschitz domain and (%B,uB) satisfies the
assumptions (2.1). Assume further that the inflow portion Γin of the boundary is a C2 open
(d − 1)-dimensional manifold. Suppose further that the couple (%,u) ∈ L2((0, T ) × Ω; [0, %]) ×
L2(0, T ;W 1,2(Ω;R3)) satisfies the continuity equation in the weak sense (4.12). Then (%,u) is
also a renormalized solution of the continuity equation (4.12), meaning that it verifies equation
(2.11) for any ϕ ∈ C1([0, T ]× (Ω ∪ Γin)) and b ∈ C1[0, %].
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We are now in a position to announce the main results of this paper. The first result is a local-
in-time existence theorem for weak solutions. It holds for the general boundary data with a restriction
requiring non-negative total velocity flux over the boundary. It gives a lower bound of the maximal
existence time of weak solutions in terms of the size of initial and boundary data.

Theorem 2.4. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain of class C2. Assume that the pressure
satisfies the hypotheses (2.3)–(2.4), the initial data have finite energy

E0 :=

∫
Ω

1

2
%0u

2
0 +H(%0) dx <∞, M0 :=

∫
Ω

%0 dx > 0 (2.12)

and the boundary data uB and %B satisfy (2.1). Assume moreover that there exists u∞ ∈ W 1,∞(Ω;R3)
such that

u∞|∂Ω = uB, divu∞ ≥ 0 in Ω. (2.13)

Finally, suppose that

0 < %
B
≡ min

∂Ω
%B ≤ max

∂Ω
%B < %, 0 ≤ inf

Ω
%0 ≤ sup

Ω
%0 < %. (2.14)

Then there exists

T = Tmax ≥
%|Ω| −

∫
Ω
%0 dx∫

Γin
%B|uB · n|dSx

(2.15)

such that the problem (1.1)–(1.6) admits at least one renormalized bounded energy weak solution (%,u)
on (0, T ).

The second result is a global-in-time existence theorem for weak solutions. It requires an additional
restriction on the boundary velocity (which may be seen as a sign condition on the total boundary
velocity flux through the boundary).

Theorem 2.5. Suppose that the domain Ω, the pressure p, initial data (%0,u0) and boundary data
(%B,uB) satisfy all hypotheses of Theorem 2.4 and that T > 0. Assume moreover that an extension u∞
of uB satisfies, in addition to (2.13),

essinfO

(
divu∞

)
≥ d > 0 where O is an open set satisfying O ⊂ Ω. (2.16)

Then the problem (1.1)–(1.6) admits at least one renormalized bounded energy weak solution (%,u) on
(0, T ).

We shall perform the proofs of Theorem 2.4 and Theorem 2.5 in every detail for the case d = 3.
The proofs for the case d = 2 are left to the reader as exercises. We end this section by giving a few
remarks.
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Remark 2.6. 1. Theorem 2.4 and Theorem 2.5 still hold provided one considers in the momentum
equation at its right-hand side term %f corresponding to large external forces f ∈ L∞(QT ) (modulo
necessary changes in the weak formulation in order to accommodate the presence of this term). It
is remarkable that the lower bound for the maximal existence time in the case of the local existence
theorem is independent of the size of the external force.

2. None of the conditions (2.13) and (2.16) seems to be a necessary compatibility condition to
guarantee the (local) global-in-time existence of weak solutions to the problem. Indeed, in the
case of barotropic pressure, the global existence of weak solutions holds with arbitrary sufficiently
smooth boundary velocity, see [3]. The main reason of this situation is the fact, that the Helmholtz
function appearing in the energy inequality and providing in both cases the density estimate, is,
in the barotropic case, comparable with the pressure, while, in the hard sphere model case, it is
dominated by the pressure. Conditions (2.13) and (2.16) in Theorems 2.4, 2.5 are imposed in order
to ran-over this difficulty and to enforce the density estimates.

In spite of this complication, the theory presented in this paper offers a quite exhausting picture
on the solvability of problem (1.1)–(1.6) with (2.3)–(2.4) in terms of the sign condition of the total
boundary velocity fluxes:

• Consider a sufficiently smooth simply connected domain and suppose that boundary velocity
verifies ∫

∂Ω

uB · ndSx = 0 or equivalently

∫
Γin

|uB · n|dSx =

∫
Γout

|uB · n|dSx.

Then according to Lemma 5.1, there exists a solenoidal Lipschitz extension u∞ of uB (i.e.,
in particular, verifying condition (2.13)). In this case, Theorem 2.4 ensures local in time
existence of bounded energy weak solutions without any further restriction on the boundary
data.

The problem on the existence of a global-in-time weak solution in this situation remains
open in general. The only result is available in the simplest particular case when uB ·n = 0
pointwise in ∂Ω, see Feireisl, Zhang [10] or Feireisl, Lu, Málek [11].

• On a sufficiently smooth simply connected domain, both conditions (2.13) and (2.16) are
satisfied provided the boundary velocity verifies∫

∂Ω

uB · ndSx > 0 or equivalently

∫
Γin

|uB · n|dSx <
∫

Γout

|uB · n|dSx.

We refer the reader to consult Lemma 5.2 later. In this situation, the problem admits always
a global-in-time bounded energy renormalized weak solution.

• If ∫
∂Ω

uB · ndSx < 0 or equivalently

∫
Γin

|uB · n|dSx >
∫

Γout

|uB · n|dSx,
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then the problem fails to have a global-in-time weak solution for any %B subjected to the
constraints imposed by Theorem 2.4 regardless of the fact that the domain is simply
connected or regular. An example of such situation is constructed in Lemma 5.4 for any
bounded Lipschitz domain. Local existence of weak solutions in this situation remains an
open problem.

3. If we can guarantee p(%) ∈ L1(QT ), or if either p or p+ are convex on [0,∞) then any weak
solution constructed in Theorem 2.4 and Theorem 2.5 verifies slightly stronger form of energy
inequality than (2.8), where the contribution of the pressure at the left-hand side of (2.8)∫ τ

0

∫
Ω
p−(%)divu∞ dxdt+

∫ τ
0

∫
K
p+(%)divu∞dxdt is replaced by

∫ τ
0

∫
Ω
p(%)divu∞ dxdt.

4. Theorem 2.4 and Theorem 2.5 remain valid on piecewise C2 bounded domains. This generalization
will be discussed in the last section.

3 Approximate problem

In order to construct the solutions in Theorem 2.4 and Theorem 2.5, we begin by considering the system
(1.1)–(1.6) with pε instead of p where

pε = pε − p, (3.1)

and

pε =

{
p(%) if % ∈ [0, %− ε]
p(%− ε) + |(%− %+ ε)+|γ if % ∈ (%− ε,∞)

with γ > d (which must be chosen sufficiently large). In fact, for any β > 2 there exists γ0 > d/2 such
that for all γ > γ0 (3.1) represents a convenient approximation. We noticed that γ0 →∞ as β → 2+.
The choice of γ0 as a function of β and the constraint β > 2 are dictated by the requirement to have
sufficient estimates. The most restricting condition is to guaranteeing equi-integrability of the pressure,
see (4.29). We shall suppose without loss of generality 0 < ε < (%− %)/2.

According to Theorem 2.3 and Remark 2.5 in [3], the system (1.1)–(1.6)p=pε admits at least one
bounded energy weak solution. More precisely, the following theorem holds.

Theorem 3.1. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain of class C2 and γ > d/2. Let the boundary
data uB and %B satisfy (2.1), where min %B > 0. Assume that the initial data are of finite energy (2.12).
Then the problem (1.1)–(1.6)p=pε possesses at least one renormalized bounded energy weak solution
(%ε,uε), i.e.

1. The couple (%ε,uε) belongs to the following functional space:

%ε ∈ L∞(0, T ;Lγ(Ω)), 0 ≤ %ε a.a. in (0, T )× Ω,

uε ∈ L2(0, T ;W 1,2(Ω;Rd)), uε|I×∂Ω = uB.
(3.2)
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2. The function %ε ∈ Cweak([0, T ], Lγ(Ω)) satisfies the integral identity∫
Ω

%ε(τ, ·)ϕ(τ, ·) dx−
∫

Ω

%0(·)ϕ(0, ·) dx

=

∫ τ

0

∫
Ω

(
%ε∂tϕ+ %εuε · ∇xϕ

)
dxdt−

∫ τ

0

∫
Γin

%BuB · nϕ dSxdt
(3.3)

for any τ ∈ [0, T ] and ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin)). In particular,∫

Ω

%ε(τ) dx ≤
∫

Ω

%0 dx−
∫ τ

0

∫
Γin

%BuB · ndSxdt. (3.4)

3. The renormalized continuity equation∫
Ω

b(%ε)(τ, ·)ϕ(τ, ·) dx−
∫

Ω

b(%0)(·)ϕ(0, ·) dx

=

∫ τ

0

∫
Ω

(
b(%ε)∂tϕ+ b(%ε)uε · ∇xϕ+ (b(%ε)− b′(%ε)%ε)divuε

)
dxdt

−
∫ τ

0

∫
Γin

b(%B)uB · nϕ dSxdt

(3.5)

holds for any b ∈ C[0,∞) with b′ ∈ Cc[0,∞), τ ∈ [0, T ], and ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin)).

4. The function %εuε ∈ Cweak([0, T ], L
2γ
γ+1 (Ω;Rd)) satisfies the integral identity∫

Ω

%εuε(τ, ·) ·ϕ(τ, ·) dx−
∫

Ω

%0u0(·)ϕ(0, ·) dx

=

∫ τ

0

∫
Ω

(
%εuε · ∂tϕ+ %εuε ⊗ uε : ∇xϕ + pε(%ε)divxϕ− S(∇xu) : ∇xϕ

)
dxdt

(3.6)

for any τ ∈ [0, T ] and ϕ ∈ C1
c ([0, T ]× Ω;Rd).

5. The energy inequality∫
Ω

(1

2
%ε|uε − u∞|2 +Hε(%ε)

)
(τ) dx+

∫ τ

0

∫
Ω

S(∇x(uε − u∞)) : ∇x(uε − u∞) dxdt

≤
∫

Ω

(1

2
%0|u0 − u∞|2 +Hε(%0)

)
dx−

∫ τ

0

∫
Ω

pε(%ε)divu∞ dxdt

−
∫ τ

0

∫
Ω

%εuε · ∇xu∞ · (uε − u∞) dxdt−
∫ τ

0

∫
Ω

S(∇xu∞) : ∇x(uε − u∞) dxdt

−
∫ τ

0

∫
Γin

Hε(%B)uB · ndSxdt

(3.7)
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holds for a.a. τ ∈ (0, T ) and any continuous Lipschitz extension u∞ ∈ W 1,∞(Ω;Rd) of uB satsi-
fying

divu∞ ≥ 0 in Û−h ≡ {x ∈ Ω | dist(x, ∂Ω) < h} for some h > 0. (3.8)

In (3.7), the function Hε(%) is defined by

Hε(%) = %

∫ %

1

pε(s)

s2
ds. (3.9)

Remark 3.2. 1. It can be shown easily that the family of test functions b in the renormalized conti-
nuity equation (3.5) can be extended to any functions b ∈ C[0,∞) ∩ C1(0,∞) satisfying

zb′ − b ∈ C[0,∞), |b(z)| ≤ c(1 + z5γ/6), |zb′(z)− b(z)| ≤ c(1 + zγ/2) (3.10)

by the Lebesgue dominated convergence theorem.

2. Satisfaction of the continuity equation (3.3) solely in the sense of distributions (i.e. with ϕ ∈
C∞c (QT )) by a couple (%,u) ∈ L∞(0, T ;Lp(Ω)) ∩ Cweak([0, T ];Lp(Ω))× L2(0, T ;W 1,2(Ω)), p > 6/5
already guarantees that % ∈ C([0, T ];L1(Ω)) (without relabeling in the t variable). It is one of the
consequences of the DiPerna–Lions transport theory, cf. [5] and see e.g. Propositions 4.2 and 4.3
in Feireisl [6] for the detailed proof adapted to this situation. Consequently b(%) ∈ C([0, T ];L1(Ω))
for any b that is globally Lipschitz on (0,∞).

3. An extension u∞ of uB verifying (3.8) always exists due to the following lemma (see [15, Lemma
3.3]).

Lemma 3.3. Let V ∈ W 1,∞(∂Ω;Rd) be a Lipschitz vector field on the boundary ∂Ω of a bounded
Lipschitz domain Ω. Then there exist h > 0 and a vector field

V∞ ∈ W 1,∞(Rd) ∩ Cc(Rd), divV∞ ≥ 0 a.e. in Ûh (3.11)

verifying V∞|∂Ω = V, where Ûh = {x ∈ Rd | dist(x, ∂Ω) < h}.

4 Uniform estimates with respect to ε and limit ε→ 0

We introduce for further convenience

H(%) = %

∫ %

1

p(s)

s2
ds, Hε(%) = %

∫ %

1

pε(s)

s2
ds. (4.1)

In this section, we shall prove Theorem 2.4 and Theorem 2.5 whose proofs follow the same lines.
The only difference dwells in an argument to show the global integrability of the pressure sequence
pε(%ε), which needs additional hypothesis (2.16) (and an additional estimate induced by this hypothesis,
see (4.5)) for the global-in-time existence result.
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4.1 Uniform estimates

We start by recalling uniform estimates for the couple (%ε,uε) verifying relations (3.2)–(3.7) constructed
in Theorem 3.1. In view of (2.13) (in particular, seeing that

∫
Ω
p(%ε)divu∞ dx ≥ 0) the energy

inequality (3.7) in combination with the conservation of mass (3.4) yields

‖Hε(%ε)‖L∞(0,T ;L1(Ω)) ≤ c(data), (4.2)

‖%εu2
ε‖L∞(0,T ;L1(Ω)) ≤ c(data), (4.3)

‖uε‖L2(0,T ;W 1,2(Ω)) ≤ c(data). (4.4)

These estimates can be derived in a standard way and an interested reader may consult [3, Section
4.3.3] for all details. If u∞ satisfies, in addition, the condition (2.16), then we have also

d‖pε(%ε)‖L1((0,T )×O) ≤ c(data). (4.5)

Here and hereafter, the upper bounds of the sequences (denoted usually by c) depend always tacitly
on the fixed parameters of the problem (as Ω, T , p, β, µ, λ) and on some variable parameters named
“data”, which stand for M0,E0, %, %, %B, %B, but they are always independent of ε.

We shall use only the estimates (4.2)–(4.4) as long as possible. To get (4.5), we need additional
hypotheses (2.16). Later, we shall need it in order to show integrability of the pressure sequence for
the global-in-time existence result.

We deduce from (2.3–2.4), (3.9) and (4.2), in particular,

esssupt∈(0,T )

∫
Ω

hε(%ε(t, x)) dx ≤ c(data), (4.6)

‖%ε‖L∞(0,T ;Lγ(Ω)) ≤ c(data), (4.7)

where

hε(%) =

{
(%− %)−(β−1) if % ∈ [0, %− ε],
ε−(β−1) + (β − 1)ε−β(%− %+ ε) if % ∈ (%− ε,∞).

(4.8)

Here, we have used also the fact that Hε(%) ∼%→%− hε(%). By virtue of (4.3), (4.4), and (4.7)

‖%εuε‖
L∞(0,T ;L

2γ
γ+1 (Ω))

+ ‖%εuε‖
L2(0,T ;L

6γ
γ+6 (Ω))

≤ c(data). (4.9)

4.2 Limit in the continuity equation and boundedness of density

We deduce from the estimates (4.4) and (4.7) that

uε ⇀ u in L2(0, T ;W 1,2(Ω)),

%ε ⇀∗ % in L∞(0, T ;Lγ(Ω)),
(4.10)
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for a convenient subsequence (not relabeled). We also deduce from the continuity equation (3.3), in
view of the estimate (4.9), that the sequence of functions t 7→

∫
Ω
%εφ dx, φ ∈ C1

c (Ω), is equi-continuous.

Therefore, by the Arzela-Ascoli theorem and separability of Lγ
′
(Ω), we get

%ε → % in Cweak(0, T ;Lγ(Ω)) (4.11)

and strong convergence in L2(0, T ;W−1,2(Ω)) in view of compact imbedding L2(Ω) ↪→↪→ W−1,2(Ω).
Consequently, we have

%εuε ⇀ %u e.g. in L2(0, T ;L
6γ
γ+6 (Ω)).

This enables us to pass to the limit in the weak formulation (3.3) so that the identity∫
Ω

%(τ, ·)ϕ(τ, ·) dx−
∫

Ω

%0(·)ϕ(0, ·) dx

=

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dxdt−

∫ τ

0

∫
Γin

%BuB · nϕ dSxdt
(4.12)

holds for any τ ∈ [0, T ] and ϕ ∈ C1
c ([0, T ]× (Ω ∪ Γin)).

To conclude this subsection, we deduce from (4.6) that for all t ∈ (0, T ) and a. a. x ∈ Ω,

0 ≤ %(t, x) < %. (4.13)

To see this, we proceed in a few steps:

1. Coming back to (4.8) we easily verify that for any δ > 0, the function hδ is convex on [0,∞).
Moreover, for all %, the map δ 7→ hδ(%) is nonincreasing in a small right neighborghood of 0.
Finally, hδ ∈ W 1,∞(0,∞). Therefore, we obtain that for almost all t ∈ (0, T )∫

Ω

hδ(%(t)) dx ≤ lim inf
ε→0

∫
Ω

hδ(%ε(t)) dx ≤ lim inf
ε→0

∫
Ω

hε(%ε(t)) dx ≤ c(data) (4.14)

for any fixed sufficiently small δ > 0 by virtue of (4.6), (4.11), and lower weak semicontinuity of
convex functionals.

2. Now we employ item 2 of Remark 3.2 to infer first % ∈ C([0, T );L1(Ω)) and then hδ(%) ∈
C([0, T ];L1(Ω)). Consequently (4.14) yields∫

Ω

hδ(%(t)) dx ≤ c(data) for all t ∈ [0, T ] (4.15)

uniformly in δ. In particular, this yields % ≤ %.

3. Finally, letting δ → 0+ in (4.15) we get by the monotone convergence theorem∫
Ω

(%− %)−(β−1) dx ≤ c(data) for all t ∈ [0, T ].

The latter relation yields the requested formula (4.13).
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4.3 Uniform integrability of pressure

In order to pass to the limit in the weak formulation of the momentum equation (3.6), we have to improve
estimates for pressure. So far, we do not even know whether the pressure is uniformly integrable in ε.
In this section we are going to prove it.

A general tool to obtain these estimates is the following Bogovskii lemma (see e.g. Galdi [14] or [7,
Theorem 10.11]).

Lemma 4.1. Let Ω be a bounded Lipschitz domain. Then there exists a linear operator

B :
{
f ∈ C∞c (Ω;R3) |

∫
Ω

f dx = 0
}
7→ C∞c (Ω;R3)

satisfying the following three properties.

1. For all f ∈ C∞c (Ω;R3) satisfying
∫

Ω
f dx = 0

divB[f ] = f.

2. Let L
p
(Ω) := {f ∈ Lp(Ω) |

∫
Ω
f dx = 0}. The operator B extends to a bounded linear operator

from L
p
(Ω) to W 1,p(Ω) for any 1 < p <∞. In other words, for each 1 < p <∞ there is c(p) > 0

such that for all f ∈ Lp(Ω)
‖B[f ]‖W 1,p(Ω;R3) ≤ c(p)‖f‖Lp(Ω).

3. If f = divg for some g ∈ Lq(Ω), 1 < q <∞ with g · n|∂Ω = 0 in the sense of normal traces, then
there is c(q) > 0 such that

‖B[f ]‖Lq(Ω;R3) ≤ c(q)‖g‖Lq(Ω,R3)

for all g with the above properties.

We employ this lemma to construct test functions for the momentum equation. We shall use different
sets of test functions for each case of Theorem 2.4 and Theorem 2.5.

4.3.1 Bogovskii type estimates under assumptions of Theorem 2.4

We take 0 < r < % and fix T > 0 in such a way that

1

|Ω|

(∫
Ω

%0 dx+ T

∫
Γin

%B|uB · n|dSx
)

= r. (4.16)

We choose cut-off functions η ∈ W 1,∞
0 (0, T ) with 0 ≤ η ≤ 1 and ψ ∈ C1

c (Ω) with 0 ≤ ψ ≤ 1 and

|{ψ = 1}| ≥ 4r

%+ 3r
|Ω|,
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and then consider the following test functions

ϕ = η(t)B(ψ%ε − ψαε), where αε =

∫
Ω
ψ%ε dx∫

Ω
ψ dx

.

We test ϕ in the momentum equation (3.6) to obtain the following identity∫
{%ε> r+%

2
}
ηpε(%ε)(ψ%ε − ψαε)dxdt+

∫
{%ε≤ r+%2

}
ηpε(%ε)(ψ%ε − ψαε)dxdt =

5∑
i=1

Ii (4.17)

where

I1 = −
∫ T

0

∂tη

∫
Ω

%εuε ·B(ψ%ε − ψαε) dxdt,

I2 =

∫ T

0

η

∫
Ω

%εuε ·B(div(%εuεψ)) dxdt,

I3 = −
∫ T

0

η

∫
Ω

%εuε ·B
(
%εuε · ∇xψ −

ψ∫
Ω
ψ dx

∫
Ω

%εuε · ∇xψ dx
)

dxdt,

I4 = −
∫ T

0

η

∫
Ω

%εuε ⊗ uε : ∇xB(ψ%ε − ψαε) dxdt,

I5 =

∫ T

0

η

∫
Ω

S(∇xuε) : ∇xB(ψ%ε − ψαε) dxdt.

By virtue of (3.4) and (4.16), the first term on the left of (4.17) is bounded from below by

%− r
4

∫ T

0

η

∫
Ω

ψpε(%ε) dxdt (4.18)

while the absolute value of the second term on the left of (4.17) is bounded from above by a number
independent of ε and η (dependent on p and r, %), and absolute values of the integrals I1, . . . , I5 are
bounded by virtue of Lemma 4.1 in view of the estimates (4.3), (4.4), and (4.7) by a number independent
of ε and η (if η was chosen appropriately). Taking into account the structure of pressure (2.3) and (2.4),
we conclude that for any compact set K ⊂ Ω,

‖pε(%ε)‖L1(0,T ;L1(K)) ≤ c(data, r,K). (4.19)

Before closing this section, we remark that (4.19) yields, in particular, the bound∫ T

0

∫
{%ε≤%−ε}∩K

(%− %ε)−β ≤ c(data, K). (4.20)

Knowing (4.19), we can extend the estimates (4.19) and (4.20) up to the boundary by the similar
reasoning exposed in (4.21) and (4.22). However, the local estimates (4.19) and (4.20) are enough for
our purpose.
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4.3.2 Bogovskii type estimates under assumptions of Theorem 2.5

First, we shall use in the momentum equation (3.6) the following test function

ϕ = η(t)B(ξ), (4.21)

where

ξ =


1 in Û−,

− |Û
−|
|O| in O,

0 otherwise.

Recall that Û− is an internal neighborhood of ∂Ω defined in (3.8) and O is an open set defined in (2.16).

Notice that h > 0 in the definition of Û− can be chosen so small that Û− ∩ O = ∅. Using this test
function ϕ, we obtain that∫ T

0

η

∫
Û−

pε(%ε)dxdt =
|Û−|
|O|

∫ T

0

η

∫
O

pε(%ε)dxdt−
∫ T

0

∂tη

∫
Ω

%εuε ·B(ξ) dxdt

+

∫ T

0

η

∫
Ω

(
− %εuε ⊗ uε : ∇xB(ξ) + S(∇xu) : ∇xB(ξ)

)
dxdt.

The right-hand side of the above identity is bounded from above by virtue of Hölder’s inequality, Lemma
4.1, and the estimates (4.3)–(4.7). Consequently,∫ T

0

η

∫
Û−

pε(%ε)dxdt ≤ c(data, d). (4.22)

We choose cut-off functions η ∈ W 1,∞
0 (0, T ) with 0 ≤ η ≤ 1 and ψ ∈ C1

c (Ω) with 0 ≤ ψ ≤ 1 and

ψ = 1 in Ω \ Û−,

and then consider the following test functions

ϕ = η(t)B(ψ%ε − αε), where αε =
1

|Ω|

∫
Ω

ψ%ε dx.

We test ϕ in the momentum equation (3.6) to obtain the following identity∫ T

0

η

∫
Ω

ψpε(%ε)%ε dxdt =
7∑
i=0

Ii

where

I1 =
1

|Ω|

∫ T

0

[
η(t)

∫
Ω

ψ%εdx

∫
Ω\Û−

pε(%ε)
]
dt,
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I2 =
1

|Ω|

∫ T

0

[
η(t)

∫
Ω

ψ%εdx

∫
Û−

pε(%ε)dx
]
dt,

I3 = −
∫ T

0

∂tη

∫
Ω

%εuε ·B(ψ%ε − αε) dxdt,

I4 =

∫ T

0

η

∫
Ω

%εuε ·B(div(%εuεψ)) dxdt,

I5 = −
∫ T

0

η

∫
Ω

%εuε ·B
(
%εuε · ∇xψ −

1

|Ω|

∫
Ω

%εuε · ∇xψdx
)

dxdt,

I6 = −
∫ T

0

η

∫
Ω

%εuε ⊗ uε : ∇xB(ψ%ε − αε) dxdt,

I7 =

∫ T

0

η

∫
Ω

S(∇xuε) : ∇xB(ψ%ε − αε) dxdt.

By using the uniform bounds derived already in (4.3)–(4.7) and (4.22), we easily verify the bound-
edness of the integrals I2, . . . , I7. Seeing that∫ T

0

η

∫
Ω\Û−

pε(%ε)%εdxdt ≤
∫ T

0

η

∫
Ω

ψpε(%ε)%ε dxdt,

we conclude ∫ T

0

η

∫
Ω\Û−

pε(%ε)%εdt ≤ c(data, d) +
Mε

|Ω|

∫ T

0

η(t)

∫
Ω\Û−

pε(%ε)dxdt, (4.23)

where

Mε := max
t∈[0,T ]

∫
Ω

%ε(t) dx.

Next, we show that it implies ∫ T

0

η

∫
Ω\Û−

%εpε(%ε)dxdt ≤ c(data, d). (4.24)

Indeed:

1. From the convergence in (4.11) we get, in particular,∫
Ω

%ε dx→
∫

Ω

% dx in C[0, T ].

In view of the estimate (4.13) we find

Mε = max
t∈[0,T ]

∫
Ω

%ε(t, x) dx < %|Ω|. (4.25)

Therefore, there is λ > 1 such that

lim sup
ε→0

λ
Mε

|Ω|
< %.
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2. Consequently,∫
ΩU

pε(%ε)%εdx ≤ c(data, d) +

∫
ΩU

pε(%ε)
Mε

|Ω|
dx

≤ c+

∫
{%ε≤λMε|Ω| }∩ΩU

pε(%ε)
Mε

|Ω|
dx+

∫
{%ε>λMε|Ω| }∩ΩU

pε(%ε)
Mε

|Ω|
dx

≤ c+Mε pε

(
λ
Mε

|Ω|

)
+

1

λ

∫
ΩU

p(%ε)%εdx

where ΩU = Ω \ Û−. Inserting this estimate into (4.23) yields the desired result (4.24).

Now, we may write∫
ΩU

pε(%ε)dx ≤
∫

ΩU∩{%ε≤%/2}
pε(%ε)dx+

2

%

∫
ΩU∩{%ε>%/2}

pε(%ε)%εdx,

where the first integral is bounded by p(%/2)|Ω| and the integral from 0 to T of the second term
on the right is uniformly bounded due to (4.24).

Using the latter analysis and (4.22), we conclude∫ T

0

η

∫
Ω

pε(%ε) dxdt ≤ c(data, d). (4.26)

Since the bound c is independent of η, we remark that (4.26) yields, in particular, the bound∫ T

0

∫
{%ε≤%−ε}

(%− %ε)−β ≤ c(data). (4.27)

4.4 Equi-integrability of pressure

Basically, the arguments for proving Theorem 2.4 and Theorem 2.5 are the same.
In order to get equi-integrability of the sequence pε(%ε), we shall use the renormalized continuity

equation (3.5). We fix the same cut-off function η as in the previous section and 0 ≤ ψ ∈ C1
c (Ω) and

consider the following test function

ϕ = η(t)B(ψb(%ε)− αε) where αε =
1

|Ω|

∫
Ω

ψb(%ε) dx

and

b(%) =


− ln(%/2) if % ∈ [0, %/2],

− ln(%− %) if % ∈ (%/2, %− ε),
− ln ε if % ∈ [%− ε,∞).
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We note that

b′(%) =
1

%− %
1(%/2,%−ε)(%),

where 1E(ρ) denotes the characteristic function of a set E. In view of (4.6), (4.7), (4.20), and (4.27),
we notice also that for any 1 ≤ p <∞ and any compact K ⊂ Ω,

‖b(%ε)‖L∞(0,T ;Lp(Ω)) ≤ c(data, p),

‖%εb′(%ε)− b(%ε)‖Lβ((0,T )×K) ≤ c(data, K),

‖%εb′(%ε)− b(%ε)‖L∞(0,T ;Lβ−1(Ω)) ≤ c(data).

(4.28)

We test ϕ in the renormalized continuity equation (3.5) to obtain the following identity∫ T

0

η

∫
Ω

ψpε(%ε)b(%ε) dxdt =
7∑
i=1

Ii,

where

I1 =
1

|Ω|

∫ T

0

η(t)

∫
Ω

ψb(%ε)dx

∫
Ω

p(%ε) dxdt,

I2 =

∫ T

0

∂tη

∫
Ω

%εuε ·B(ψb(%ε)− αε) dxdt,

I3 =

∫ T

0

η

∫
Ω

%εuε ·B
(

div(ψb(%ε)uε)
)

dxdt,

I4 = −
∫ T

0

η

∫
Ω

%εuε ·B
(
b(%ε)uε · ∇xψ −

1

|Ω|

∫
Ω

b(%ε)uε · ∇xψdx
)

dxdt,

I5 = −
∫ T

0

η

∫
Ω

%εuε ·B
[
ψ
(
%εb
′(%ε)− b(%ε)

)
divuε −

1

|Ω|

∫
Ω

ψ
(
%εb
′(%ε)− b(%ε)

)
divuε dx

]
dxdt,

I6 =

∫ T

0

η

∫
Ω

S(∇xuε) : ∇xB(ψb(%ε)− αε) dxdt,

I7 = −
∫ T

0

η

∫
Ω

%εuε ⊗ uε : ∇xB(ψb(%ε)− αε) dxdt.

Nowadays, it is standard that the calculation effectuated above exploits integration by parts and the
renormalized equation (3.5). The function b is admissible in the renormalized continuity equation as
one can check by using Remark 3.2. We easily verify in view of (4.3)–(4.7), (4.20), and (4.28) that for
any β > 5/2 there is γ0 > 3/2 (sufficiently large - γ0 → ∞ as β → 5

2
+) such that absolute values of

I1, . . . , I7 are bounded above by some positive constants. (The most severe constraints on the values of
β and γ within these calculations are imposed in estimating the term |I5|.) Effectuating this process,
we obtain that for any compact set K ⊂ Ω,

‖pε(%ε)b(%ε)‖L1((0,T )×K) ≤ c(data, K). (4.29)
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Consequently, the sequence pε(%ε) is equi-integrable in L1((0, T )×K) and

pε(%ε) ⇀ p(%) in L1((0, T )×K) (4.30)

for any compact set K ⊂ Ω at least for a chosen subsequence (not relabeled).

4.5 Momentum equation

With the help of (4.3), (4.4), and (4.29) employed in the momentum equation (3.6), we verify equicon-
tinuity of the sequence t 7→

∫
Ω
%εuε(t, x)ϕ(x) dx, ϕ ∈ C1

c (Ω) in C[0, T ]. Thereofore, we may use the

Arzela-Ascoli theorem in combination with the separability of Lγ
′
(Ω) to show that

%εuε → %u in Cweak(0, T ;Lγ(Ω)). (4.31)

Consequently, the compact imbedding L2(Ω) ↪→↪→ W−1,2(Ω) in combination with the weak convergence
of un in L2(0, T ;W 1,2(Ω)) implies

%εuε ⊗ uε ⇀ %u⊗ u in L2(0, T ;L6γ/4γ+3(Ω)). (4.32)

Thus, letting ε → 0 in weak formulation of (3.6), while using (4.11)–(4.32) and (4.30), we obtain
that for any τ ∈ [0, T ] and ϕ ∈ C1

c ([0, T ]× Ω;R3),∫
Ω

%u(τ, ·) ·ϕ(τ, ·) dx−
∫

Ω

%0u0(·) ·ϕ(0, ·) dx

=

∫
Ω

(
%u⊗ u : ∇xϕ + p(%)divxϕ

)
dx−

∫ τ

0

∫
Ω

S(∇xu) : ∇xϕ dxdt.

(4.33)

The final goal to complete the proof of main theorems is to show

p(%) = p(%), (4.34)

which amounts, in fact, to show that the density sequence %ε converges almost everywhere in QT .

4.6 Effective viscous flux

We denote by ∇x∆
−1 the pseudodifferential operator of the Fourier symbol iξ

|ξ|2 and by R the Riesz

transform of the Fourier symbol ξ⊗ξ
|ξ|2 . Following Lions [17] with modified in [9], we shall use the test

function
ϕ(t, x) = η(t)ψ(x)∇x∆

−1(Tk(%ε)ψ), η ∈ C1
c (0, T ), ψ ∈ C1

c (Ω)

in the approximating momentum equation (3.6) and the test function

ϕ(t, x) = η(t)ψ(x)∇x∆
−1(Tk(%)ψ), η ∈ C1

c (0, T ), ψ ∈ C1
c (Ω)
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in the limiting momentum equation (4.33), subtract the resulting identities, and then perform the limit
ε→ 0. These calculations are laborious but nowadays standard. One can find details e.g. in [9, Lemma
3.2], [20], [6] or [7, Chapter 3]) to obtain the following identity∫ T

0

∫
Ω

ηψ2
(
p(%) Tk(%)− (2µ+ λ)divuTk(%

)
dxdt

−
∫ T

0

∫
Ω

ηψ2
(
p(%)Tk(%)− (2µ+ λ)Tk(%)divu

)
dxdt

=

∫ T

0

η

∫
Ω

ψ2u ·
(
Tk(%)R · (%u)− %u ·R(Tk(%))

)
dxdt

− lim
ε→0

∫ T

0

η

∫
Ω

ψ2uε ·
(
Tk(%ε)R · (%εuε)− %εuε ·R(Tk(%ε))

)
dxdt,

(4.35)

where
Tk(z) = kT(z/k) for k > 1, (4.36)

and T ∈ C1[0,∞) is concave on [0,∞) and satisfies{
T(z) = z for z ∈ [0, 1],

T(z) = 2 for z ∈ [3,∞).

In (4.35) and in the sequel the overlined quantities b(%,u), resp. b(%) denote L1(QT )-weak limits of
sequences b(%ε,uε) resp. b(%ε) (or bε(%ε) if this is the case).

The most non-trivial moment in this process is to show that the right-hand side of this identity
vanishes. The details of this calculation and reasoning can be found in [9, Lemma 3.2], [6], [20], or [7,
Chapter 3]. Consequently,

p(%)Tk(%)− p(%) Tk(%) = (2µ+ λ)
(
Tk(%)divu−Tk(%)divu

)
. (4.37)

Recalling that p = p− p and p is non decreasing, we deduce from (4.37)

(2µ+ λ)
(
Tk(%)divu−Tk(%)divu

)
≤ p(%)Tk(%)− p(%)Tk(%).

Consequently,

(2µ+ λ)

∫ τ

0

∫
Ω

(
%divu− %divu

)
dxdt ≤

∫ τ

0

∫
Ω

(
p(%)%− p(%) %

)
dxdt, (4.38)

where we have used

lim sup
k→∞

‖Tk(%)− %‖L1(QT ) = 0,
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lim
k→∞
‖p(%)Tk(%)− p(%) %‖L1(QT ) = 0.

Following Feireisl [6], we introduce the following two maps for % ∈ [0,∞)

% 7→ Λ% ln %− %p(%),

% 7→ Λ% ln %+ p(%),
(4.39)

which are convex provided Λ > 0 is chosen large enough. Consequently,

Λ
(
% ln %− % ln %

)
≥ %p(%)− %p(%), (4.40)

Λ
(
% ln %− % ln %

)
≥ p(%)− p(%). (4.41)

Using these inequalities and (4.38), we obtain that

(2µ+ λ)

∫ τ

0

∫
Ω

(
%divu− %divu

)
dxdt ≤ cΛ(1 + %)

∫ τ

0

∫
Ω

(
% ln %− % ln %

)
dxdt. (4.42)

4.7 Compactness of pressure

The next (and the last) step in the proof follows closely Section 4.5 in [3].
Employing Lemma 2.3 and Remark 2.2, we obtain, in particular, that (%,u) verifies∫

Ω

L(%(τ, x))ϕ(τ, x)dx−
∫

Ω

L(%0)ϕ(0, x)dx

=

∫ τ

0

∫
Ω

(
L(%)u · ∇xϕ− ϕ%divxu

)
dxdt+

∫ τ

0

∫
∂Ω

L(%B)uB · nϕdSxdt

(4.43)

with any ϕ ∈ C1
c (Ω ∪ Γin), where L(%) = % ln %.

Considering (3.5) with b(%ε) = L(%ε) = %ε ln %ε and letting ε→ 0, we get∫
Ω

L(%(τ))ϕdx−
∫

Ω

L(%0)ϕ(0, x)dx

=

∫ τ

0

∫
Ω

(
L(%)u · ∇xϕ− ϕ%divxu

)
dxdt+

∫ τ

0

∫
∂Ω

L(%B)uB · nϕdSxdt,

where ϕ ∈ C1
c (Ω ∪ Γin). Subtracting (4.43) from this identity, we obtain∫

Ω

(
L(%)− L(%)

)
(τ)ϕ(x)dx

=

∫ τ

0

∫
Ω

(
L(%)− L(%)

)
u · ∇xϕdxdt−

∫ T

0

∫
Ω

ϕ
(
%divxu− %divu

)
dxdt.
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Hence, we use (4.42) to get∫
Ω

(
% ln %− % ln %

)
(τ, x)ϕ(x) dx+

∫ τ

0

∫
Ω

(
% ln %− % ln %

)
u · ∇xϕ dxdt

≤ cΛ(1 + %)

∫ τ

0

∫
Ω

(
% ln %− % ln %

)
dxdt

(4.44)

for any τ ∈ [0, T ] and ϕ ∈ C1
c (Ω ∪ Γin) with ϕ ≥ 0.

Since Γout is in the class C2, the function x 7→ dΩ(x) ≡ dist(x,Γout) belongs to C2(Û−ε0(Γout)∪Γout)
for some “small” ε0 > 0 where

Û−ε0(Γout) ≡ {x = x0 − zn(x0) |x0 ∈ Γout, 0 < z < ε0} ∩ Ω,

cf. Foote [13]. Moreover, if x ∈ Û−ε (Γout), 0 < ε < ε0, and x0 ∈ Γout, then x→ x0 implies

∇x dist(x,Γout)→ −n(x0).

Therefore, if ε0 > 0 is “small”, then for all x ∈ Û−ε (Γout) with 0 < ε < ε0,

u∞ · ∇x dist(x,Γout) < 0, (4.45)

where u∞ is defined in (2.13). Since Ω is Lipschitz, we have also that∣∣∣Û−ε (Γout)∆Û−ε (Γout)
∣∣∣→ 0 (4.46)

as ε→ 0, where A∆B denotes the symmetric difference of two sets A and B, and

Û−ε (Γout) ≡ {x ∈ Ω | dist(x,Γout) < ε}.

Consider the following Lipschitz test functions in Ω

ϕε(x) =

{
1 if dist(x,Γout) > ε,
1
ε

dist(x,Γout) if dist(x,Γout) ≤ ε.
(4.47)

By the Lebesgue dominated convergence theorem and the Hardy inequality,∫ T

0

∫
Ω

[
% ln(%)− % ln(%)

]
(u− u∞) · ∇xϕε dxdt→ 0 as ε→ 0, (4.48)

while, in accordance with (4.45) and (4.46),

lim inf
ε→0

∫ T

0

∫
Ω

[
% ln(%)− % ln(%)

]
u∞ · ∇xϕε dxdt ≥ 0. (4.49)
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Using this information we conclude from (4.44) that for τ ∈ [0, T ],∫
Ω

(
% ln %− % ln %

)
(τ, x) dx ≤ 0. (4.50)

On the other hand, we have
% ln %− % ln % ≥ 0 a.e. in QT

since L is convex. Thus, (4.50) yields

% ln % = % ln % a.e. in QT .

Since the function % 7→ % ln % is strictly convex on [0,∞), we obtain that

%ε → % a.e. in QT and in Lp(QT ) for 1 ≤ p <∞, (4.51)

cf. e.g. [7, Theorem 10.20]. We deduce from (4.51) and (4.29) that for any compact K ⊂ Ω,

pε(%ε)→ p(%) a.e. in QT and in L1((0, T )×K). (4.52)

In particular, we have p(%) = p(%) in the equation (4.33).
At this stage, the most difficult part is resolved. The remaining part is to derive the energy inequality

(2.8) by passing to the limit from the energy inequality (3.7).

4.8 Energy inequality

We first integrate (3.7) over 0 < τ1 < τ2 < T to obtain that∫ τ2

τ1

∫
Ω

(1

2
%ε|uε − u∞|2 +H(%ε)

)
(τ)dxdτ +

∫ τ2

τ1

∫ τ

0

∫
Ω

S(∇x(uε − u∞)) : ∇x(uε − u∞)dxdtdτ

≤
∫ τ2

τ1

∫
Ω

(1

2
%0|u0 − u∞|2 +H(%0)

)
dxdτ −

∫ τ2

τ1

∫ τ

0

∫
Ω

pε(%ε)divu∞dxdtdτ

−
∫ τ2

τ1

∫ τ

0

∫
Ωε

%εuε · ∇xu∞ · (uε − u∞)dxdtdτ −
∫ τ2

τ1

∫ τ

0

∫
Ω

S(∇xu∞) : ∇x(uε − u∞)dxdtdτ

−
∫ τ2

τ1

∫ τ

0

∫
Γin

H(%B)uB · ndSxdtdτ −H
∫ τ2

τ1

∫ τ

0

∫
Γout

uB · ndSxdtdτ.

(4.53)

Now, we can use the convergences established in Section 4.2 and in (4.51) at the right-hand side and
the same convergences in combination with the lower weak semi-continuity of convex functionals at the
left-hand side (see e.g. [7, Theorem 10.20]). To this end, we write Hδ = Hδ + H and realize that Hδ is
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convex and H is bounded on (0,∞) so that we obtain∫ τ2

τ1

∫
Ω

(1

2
%|u− u∞|2 +H(%)

)
(τ)dxdτ +

∫ τ2

τ1

∫ τ

0

∫
Ω

S(∇x(u− u∞)) : ∇x(u− u∞)dxdtdτ

≤
∫ τ2

τ1

∫
Ω

(1

2
%0|u0 − u∞|2 +H(%0)

)
dxdτ − lim inf

ε→0

∫ τ2

τ1

∫ τ

0

∫
Ω

pε(%ε)divu∞dxdtdτ

−
∫ τ2

τ1

∫ τ

0

∫
Ωε

%u · ∇xu∞ · (u− u∞)dxdtdτ −
∫ τ2

τ1

∫ τ

0

∫
Ω

S(∇xu∞) : ∇x(u− u∞)dxdtdτ

−
∫ τ2

τ1

∫ τ

0

∫
Γin

H(%B)uB · ndSxdtdτ −H
∫ τ2

τ1

∫ τ

0

∫
Γout

uB · ndSxdtdτ.

(4.54)

Due to (4.51) and (4.52), we have for any compact set K ⊂ Ω∫ τ

0

∫
K

p+(%)divu∞dxdt = lim
ε→0

∫ τ

0

∫
K

pε
+(%ε)divu∞dxdt ≤ lim inf

ε→0

∫ τ

0

∫
Ω

pε
+(%ε)divu∞dxdt

while by virtue of (4.51),∫ τ

0

∫
Ω

p−(%ε)divu∞ dxdt→
∫ τ

0

∫
Ω

p−(%)divu∞ dxdt.

Inserting these observations into (4.54) yields the desired inequality (2.8).

5 On the conditions (2.13)–(2.16)

The condition (2.13) is not a necessary compatibility condition of the problem. The purpose of this
section is to prove the following two claims.

1. There are domains and reasonable vector-fileds uB that satisfy (2.13) and even (2.13) with (2.16).

2. If (2.13) is violated, then global-in-time weak solution to the problem (1.1)–(1.6) with (2.3)–(2.4)
may not exist.

The second claim contrasts sharp with the barotropic case. In that case, the global-in-time weak solution
always exists provided the addiabatic coefficient is greater than d/2.

5.1 Proof of the first claim

We shall show that for a sufficiently smooth simply connected domain and for the boundary velocity uB
with non-negative flux, there exists a suitable extension of uB to Ω belonging to class (2.1) and (2.13)
with (2.16). This result is formulated in the following two lemmas.

The first lemma is standard and deals with zero-flux boundary vector fields (see Finn [12], Hopf [16],
or Galdi [14]).
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Lemma 5.1. Suppose that Ω ⊂ Rd is a bounded simply connected domain of class C2+ν, ν ∈ (0, 1).

Then for any w ∈ W 2− 1
q
,q(∂Ω;Rd), q > d satisfying∫

∂Ω

w · ndSx = 0,

there exists W ∈ W 2,q(Ω) such that

W|∂Ω = w in the sense of traces, divW = 0 (5.1)

and the map w 7→W is continuous, i.e. there is c > 0 such that for all w ∈ W 2− 1
q
,q(∂Ω;Rd),

‖W‖W 2,q(Ω;Rd) ≤ c‖w‖
W

2− 1
q ,q(∂Ω;Rd)

The second lemma is less standard and deals with positive-flux boundary vector fields.

Lemma 5.2. Suppose that Ω be a bounded simply connected domain of class C2+ν, ν ∈ (0, 1), and that
uB is a vector field on ∂Ω in the class (2.1) satisfying∫

∂Ω

uB · ndSx = K > 0. (5.2)

Then uB admits an extension to Ω satisfying (2.13) with (2.16).

Proof. Suppose Lemma 5.3 was established. Then there exists a vector field V ∈ C2(Ω;Rd) satisfying
conditions

divV ≥ 0 in Ω, divV > 0 in O (5.3)

where O is open set such that O ⊂ Ω and and
∫
∂Ω

V · n dSx = K. Now we can easily deduce the result
of Lemma 5.2. Indeed, let V be the vector field constructed in Lemma 5.3 and put

w = uB −V.

Then we can apply Lemma 5.1 to w and set u∞ = W +V. This completes the proof of Lemma 5.2.

We finish this subsection by proving the next lemma.

Lemma 5.3. Let Ω ⊂ Rd, d = 2, 3, be a bounded simply connected domain of class C2. Given K > 0,
there exists a vector field V ∈ C2(Ω;Rd) satisfying (5.3), and∫

∂Ω

V · n dSx = K. (5.4)

Proof. We first recall the following known results. Since Ω is of class C2, there are an open neighborhood

Ũ of ∂Ω and an open connected set C ⊂ ∂Ω, C ⊂ Ũ−, where Ũ− := Ũ ∩ Ω denotes an inner open
neighborhood of ∂Ω, such that the following three conditions hold.
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1. For any x ∈ Ũ−, there is a unique xB(x) ∈ ∂Ω such that

dΩ(x) ≡ dist(x; ∂Ω) = |x− xB(x)|,

and the map x 7→ xB(x) is Lipschitz on Ũ−.

2. The distance function dΩ belongs to C2(Ũ−).

3. dΩ(x) = dist(x;C) for all x ∈ Ũ−C and
∆dΩ(x) ≤ 0 (5.5)

whenever x ∈ Ũ−C := {x ∈ Ũ− |xB(x) ∈ C}.

We refer to Foote [13] for the condition 1 and 2 and to Armitage–Kuran [1] for the condition 3.
Now, we take an open connected set B (in ∂Ω) with B ⊂ C and a function Λ ∈ C2(∂Ω) such that

Λ ∈ C2
c (C), Λ ≥ 0, Λ(x) ≥ k > 0 for x ∈ B, and∫

∂Ω

Λ dSx =

∫
∂Ω

Λn · n dSx = K.

We put
V(x) = −Λ(xB(x))hδ(dist(x;C))∇x dist(x;C)

for x ∈ Ω where the function hδ is chosen in such a way that hδ ∈ C1
c [0,∞), h′δ ≤ 0, and{

hδ(y) = 1− 1
δ
y for y ∈ [0, δ/2],

hδ(y) = 0 for y ∈ [δ,∞).
(5.6)

We can choose the set B and the positive number δ such that

supp
(
x 7→ Λ(xB(x))hδ(dist(x;C))

)
⊂ Ũ−C ∪ C.

Hence suppV ⊂ Ũ−C ∪ C. It is easy to check that V = Λn on ∂Ω and the condition (5.4) is satisfied.
Finally, using (5.5) and (5.6), we compute for x ∈ Ũ−C ,

divxV(x) = −Λ(xB(x))h′δ(dist(x;C))|∇x dist(x;C)|2

− Λ(xB(x))hδ(dist(x;C))∆x dist(x;C)

− hδ(dist(x;C))∇x(Λ(xB(x))) · ∇x dist(x;C)

≥ −Λ(xB(x))h′δ(dist(x;C))|∇x dist(x;C)|2

− hδ(dist(x;C))∇x(Λ(xB(x))) · ∇x dist(x;C)

(5.7)

and for x ∈ Ω \ Ũ−C ,
divxV(x) = 0.
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Since the function Λ(xB(x)) is constant on each segment [x, xB(x)] and ∇xdΩ(x) is parallel to this
segment, we obtain that for x ∈ Ũ−C ,

∇x(Λ(xB(x))) · ∇x dist(x;C) = 0.

Moreover, we have for x ∈ Ũ−C ,
∇x dist(x;C)→ −n(xB(x)).

Hence, if δ is sufficiently small, then there exist an open set O ⊂ Ũ−C and a positive number k such that
for all x ∈ O,

−Λ(xB(x))h′δ(dist(x;C))|∇x dist(x;C)|2 > k/2 > 0

where we have used the continuity of all functions at the left-hand side. These facts employed in (5.7)
finish the proof of Lemma 5.3.

5.2 Proof of the second claim

We shall show that if the boundary velocity uB has a negative flux over the boundary of a bounded
domain, then the problem (1.1)–(1.6) with (2.3)–(2.4) may fail to have a global-in-time weak solution.
The exact statement is announced in the following lemma.

Lemma 5.4. Let uB belong to the regularity class (2.1) and let Ω be a bounded Lipschitz domain. If∫
∂Ω

uB · ndSx < 0,

then there exists %B in the class (2.1) and T > 0 such that the problem (1.1)–(1.6) with (2.3)–(2.4) does
not admit a global-in-time weak solution on interval (0, T ).

Proof. In (2.6), we use the test function

ϕ = ϕδ(x) = hδ(dist(x; Γout)), x ∈ Ω,

where hδ = 1− hδ and hδ ∈ C1
c [0,∞), h′δ ≤ 0, satisfying (5.6). Then hδ ∈ C1[0,∞) satisfies{

hδ(y) = 1
δ
y for y ∈ [0, δ/2],

hδ(y) = 1 for y ∈ [δ,∞).

In particular, ϕδ(x)↗ 1 for any x ∈ Ω. After a straightforward manipulation, we get∫
Ω

%(τ, ·)ϕδ dx−
∫

Ω

%0(·)ϕδ dx

=

∫ τ

0

∫
Ω

%(u− u∞) · ∇xϕδ dxdt+

∫ τ

0

∫
Ω

(%− %)u∞ · ∇xϕδ dxdt
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+

∫ τ

0

∫
Ω

%u∞ · ∇xϕδ dxdt−
∫ τ

0

∫
Γin

%BuB · nϕδ dSxdt.

Using (4.13), (4.45), and (4.46), we obtain

lim
δ→0

∫ τ

0

∫
Ω

(%− %)u∞ · ∇xϕδ dxdt ≥ 0.

By the similar way as in (4.48), we get

lim
δ→0

∫ τ

0

∫
Ω

%(u− u∞) · ∇xϕδ dxdt = 0.

Moreover, ∫
Ω

%u∞ · ∇xϕδ dx−
∫

Γin

%BuB · nϕδdSx

= −%
∫

Ω

divu∞ϕδ dx+ %

∫
∂Ω

uB · nϕδ dSxdt−
∫ τ

0

∫
Γin

%BuB · nϕδ dSxdt.

Consequently, letting δ → 0 yields∫
Ω

%(τ, ·) dx−
∫

Ω

%0(·) dx ≥ τ
(
− %

∫
∂Ω

uB · ndSx +

∫
Γin

(%− %B)uB · n dSx

)
. (5.8)

If we choose %B “sufficiently close” to %, then we can make the quantity in the parenthesis strictly
positive. Hence there is a positive number T such that

∫
Ω
%(τ, ·) dx > %|Ω| for all τ > T . This

contradicts (4.13). This completes the proof of Lemma 5.4.

6 Piecewise smooth domains

In many practical situations in non-zero inflow/outflow regimes, the domain occupied by the fluid does
not possess C2 regularity. A typical example is a finite cylinder with inflow and outflow boundaries,
which are lower and upper discs of the boundary of the cylinder. Both existence results, Theorem 2.5
and Theorem 2.4, continue to hold in this situation.

We start with the definition of a piecewise C2 Lipschitz domain.

1. The domain Ω is bounded Lipschitz such that

∂Ω = Γ0 ∪ Γin ∪ Γout. (6.1)

2. There holds

Γa =
Ia⋃
ia=1

Γia where a stands for “0”, “in”, “out”,

Γka ∩ Γlb = ∅ whenever a ∈ {in, out}, b ∈ {in, out}, ka 6= lb.

(6.2)
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Here Γia are an open connected 2-dimensional mutually disjoint manifolds of class C2, and “in”
and “out” refer to the notation (1.6), and

Γ0 = int2

(
{x ∈ ∂Ω |uB · n = 0}

)
. (6.3)

3. There holds

γa ≡ ∂Γa =
Ka⋃
ka=1

γa,ka , (6.4)

where γa,ka is a closed parametrized curve in Rd of class C2 (if d = 3) or a point (if d = 2) such
that either γa,ka ∩ γb,lb = ∅, or γa,ka = γb,lb .

According to [4, Theorem 2.4], Theorem 3.1 for the barotropic problem (1.1)–(2.3)p=pε for approxi-
mations still holds on piecewise C2 domains satisfying the conditions (6.1)–(6.4). The limiting process
ε → 0 in Section 4 requires only a bounded Lipschitz domain with C2 open (d − 1)-maniflods Γin and
Γout. Due to this facts, Theorems 2.4 and 2.5 continue to hold also for piecwise C2 domains. More
precisely, we have the following two theorems.

Theorem 6.1. Let Ω be a Lipschitz domain satisfying the conditions (6.1)–(6.4). Suppose that the
pressure p, boundary data (%B,uB), and initial data (%0,u0) satisfy the hypotheses of Thoerem 2.4.
Then there is T > Tmax > 0 such that the problem (1.1)–(1.6) admits at least one renormalized bounded
energy weak solution (%,u) on the time interval (0, T ). The value of Tmax is given by the formula
(2.15).

Theorem 6.2. Let Ω be a Lipschitz domain satisfying the conditions (6.1)–(6.4) and let T > 0 be an
arbitrary number. Suppose that the pressure p, boundary data (%B,uB), and initial data (%0,u0) satisfy
the hypotheses of Thoerem 2.5. Then the problem (1.1)–(1.6) admits at least one renormalized bounded
energy weak solution (%,u) on the time interval (0, T ).
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