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RELAXED MULTI-MARGINAL COSTS AND QUANTIZATION

EFFECTS

GUY BOUCHITTÉ, GIUSEPPE BUTTAZZO, THIERRY CHAMPION, LUIGI DE PASCALE

Abstract. We propose a duality theory for multi-marginal repulsive cost that
appear in optimal transport problems arising in Density Functional Theory. The
related optimization problems involve probabilities on the entire space and, as
minimizing sequences may lose mass at infinity, it is natural to expect relaxed so-
lutions which are sub-probabilities. We first characterize the N -marginals relaxed
cost in terms of a stratification formula which takes into account all k interactions
with k ≤ N . We then develop a duality framework involving continuous functions
vanishing at infinity and deduce primal-dual necessary and sufficient optimality
conditions Next we prove the existence and the regularity of an optimal dual po-
tential under very mild assumptions. In the last part of the paper, we apply our
results to a minimization problem involving a given continuous potential and we
give evidence of a mass quantization effect for optimal solutions.

Keywords: Multi-marginal optimal transport, Duality and Relaxation, Coulomb
cost, Quantization of minimizers
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1. Introduction

An interesting issue in Density Functional Theory (DFT), an important branch
of Quantum Chemistry, is to understand the asymptotic behavior as ε → 0 of the
infimum problem

min {εT (ρ) + C(ρ)− U(ρ) : ρ ∈ P} (1.1)

where the parameter ε stands for the Planck constant and

• T (ρ) is the kinetic energy

T (ρ) =
1

2

∫

Rd

|∇√
ρ|2 dx;

• C(ρ) describes the electron-electron interaction;
• U(ρ) is the potential term

U(ρ) =

∫

Rd

V (x)ρ dx;

• P is the class of all probabilities over R
d.

The term C(ρ) is the one on which we focus our attention. Here we want to stress
that the ambient space is the whole R

d (d = 3 in the physical applications); for
simplicity integrals over R

d are often denoted without the indication of the domain
of integration, and similarly for spaces of functions or measures defined over all Rd

we do not indicate the domain. Starting from the works [4] and [7] the link between
optimal transportation problems [23] and DFT for Coulomb systems [18] has been
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investigated and in particular the term C(ρ) has been considered as a multi-marginal
transport cost:

C(ρ) = inf

{∫

RNd

c(x1 . . . , xN) dP : P ∈ Π(ρ)

}

where

c(x1 . . . , xN) =
∑

1≤i<j≤N

1

|xi − xj |
and Π(ρ) is the family of multi-marginal transport plans

Π(ρ) =
{
P ∈ P(RNd) : π#

i P = ρ for all i = 1, . . . , N
}

being πi the projections from R
Nd on the i-th factor R

d and π#
i the push-forward

operator

π#
i P (E) = P

(
π−1
i (E)

)
for all Borel sets E ⊂ R

d.

The relationship of the transport cost C(ρ) with the DFT is mainly related to the
fact that it is the semiclassical limit of the Levy-Lieb energy as shown in [1, 7, 8, 16].

If U is associated with a Coulomb potential V : Rd → [0,+∞] of the kind

V (x) =
M∑

k=1

Zk
|x−Xk|

Zk > 0, Xk ∈ R
d,

where for k = 1, . . . ,M the Xk are the positions of the nuclei and Zk the correspond-
ing charges, it turns out that the infimum in (1.1) blows up to −∞ as ε−1. Studying
the rescaled problem as ε → 0 is a quite difficult issue due to the presence of the
strong interaction term C(ρ). In particular it is not clear under which conditions
on the potential V the problem (1.1) admits a solution and what is the limiting
problem as ε → 0 in the sense of Γ-convergence. A partial answer is known when
the electronic energy C(ρ) involves two electrons only (see [2]). Some theoretical
and numerical results on the same problem are also contained in [5].

In contrast, if instead of the Coulomb potential we choose a continuous potential
V vanishing at infinity, then the infimum in (1.1) remains bounded as ε → 0. It
is important to notice that limits of minimizing sequences (ρε) are not in general
probabilities since some mass can be lost at infinity (what we call ionization phe-
nomenon [12, 13, 21, 22]). It turns out by an elementary Γ-convergence argument
that, in this case, the weak* limits of (ρε) can be characterized as solutions of the
limit problem

min

{
C(ρ)−

∫
V dρ : ρ ∈ P−

}
(1.2)

where C(ρ) is the relaxation of the functional C(ρ) defined by:

C(ρ) = inf
{
lim inf

n
C(ρn) : ρn

∗
⇀ ρ, ρn ∈ P

}
.

Notice that C(ρ) is defined for all ρ belonging to the class of sub-probabilities

P− =
{
ρ nonnegative Borel measure on R

d : ‖ρ‖ ≤ 1
}

where by ‖ρ‖ we simply denoted the mass of ρ

‖ρ‖ =

∫
dρ.



RELAXED MULTI-MARGINAL COSTS AND QUANTIZATION EFFECTS 3

The minimization problem (1.2) is convex and our first goal is to develop a duality
theory for the optimal transport problem related to the cost functional C(ρ). This
is achieved by considering the compactification of Rd through the addition of a point
ω at infinity and the related dual space C0 ⊕ R. The duality formula is illustrated
in Theorem 3.2:

C(ρ) = sup

{∫
ψ dρ+ (1− ‖ρ‖)ψ∞ : ψ ∈ A

}
(1.3)

where A is the class of admissible functions, defined as

A =

{
ψ ∈ C0 ⊕ R :

1

N

N∑

i=1

ψ(xi) ≤ c(x1, . . . , xN) ∀xi ∈ (Rd)N

}
,

and ψ∞ denotes the limit of ψ at infinity. Furthermore we prove for a large class of
ρ the existence of an optimal Lipschitz continuous potential ψ for (1.3). We are also
able to represent the relaxed cost functional C through a stratification formula:

C(ρ) = inf

{
N∑

k=1

Ck(ρk) : ρk ∈ P−,

N∑

k=1

k

N
ρk = ρ,

N∑

k=1

‖ρk‖ ≤ 1

}
(1.4)

which makes use of all partial interaction functionals Ck, 1 ≤ k ≤ N as defined in
(2.4). We recently become aware that some results on the same spirit but in the
framework of Grand Canonical Optimal Transportation are currently being obtained
by Di Marino, Lewin and Nenna [11].

As an application of our duality theory we analyze the optimization problem
(1.2) with a potential V (x) belonging to C0. Even in this simplified case, when
no kinetic energy is present, we discover a very rich and surprising structure in
which, depending on the choice of V , we obtain optimal solutions which are either
probabilities or sub-probabilities with fractional mass k

N
with k integer (phenomenon

that we may interpret as a mass quantization effect).
Most of the results presented in this paper could be extended with little effort to

the more general case of an interaction cost of the form

c(x1 . . . , xN) =
∑

1≤i<j≤N

ℓ(|xi − xj |) ,

where the function ℓ : R
+ → (0,+∞] is lower semicontinuous and vanishes at

infinity. Some more technical requirements on the function ℓ are needed to extend
the existence and Lipschitz regularity result of Section 4.

The structure of the paper is as follow. In Section 2, we first identify the relaxed
functional C(ρ) on P− in an abstract compact framework (Proposition 2.1) and then
establish the representation formula (1.4). In Section 3, we develop a complete du-
ality framework extending previous works [3, 10, 14] to the case of sub-probabilities
and allowing practical computations in case of finitely supported measures (Proposi-
tion 3.8). In addition we derive some very useful primal-dual necessary and sufficient
optimality conditions (Theorem 3.12). The long Section 4 is devoted to the exis-
tence and Lipschitz regularity of an optimal dual potential for sub-probabilities. In
Section 5, we apply all previous results to the relaxed problem (1.2) and enlighten
the mass quantization effect.

Let us list a few notations that will be used constantly along the paper.
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– Cb is the space of continuous and bounded functions in R
d equipped with

the sup-norm;
– C0 is the separable Banach subspace of Cb consisting of those functions van-

ishing at ∞ and C+
0 is subclass of nonnegative elements of C0;

– Lip is the space of Lipschitz continuous functions on R
d and for an element

ϕ ∈ Lip the Lipschitz semi-norm will be denoted by Lip(ϕ). Lipk is the
subset of Lipschitz functions with Lipschitz constant equal to k;

– ψ+ denotes the positive part of a function ψ, i.e. max{ψ, 0};
– P(E) is the set of Borel probability measures on the metric space E;
– P−(E) is the set of Borel sub-probability measures on the metric space E,

i.e. the set of positive measures ρ of total variation ‖ρ‖ ≤ 1. P− will
be equipped with the weak* convergence. With this convergence P− is a
compact metrizable space.

2. The relaxed multi-marginal cost

A crucial step for the proof of the existence of an optimal ρ ∈ P for the mini-
mization problem (1.2) is the study of the relaxed cost

C(ρ) = inf
{
lim inf

n
C(ρn) : ρn

∗
⇀ ρ, ρn ∈ P

}

of the electron-electron interaction functional C(ρ). Note that, while C(ρ) is defined
on probabilities ρ ∈ P, since the weak* convergence may allow loss of mass at
infinity, the relaxed cost C(ρ) is defined for ρ ∈ P−. The complete characterization
of C(ρ) is obtained in Subsection 2.2. In a first step we derive C(ρ) in a abstract
way by embedding R

d into its Alexandroff compactification.

2.1. A compact framework for the relaxed cost. It is convenient to study this
cost in a compact framework, by embedding the elements ρ ∈ P− as probabilities in
a compact space. To this end, we introduce a point ω at infinity, and we denote by
X = R

d ∪ {ω} the compact set resulting from Alexandrov’s construction. We also
denote S : x 7→ x the identity embedding of Rd into X, and consider the transformed
Coulomb cost c̃ on XN given by

c̃(x1, . . . , xN) =
∑

1≤i<j≤N

1

|xi − xj |
(2.1)

where we set 1/|a − b| = 0 whenever a or b equals ω. Note that this convention
yields that c̃ is lower semi-continuous on X. We can now define the transport cost
C̃ for any ρ̃ ∈ P(X) by

C̃(ρ̃) := min

{∫

XN

c̃ dP̃ : P̃ ∈ P(XN ), P̃ ∈ Π(ρ̃)

}
.

Note that C̃ is lower semi-continuous on P(X) endowed with the weak topology,
i.e. the topology of narrow convergence for measures on the compact set X. The
relation between C and C̃ is as follows: for ρ ∈ P we have that ρ̃ := S#ρ belongs
to P(X), and

P ∈ Π(ρ) ⇐⇒ P̃ :=
(
S⊗N

)#
P ∈ Π(ρ̃)
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where we use the notation f⊗N = f ⊗ · · · ⊗ f (N times). With these notations we
have ∫

(Rd)N

c dP =

∫

XN

c̃ dP̃.

As a consequence C(ρ) = C̃
(
S#ρ

)
whenever ρ ∈ P. The following result now relates

C and C̃.

Proposition 2.1. For every ρ ∈ P− it holds

C(ρ) = C̃(ρ̃) for ρ̃ := S#ρ+ (1− ‖ρ‖)δω. (2.2)

Proof. We denote by

Γ(ρ) := C̃
(
S#ρ+ (1− ‖ρ‖)δω

)

the right hand side of (2.2). From the preceding discussion we clearly have

C(ρ) = C(ρ) = Γ(ρ) whenever ρ ∈ P.
We first claim that Γ is weakly* lower semicontinuous on P−. Indeed, assume that

ρn
∗
⇀ ρ in P−, and consider the probabilities over X

ρ̃n = S#ρn + (1− ‖ρn‖)δω.

Then the sequence (ρ̃n)n is weakly* compact in P(X) so that ρ̃n
∗
⇀ ρ̃ for some

ρ̃ ∈ P(X). We then infer ρ̃ R
d = ρ, so that in fact ρ̃ = S#ρ+ (1− ‖ρ‖)δω and

lim inf
n

Γ(ρn) = lim inf
n

C̃(ρ̃n) ≥ C̃(ρ̃) = Γ(ρ) .

This proves the claim. Since C is the largest weakly* lower semicontinuous functional
on P− which is lower than C on P, we conclude that C ≥ Γ.

We now turn to the opposite inequality C ≤ Γ. Let ρ ∈ P−, fix ρ̃ := S#ρ+ (1−
‖ρ‖)δω and P̃ ∈ Π(ρ̃) a symmetric plan such that

Γ(ρ) = C̃(ρ̃) =

∫

XN

c̃ dP̃ .

We fix N distinct vectors ξ1, . . . , ξN on the unit sphere R
d, and for any integer n we

define the Borel map hn : XN → (Rd)N by

hn(x1, . . . , xN ) =
(
hn,1(x1), . . . , hn,N(xN)

)

where hn,i : X → R
d is given by

hn,i(x) =

{
x if x ∈ B(0, n),

2nξi otherwise.

Note that on XN it holds

c ◦ hn ≤ c̃+
N(N − 1)

2n
max
i 6=j

{
1,

1

|ξi − ξj|

}
= c̃+O

(
1

n

)
. (2.3)

We now define Pn as the symmetrization of (hn)
#P̃ , that is

Pn =
1

N !

∑

σ∈SN

σ#
(
(hn)

#P̃
)
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We denote by ρn the marginal of Pn, then ρn ∈ P satisfies ρn B(0, n) = ρ B(0, n).

As a consequence we get ρn
∗
⇀ ρ, so that from (2.3) we have

C(ρ) ≤ lim inf
n

C(ρn) ≤ lim inf
n

∫

(Rd)N
c dPn

= lim inf
n

∫

XN

c ◦ hn dP̃

≤
∫

XN

c̃ dP̃ = Γ(ρ),

which concludes the proof. �

2.2. Stratified representation of the relaxed cost. The formula (2.2) in Propo-
sition 2.1 allows to recover the representation formula obtained in the case N = 2
in [2, Proposition 2.5] and to generalize it to any value N ≥ 2. To this end, we in-
troduce all partial correlation costs Ck involving interactions k electrons interactions
for 2 ≤ k ≤ N . They are defined by setting for any µ ∈ P−:

Ck(µ) := inf

{∫

(Rd)N
ck(x1, . . . , xk) dP (x1, . . . , xk) : π#

i P = µ, ∀i = 1, . . . , k

}

(2.4)
where transport plans P are now non-negative Borel measures on (Rd)k with total
mass ‖P‖ = ‖µ‖ =

∫
dµ and

ck(x1, . . . , xk) := c̃(x1, . . . , xk, ω, . . . , ω) =
∑

1≤i<j≤k

1

|xi − xj |
, (2.5)

being c̃ defined by (2.1). It is also convenient to define C1 on P− as C1 ≡ 0 (meaning
that no interaction exists for a single electron). Note that our initial multi-marginal
cost C(ρ) agrees with CN(ρ) for ρ ∈ P.

We are now in position to state our stratification representation result:

Theorem 2.2. For every ρ ∈ P− it holds

C(ρ) = inf

{
N∑

k=1

Ck(ρk) : ρk ∈ P−,
N∑

k=1

k

N
ρk = ρ,

N∑

k=1

‖ρk‖ ≤ 1

}
. (2.6)

Moreover the infimum is attained whenever C(ρ) < +∞.

Remark 2.3. At this stage, we notice an important connection with the so-called
grand canonical formulation for the infinite multi-marginal problem. Indeed, if we
rewrite the sub-probabilities ρk in the form ρk = αkνk with ‖νk‖ = 1 and 0 ≤ αk ≤ 1,
we obtain

C(ρ) = inf

{
N∑

k=1

αk
k

N
Ck(νk) : νk ∈ P,

N∑

k=1

αk
k

N
νk = ρ,

N∑

k=1

αk ≤ 1

}
. (2.7)

In the grand canonical formulation (see for instance [17]), the summation with re-
spect to k in (2.7) runs from 1 to +∞. Mixed formulations have been used as well
by Cotar and Petrache (see [9]) and, very recently, by Di Marino, Lewin and Nenna
[11]. In the present paper, we aim to emphasize the connection with the relaxation
framework which is crucial for existence and nonexistence issues.
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Remark 2.4. From Theorem 3.12 below, we deduce that, for 1 ≤ k ≤ N , one has

C(ρ) ≤ Ck
(Nρ
k

)
whenever ‖ρ‖ =

k

N
(2.8)

This is a consequence of (2.6) when taking ρk = Nρ/k and ρj = 0 if j 6= k. We
conjecture that the inequality in (2.8) is in fact an equality (this would enlighten
the fact that configurations involving an integer number of electrons play a special
role).

Proof of Theorem 2.2. Fix ρ ∈ P− and consider the associated problem

(Qρ) inf

{
N∑

k=1

Ck(ρk) : ρk ∈ P−,

N∑

k=1

k

N
ρk = ρ,

N∑

k=1

‖ρk‖ ≤ 1

}
.

We first claim that C(ρ) ≥ inf(Qρ), and assume without loss of generality that

C(ρ) < +∞. Let P̃ ∈ P(XN ) be an optimal symmetric plan for C̃(ρ̃) = C(ρ) in the
right hand side of (2.2). We set

µ̃k := π#
1

(
P̃ (Rd)k × {ω}N−k

)

for any k in {1, . . . , N}, with the convention (Rd)N × {ω}0 = (Rd)N . By the sym-

metry of P̃ , we have

π#
1

(
P̃

(
R
d ×XN−1

))
= π#

1

(
P̃

(
R
d × (Rd ∪ {ω})N−1

))
=

N∑

k=1

(
N − 1

k − 1

)
µ̃k .

Since π#
1 P̃ = ρ̃ = S#ρ+ (1− ‖ρ‖)δω, we then infer

ρ =

N∑

k=1

(
N − 1

k − 1

)
µ̃k R

d =

N∑

k=1

k

N
νk

where we have set

νk :=

(
N

k

)
µ̃k R

d

for all k. By the symmetry of P̃ , we also have

1 =

∫

(Rd∪{ω})N
dP ≥

N∑

k=1

(
N

k

)∫
dµ̃k =

N∑

k=1

‖νk‖ .

As a consequence, the measures νk satisfy the constraints of (Qρ). Using the sym-

metry of c̃ and P̃ and the definition of ck in (2.5), we obtain

C(ρ) =

N∑

k=2

(
N

k

)∫

(Rd)k×{ω}N−k

c̃ dP̃ =

N∑

k=2

∫

(Rd)k
ck dPk

where for each k ≥ 2, we indicate by Pk the Borel sub-probability on (Rd)k

Pk :=

(
N

k

)
π1,...,k

#P̃
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being π1,...,k : (Rd)N → (Rd)k the projection on the k first copies of Rd. Then for
any k the transport plan Pk has marginals νk so that

C(ρ) =

N∑

k=2

∫

(Rd)k
ck dPk ≥

N∑

k=2

Ck(νk) ≥ inf(Qρ)

which proves the claim. Note that, under the hypothesis C(ρ) < +∞, the equality
C(ρ) = inf(Qρ) would directly yield that the family ν2, . . . , νN is a solution of (Qρ).

We now prove the reverse inequality C(ρ) ≤ inf(Qρ), and assume without loss of
generality that inf(Qρ) < +∞. We consider ρ1, . . . , ρN admissible for (Qρ) such that∑N

k=1 Ck(ρk) < +∞. For each k ≥ 2 take Pk ∈ P−
(
(Rd)k

)
symmetric and optimal

for Ck(ρk), we also set P1 = ρ1 and define for k ≥ 1 the plans

P̃k :=
((
S⊗k

)#
Pk

)
⊗

N−k times︷ ︸︸ ︷
δω ⊗ . . .⊗ δω .

We now symmetrize the plans P̃k in the following way : for any k ∈ {1, . . . , N} we
define

Sym(P̃k) :=

(
N

k

)−1 ∑

I⊂{1,...,N}, |I|=k

(σI)
#P̃k

where σI is the permutation of {1, . . . , N} which is increasing on {1, . . . , k} with
image I and increasing on {k+ 1, . . . , N}. By convention if x ∈ XN we set σI(x) =
(xσ(1), . . . , xσ(N)). Finally we define

P̃ ∗ :=

N∑

k=1

Sym(P̃k)

and we note that P̃ ∗ is a sub-probability on XN since
∫

XN

dP̃ ∗ =

N∑

k=1

∫

XN

dP̃k =

N∑

k=1

‖Pk‖ =

N∑

k=1

‖ρk‖ ≤ 1

where the last inequality follows from the constraint in (Qρ). We can then define
on XN the probability

P̃ = P̃ ∗ + (1− ‖P̃ ∗‖)δω ⊗ . . .⊗ δω .

We now compute the first marginal ρ̃ = π1
#P̃ : since it is a probability over X it is

sufficient to consider its restriction to R
d, which gives

ρ̃ R
d =

N∑

k=1

(
N

k

)−1 ∑

I⊂{1,...,N}, |I|=k

π1
#
(
(σI)

#P̃k

)
R
d =

N∑

k=1

(
N

k

)−1(
N − 1

k − 1

)
ρk = ρ

where we used the fact that

π1
#
(
(σI)

#P̃k

)
R
d = 0 whenever 1 /∈ I.

As a consequence ρ̃ = S#ρ+ (1− ‖ρ‖)δω. We now infer from (2.2) that

C(ρ) = C̃(ρ̃) ≤
∫

XN

c̃dP̃ =

N∑

k=1

∫

XN

c̃ dP̃k =

N∑

k=1

Ck(ρk)

which concludes the proof. �
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We conclude this Section by a monotonicity formula for the partial interaction
costs Ck.
Proposition 2.5. Let µ ∈ P−, then it holds

∀k ≥ l, Ck(µ) ≥
k(k − 1)

l(l − 1)
Cl(µ).

In particular, one has

∀k ≥ 1, Ck+1(µ) ≥
k + 1

k − 1
Ck(µ).

Proof. Without loss of generality we assume Ck(µ) < +∞, and we denote by Pk a
symmetric measure in Πk(µ) such that

Ck(µ) =
∫
ck dPk.

We define the measures P2 := π#
1,2Pk and Pl := π#

1,...,lPk to be the push-forward of

Pk respectively by the projection on the 2 and l first spaces R
d. We note that these

two measures have µ as marginals and that

π#
1,2Pl = π#

1,2Pk = P2.

From the symmetry of Pk and Pl we can compute

Ck(µ) =
∫
ck dPk =

(
k

2

)∫
c2 dP2 and

(
l

2

)∫
c2 dP2 =

∫
cl dPl ≥ Cl(µ)

from which the inequality follows. �

3. Dual formulation of the relaxed cost

This Section is devoted to a duality formula for C(ρ). We consider the separable
Banach space C0 ⊕ R consisting of all continuous functions ψ : Rd → R with a
constant value at infinity, that is of the form ψ = ϕ + κ with ϕ ∈ C0 and κ ∈ R.
Then we consider the closed convex subset

A =

{
ψ ∈ C0 ⊕ R :

1

N

N∑

i=1

ψ(xi) ≤ c(x) ∀x ∈ (Rd)N

}
(3.1)

It is convenient to introduce also a larger convex set namely

B =

{
ψ ∈ S :

1

N

N∑

i=1

ψ(xi) ≤ c(x) ∀x ∈ (Rd)N

}
(3.2)

where S denotes the set of lower semicontinuous functions ψ : Rd → R such that
inf ψ > −∞. To any such a function ψ, we associate the real numbers

ψ∞ := lim inf
|x|→+∞

ψ(x) = lim
R→+∞

(
inf{ψ(x) : |x| ≥ R}

)
.

ψ∞ := lim sup
|x|→+∞

ψ(x) = lim
R→+∞

(
sup{ψ(x) : |x| ≥ R}

)
.

By induction on the integer N , it is easy to check that

ψ∞ ≤ 0 for every ψ ∈ B.
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A particular choice of such a function in B is provided in Example 3.6 hereafter. We
will use the following truncation lemma.

Lemma 3.1. Let ψ belongs to A (resp. to B) and let λ ≤ ψ∞. Then the function
ψλ := max{ψ, λ} also belongs to A (resp. to B).

Proof. We have only to check that ψλ still satisfies the inequality constraint appear-
ing in the definitions of A and B. Let (x1, . . . , xN ) ∈ (Rd)N and set I = {i : ψλ(xi) =
λ}. Then consider sequences (yni )n such that

|yni | → +∞, lim
n→∞

ψ(yni ) ≥ λ, |yni − ynj | → +∞ whenever i 6= j.

Then we have

1

N

N∑

i=1

ψλ(xi) ≤ lim
n→+∞

1

N


∑

i∈I

ψ(yni ) +
∑

j /∈I

ψ(xj)




≤ lim
n→+∞

c
(
(yni )i∈I , (xj)j /∈I

)
≤ c(x)

where, in the second inequality, we used the fact that all the terms 1/|yni − ynj | and
1/|xj − yni | vanish as n→ ∞. �

An important issue is the following duality representation of C(ρ) which extends
to the case ‖ρ‖ < 1 the formula obtained in [3] for ‖ρ‖ = 1.

Theorem 3.2. For every ρ ∈ P−, the following equalities hold

C(ρ) = sup
ψ∈A

{∫
ψ dρ+ (1− ‖ρ‖)ψ∞

}
= sup

ψ∈B

{∫
ψ dρ+ (1− ‖ρ‖)ψ∞

}
, (3.3)

where the classes A and B are defined in (3.1) and (3.2).

Remark 3.3. By Lemma 3.1, the two equalities in (3.3) are still valid if we restrict
the supremum to those functions ψ such that ψ ≥ ψ∞. This can be easily checked by
substituting an admissible ψ by the function max{ψ, ψ∞} which is still admissible
with a larger energy. Note that such a function it holds ψ∞ = ψ∞.

Corollary 3.4. Let ρ1, ρ2 in P− such that ρ1 ≤ ρ2. Then C(ρ1) ≤ C(ρ2).

Proof. Let us rewrite (3.3) as

C(ρ) = sup
ψ∈A

{∫
(ψ − ψ∞) dρ+ ψ∞

}
.

In view of Remark 3.3, we may assume that ψ − ψ∞ ≥ 0 from which the desired
inequality follows. �

Remark 3.5. In view of the compactification procedure introduced in Section 2,
we may extend any function ψ ∈ S to X = R

d ∪ {ω} by setting u = ψ on R
d and

u(ω) = ψ∞. Notice that, by construction, u is lower semicontinuous as a function on
X (i.e. u ∈ S(X)) and that it is continuous if and only ψ∞ = lim|x|→∞ ψ(x) that is
to say ψ ∈ C0 ⊕ R

d. Furthermore, the point-wise constraint for ψ ∈ B is equivalent
in term of u to the following

1

N

i=N∑

i=1

u(xi) ≤ c̃(x1, x2, . . . , xN) ∀x ∈ XN , (3.4)
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being the extended cost c̃ defined by (2.1). Accordingly, if ρ ∈ P−, the representation
formula (3.3) can be rewritten as

C(ρ) = sup

{∫

X

u dρ̃ : u ∈ S(X) satisfies (3.4)

}
,

where the supremum is taken alternatively in C(X) or in S(X) and ρ̃ := ρ + (1 −
‖ρ‖)δω denotes the probability measure on X defined by

∫

X

u dρ̃ :=

∫
u dρ+ (1− ‖ρ‖)u(ω) =

∫
u dρ+ (1− ‖ρ‖)u∞.

Let us finally notice following equivalence for a sequence (ρn)in P and ρ ∈ P−:

ρn
∗
⇀ ρ ⇐⇒ ρn → ρ̃ tightly on X.

Proof of Theorem 3.2. For every pair (ρ, α) ∈ Mb × R, we set

H(ρ, α) :=

{
αC(ρ/α) if ρ ≥ 0, α ∈ R

+ and ‖ρ‖ = α ,

+∞ otherwise.

As C is convex proper and nonnegative on probability measures, it is easy to check
that H is still convex proper nonnegative. In addition it is positively one homoge-
neous. Therefore the lower semicontinuous envelope of H on Mb×R endowed with
its weak star topology can be characterized as the bipolar of H with respect to the
duality between Mb × R and C0 × R, namely

H(ρ, α) = sup

{∫
ϕdρ+ αβ −H∗(ϕ, β)

}

= sup

{∫
ϕdρ+ αβ : H∗(ϕ, β) ≤ 0

} (3.5)

where the supremum is taken over pairs (ϕ, β) ∈ C0 × R and where in the second
equality we exploit the homogeneity of H . By the definition of H , we infer that:

H∗(ϕ, β) ≤ 0 ⇐⇒
∫
ϕdρ+ β ≤ C(ρ) ∀ρ ∈ P.

By the definition of C(ρ), the later inequality is equivalent to

1

N

∫

RNd

N∑

i=1

ϕ(xi) dP + β ≤
∫

RNd

c(x)P (dx) ∀P ∈ P.

By taking for P a Dirac mass, we may conclude that

H∗(ϕ, β) ≤ 0 ⇐⇒ 1

N

N∑

i=1

ϕ(xi) + β ≤ c(x) ∀x ∈ R
Nd.

Therefore, setting ψ = ϕ + β (thus ψ∞ = β) and α = 1, we deduce from (3.1) and
(3.5) that

H(ρ, 1) = sup
ψ∈A

{∫
ψ dρ+ (1− ‖ρ‖)ψ∞

}
.

Therefore to establish the first equality in (3.3), we are reduced to show that:

C(ρ) = H(ρ, 1), ∀ρ ∈ P− (3.6)
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The lower bound inequality for C(ρ) is straightforward since, for every sequence

ρn
∗
⇀ ρ, it holds

lim inf
n

C(ρn) = lim inf
n

H(ρn, 1) ≥ H(ρ, 1).

To show that C(ρ) ≤ H(ρ, 1) for every ρ ∈ P−, we choose a particular sequence
(ρn, αn) in M+ × R

+ such that

ρn
∗
⇀ ρ, αn → 1, H(ρn, αn) = αnC

( ρn
αn

)
→ H(ρ, 1).

Then, setting ρ̃n := ρn/αn, we obtain a sequence of probability measures (ρ̃n) such

that ρ̃n
∗
⇀ ρ and C(ρ̃n) → H(ρ, 1). Thus (3.6) is proved.

In order to prove the second equality in (3.3), since the subset B is larger than
A, it is enough to show that

C(ρ) ≥
∫
ψ dρ+ (1− ‖ρ‖)ψ∞, ∀ψ ∈ B, ∀ρ ∈ P−. (3.7)

By (3.6), we know that the inequality above holds whenever ψ belongs to A. To
extend it to ψ ∈ B, we follow Remark 3.5 considering the element of S(X) defined
by u = ψ on R

d and u(ω) = ψ∞. As X is a compact metrizable space, we can find
a sequence (un) in C0(X) such that

un+1 ≥ un, sup
n
un = u.

Clearly the restriction ψn = un R
d satisfies ψn ≤ ψ, thus belongs to A. By applying

Beppo Levi’s on X equipped with the probability measure ρ̃ = ρ+ (1− ‖ρ‖)δω, we
obtain:

lim
n

∫
ψn dρ+ (1− ‖ρ‖)(ψn)∞ = lim

n

∫

X

un dρ̃

=

∫

X

u dρ̃ =

∫
ψ dρ+ (1− ‖ρ‖)ψ∞ ,

from which (3.7) follows. The proof of Theorem 3.2 is then achieved. �

Example 3.6. Take for every R > 0

ψR(x) =

{
(N − 1)/(4R) if |x| < R,

−1/(4R) if |x| ≥ R.

It is easy to see that ψR ∈ B; indeed, if x1, . . . , xk are in the ball BR(0) and
xk+1, . . . , xN are in R

d \BR(0), we have to verify that

1

N

(
k
N − 1

4R
− (N − k)

1

4R

)
≤

∑

1≤i<j≤N

1

|xi − xj |
.

Now, the left-hand side above reduces to (k− 1)/(4R) while for the right-hand side
we have ∑

1≤i<j≤N

1

|xi − xj |
≥

∑

1≤i<j≤k

1

|xi − xj |
≥ k(k − 1)

2

1

2R
.

As a direct consequence of Theorem 3.2, we obtain

Proposition 3.7. It holds C(ρ) = 0 if and only if ‖ρ‖ ≤ 1/N .
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Proof. Assume first that ρ satisfies ‖ρ‖ ≤ 1/N and let ψ ∈ A. By fixing x1 = x and
letting x2, x3, . . . xN tend to infinity in different directions in the inequality

1

N

i=N∑

i=1

ψ(xi) ≤ c(x),

we infer that

ψ(x) + (N − 1)ψ∞ ≤ 0 ∀x ∈ R
d.

In particular, by sending |x| to infinity, we deduce that ψ∞ ≤ 0. Therefore
∫
ψ dρ+ (1− ‖ρ‖)ψ∞ ≤ ψ∞(1−N‖ρ‖) ≤ 0 ∀ψ ∈ A.

By (3.3), we are led to C(ρ) ≤ 0, thus C(ρ) = 0 whenever ‖ρ‖ ≤ 1/N .
Let us prove now the converse implication and take an element ρ ∈ P− such that

C(ρ) = 0. By (3.3) for every ψ ∈ B we have
∫
ψ dρ+ (1− ‖ρ‖)ψ∞ ≤ 0.

In particular, taking as ψ the function ψR of Example 3.6, we have

N − 1

4R
ρ(BR)−

1

4R
ρ(Bc

R)− (1− ‖ρ‖) 1

4R
≤ 0,

so that

(N − 1)ρ(BR) ≤ ρ(Bc
R) + 1− ‖ρ‖.

Letting R → +∞ gives

(N − 1)‖ρ‖ ≤ 1− ‖ρ‖
from which ‖ρ‖ ≤ 1/N . �

3.1. A weak formulation for dual potentials. The initial motivation of this
subsection is to achieve the computation of C(ρ) through the formula (3.3) when ρ

has a finite support that is of the kind ρ =
∑K

1 αiδai where the ai ∈ R
d are distinct,

αi ≥ 0 and
∑
αi ≤ 1. As in Example 3.9 below, we wish to reduce the computation

of the supremum in (3.3) to solving a finite dimensional linear programming problem
where the unknown vector involved y ∈ R

K+1 is defined by yi = ψ(ai) for 1 ≤ i ≤ K
and yK+1 = ψ∞. The linear constraints on the components yi are deduced simply
from the overall inequalities in A (or B) by restricting them to the support of ρN⊗.

Then the following issue arises naturally: can we conversely pass from an inequal-
ity holding ρN⊗ almost everywhere to the overall inequality as required in Theorem
3.2? Following the notations introduced in Remark 3.5, we can answer this question
through the following weak formulation of the dual problem.

Proposition 3.8. Let ρ ∈ P−(Rd) and let ρ̃ ∈ P(X) defined by ρ̃ = ρ+(1−‖ρ‖)δω.
Then

C(ρ) = sup

{∫

X

u dρ̃ :
1

N

N∑

i=1

u(xi) ≤ c(x) ρ̃N⊗ a.e. x ∈ XN

}
, (3.8)

being the supremum taken on S(X) or on C(X).
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Proof. As the admissible set in the right hand side of (3.8) is larger than the one
given by (3.4), we have only to prove that, for every ρ ∈ P−, it holds:

C(ρ) ≥
∫

X

u dρ̃ for u ∈ B̃(X), (3.9)

where B̃(X) denotes the set of elements u ∈ S(X) such that

1

N

N∑

i=1

u(xi) ≤ c(x) ρ̃N⊗ a.e. x ∈ XN . (3.10)

In a first step, we assume that:

u ∈ C0 ⊕ R with u(x) ≥ u∞. (3.11)

First we notice that the inequality in (3.10) holds in fact point-wise in (spt(ρ))N .
Indeed, if x ∈ (spt(ρ))N is such that c(x) < +∞, then we may integrate the inequal-
ity (3.10) on ΠN

i=1B(xi, r) and then, dividing by ΠN
i=1 ρ(B(xi, r)) and sending r → 0,

we deduce from the continuity of u and c at x that

1

N

i=N∑

i=1

u(xi) ≤ c(x).

Take ε > 0. By the lower semicontinuity of c(x)− 1
N

∑
i u(xi), the subset

{
x ∈ XN :

i=N∑

i=1

u(xi) < c(x) + ε

}

is an open neighborhood of (spt(ρ))N . Therefore we may chose an open subset

ε ⊂ R
d such that:

(spt(ρ))N ⊂ ε ,
1

N

i=N∑

i=1

u(xi) < c(x) + ε for all x ∈ (ε)
N .

Let us now define:

uε(z) :=

{
u(z) if z ∈ ε

u∞ if z ∈ X \ ε.

Then by (3.11), uε belongs to S(X). Furthermore it satisfies the overall inequality
deduced from (3.4) replacing c by c + ε. We are now in position to prove (3.9):

choose a sequence (Pn) in P(RNd) such that Π(Pn) = ρn
∗
⇀ ρ and

C(ρ) = lim
n
C(ρn) = lim

n

∫
c(x)Pn(dx).

We obtain

C(ρ) = lim
n

∫

XN

c(x)Pn(dx) ≥ lim inf
n

∫

XN

N∑

i=1

uε(xi)

N
Pn(dx)− ε

≥ lim inf
n

∫

X

uε dρn − ε

≥
∫

X

uε dρ̃ − ε ,
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where in the last line we exploit the lower semicontinuity of uε and the (tight)
convergence ρn → ρ̃ = ρ+ (1 − ‖ρ‖)δω. We conclude the proof of (3.9) by noticing
that uε = u ρ̃ a.e. (uε = u on spt(ρ) ∪ {ω}).

In a second step, we remove the assumption that u(x) ≥ u∞. Assume first that
‖ρ‖ < 1, then ρ̃ has a positive mass on ω and condition (3.10) implies then that, for
every k ∈ {1, . . . , N}:

1

N

(
k∑

i=1

u(xi) + (N − k)u∞

)
≤ ck(x1, x2, . . . , xk) ρ̃k⊗ a.e. ((x1, . . . , xk) ∈ Xk

Since ck(x1, x2, . . . , xk) ≤ c(x) for every x ∈ X, by setting v = sup{u, u∞}, we
obtain a new continuous function which still satifies (3.10) and such that

∫

X

v dρ̃ ≥
∫

X

u dρ̃.

It is then enough to apply the first step to v. If ‖ρ‖ = 1, we simply apply the
construction of step 1 changing uε into

uε(z) :=

{
u(z) if z ∈ ε

infX u if z ∈ X \ ε

.

As now ρ̃ has no mass on ω, we still have that uε = u ρ̃ a.e.

Eventually, we drop the continuity assumption by approaching a lower semicontin-
uous function u ∈ B̃(X) by a sequence of continuous functions (un) on X such
that:

un+1 ≥ un, sup
n
un = u.

Clearly each un satisfies the constraint (3.10) so that

C(ρ) ≥
∫

X

un dρ̃.

The conclusion follows by Beppo-Levi’s (monotone convergence) Theorem. �

Example 3.9. Let a1, a2, a3 ∈ R
3. Our aim is to compute

C(α1δa1 + α2δa2 + α3δa3) := f(α1, α2, α3)

as a function defined on the simplex

Q :=
{
α ∈ R

3 : αi ≥ 0,
∑

i

αi ≤ 1
}
.

In order to lighten the calculations, we assume that

|a1 − a2| = |a2 − a3| = |a2 − a3| = 1

and we restrict ourselves to the case N = 3, where the cost reads

c(x) =
∑

1≤i<j≤3

1

|xi − xj |
=

1

|x1 − x2|
+

1

|x1 − x3|
+

1

|x2 − x3|
.
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Owing to the representation formula (3.8), we obtain:

f(α1, α2, α3) = sup





3∑

i=1

αi yi + (1−
∑

j

αj) y4 :
y1 + y2 + y3

3
≤ 3

yk + 2y4 ≤ 0, 1 ≤ k ≤ 3,
yk + yl + y4

3
≤ 1, 1 ≤ k<l≤3





where yi stands for the value of u(ai) for i ∈ {1, 2, 3} while y4 = u(ω). Rewritten in
terms of the nonnegative unknowns x4 = y4 and xi = 2x4 − yi for i ∈ {1, 2, 3}, we
are led to a classic linear programming:

f(α1, α2, α3) = sup

{(
3
∑

j

αj − 1
)
x4 −

3∑

i=1

αi xi : x ≥ 0, Ax ≤ b

}
,

being

A =




0 −1 −1 3
−1 0 −1 3
−1 −1 0 3
−1 −1 −1 6


 , b =




3
3
3
9




It turns out that, for α ∈ [0, 1
3
]3, only three vertices are involved in the feasible set,

namely (0, 0, 0, 0), (0, 0, 0, 1) and (3, 3, 3, 3). We find

f(α) =

{
γ
(∑3

j=1 αj

)
if α ∈ [0, 1

3
]3

+∞ otherwise,
with γ(s) :=





0 if s ≤ 1
3

3s− 1 if 1
3
≤ s ≤ 2

3

3(2s− 1) if 2
3
≤ s ≤ 1.

Notice that here the function C(ρ), as a function of ‖ρ‖, is not differentiable at
‖ρ‖ ∈ {1

3
, 2
3
}. This seems to be a general fact when considering measures ρ supported

by a set of M points, more precisely if ‖ρ‖ = 1, we expect the function t 7→ C(tρ)
to be non-differentiable for fractional masses t = k

M
.

3.2. Optimality primal-dual conditions. By exploiting Theorem 3.2 and The-
orem 2.2 (in particular (2.6) and (3.3)), we can deduce necessary and sufficient
conditions for optimality. It is convenient to introduce, for every k ∈ {1, 2, . . . , N}
and ϕ ∈ C0:

Mk(ϕ) = sup

{
1

k

k∑

i=1

ϕ(xi)− ck(x1, . . . , xk)

}
(3.12)

Lemma 3.10. The following properties hold:

i) The functional Mk(ϕ) is convex and 1-Lipschitz on C0. Moreover

lim
t→+∞

Mk(tϕ)

t
=M1(ϕ) = supϕ . (3.13)

ii) For every ϕ ∈ C0 and N ∈ N
∗, we have:

M1(
ϕ

N
) ≤ · · · ≤Mk

(kϕ
N

)
≤Mk+1

((k + 1)ϕ

N

)
≤ · · · ≤MN (ϕ). (3.14)

iii) For every k ∈ N
∗ and ψ ∈ C0, it holds

Mk(ψ) =Mk(ψ+) . (3.15)



RELAXED MULTI-MARGINAL COSTS AND QUANTIZATION EFFECTS 17

Proof. Let us start to prove i). The convexity property is straightforward since Mk

is a supremum of affine continuous functions. On the other hand, for every ϕ1, ϕ2

in C0, we obviously have:

Mk(ϕ2) ≤Mk(ϕ1) + sup(ϕ2 − ϕ1) ≤Mk(ϕ1) + ‖ϕ2 − ϕ1‖.
Let us now identify the recession function of Mk that is

M∞
k (ϕ) := lim

t→+∞

Mk(tϕ)

t
.

As Mk(ϕ) ≤ supϕ, we clearly have M∞
k (ϕ) ≤ supϕ. On the other hand, for every

x = (xi) ∈ (Rd)k and t > 0 it holds

Mk(tϕ)

t
≥ 1

k

k∑

i=1

ϕ(xi)−
1

t
ck(x) ,

so that, after sending t → +∞ and then optimizing with respect to x, we get the
converse inequality thus (3.13).

We prove now ii). Let k ∈ {1, 2, . . . , N − 1} and ϕ ∈ C0. Then, for every x =
(x1, x2, . . . , xk, xk+1) ∈ (Rd)k+1, it holds:

Mk+1

((k + 1)ϕ

N

)
≥ 1

N

(
k∑

i=1

ϕ(xi) + ϕ(xk+1)

)
− ck+1(x)

≥ 1

k

(
k∑

i=1

kϕ(xi)

N

)
− ck(x1, x2, . . . , xk) ,

where in the first line we use the definition (3.12), while in the second line we send
xk+1 to infinity taking into account that ϕ(ω) = 0. Finally, optimizing with respect
to x1, x2, . . . , xk gives the desired inequality (3.14).

Let us finally prove iii). The inequality Mk(ψ) ≤ Mk(ψ+) is trivial. To prove the
converse inequality, we observe that for every x1, x2, . . . xk in R

d, it holds

1

k

k∑

i=1

ψ+(xi)− ck(x1, . . . , xk) ≤
1

k

k∑

i=1

ψ(yi)− c̃k(y1, . . . , yk) ≤Mk(ψ) ,

where yi = xi whenever ψ(xi) ≥ 0 whereas yi = ω otherwise, being c̃k the natural
extension of ck to (Rd∪{ω})k. One readily checks that ck(x1, . . . , xk) ≥ c̃k(y1, . . . , yk)

while
∑k

i=1 ψ+(xi) ≤
∑k

i=1 ψ(yi) since ψ(ω) = 0. �

From now on, we will use for C(ρ) (resp. for Ck(ρk)) given by (3.3) (resp.(2.4))
the duality formulae rewritten in a condensed form as follows.

Proposition 3.11. For every ρ ∈ P−, the following equalities hold:

C(ρ) = sup
ϕ∈C0

{∫
ϕdρ−MN (ϕ)

}
. (3.16)

In other words, C is the Fenchel conjugate of MN in the duality between C0 and the
space of bounded measures. In addition, for every k ≤ N , we have

Ck(ρk) = sup
ϕ∈C0

{∫
ϕdρk −Mk(ϕ)‖ρk‖

}
. (3.17)
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Proof. For (3.16), we use the first equality in (3.3) with the change of variables
ϕ = ψ − ψ∞, taking into account that ψ ∈ A is equivalent to ψ∞ ≤ −MN (ϕ).
For (3.17), it is enough to apply (3.16) replacing N by k and ρ by the probability
ρ

‖ρ‖
. �

By (3.15), it turns out that the supremum in (3.16) and (3.17) are unchanged
when they are restricted to nonnegative functions ϕ ∈ C0. In particular an optimal
potential (if it exists) or any maximizing sequence can be assumed to be nonnegative.

Theorem 3.12. Let ρ ∈ P− such that ‖ρ‖ > 1/N . Let {ρk} a decomposition such
that

N∑

k=1

k

N
ρk = ρ,

N∑

k=1

‖ρk‖ ≤ 1.

Then {ρk} is optimal in (2.6) and ϕ is optimal in (3.16) (respectively (ϕn) is a
maximizing sequence) if and only if the three following conditions hold:

i)

N∑

k=1

‖ρk‖ = 1,

ii) For all k,
kϕ

N
is optimal (resp.

kϕn
N

is a maximizing sequence) in (3.17)

iii) Mk(
k ϕ
N
) = MN(ϕ) (resp. MN(ϕn)−Mk(

kϕn

N
) → 0) holds whenever it exists

l ≤ k such that ‖ρl‖ > 0.

Proof. For any admissible pair ({ρk}, ϕ), we have

∑

k

Ck(ρk) ≥
∫
ϕdρ−MN (ϕ).

Thus the optimality arises as soon the previous inequality becomes an equality. We
compute:

∑

k

Ck(ρk)−
(∫

ϕdρ−MN (ϕ)

)
=
∑

k

(
Ck(ρk)−

∫
kϕ

N
dρk +Mk(

kϕ

N
)‖ρk‖

)

+
∑

k

(
MN (ϕ)−Mk(

kϕ

N
)

)
‖ρk‖ (3.18)

+MN (ϕ)

(
1−

∑

k

‖ρk‖
)
.

By (3.17) and (3.14), we discover that the right hand side of (3.18) consists of
the sum of three nonnegative terms. Thus the left hand side vanishes if and only
if all these three terms vanish that is to say i), ii) and iii) hold simultaneously.
Note that for iii) we use the monotonicity property (3.14) allowing to pass from
index l to any k ≥ l and Remark 3.13 where we noticed that MN (ϕ) > 0 (resp.
lim infn→∞MN(ϕn) > 0 in case of a maximizing sequence (ϕn)). �

Remark 3.13. Any optimal ϕ satisfies MN(ϕ) > 0 since otherwise, by (3.12), the
inequalities supϕ = NM1(

ϕ
N
) ≤ NMN (ϕ) ≤ 0 would imply that

C(ρ) =

∫
ϕdρ−MN (ϕ) ≤ (N‖ρ‖ − 1)MN (ϕ) = 0
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which is excluded since C(ρ) > 0 if ‖ρ‖ > 1/N (see Proposition 3.7). On the same
way, if (ϕn) is an optimal sequence, we infer that lim infn→∞MN (ϕn) > 0.

Remark 3.14. Note that, in Theorem 3.12, the condition
∑N

k=1 ‖ρk‖ = 1 holds for
any {ρk} optimal in (3.16) since there always exists a maximizing sequence (ϕn)
for the dual problem. Next we observe that, if k denotes the integer part of N‖ρ‖,
then the equality N‖ρ‖ =

∑N
k=1 k‖ρk‖ and

∑N
k=1 ‖ρk‖ = 1 imply that there exist at

least two integers l− ≤ k ≤ l+ such that ‖ρl±‖ > 0. Accordingly the assertion iii) of
Theorem 3.12 includes all values k > N‖ρ‖ − 1.

4. Existence of a Lipschitz potential for the relaxed cost

The main result of this Section is the existence of an optimal potential for the
relaxed cost C(ρ). Such an existence result is already known for ‖ρ‖ = 1 under a
suitable low concentration assumption on the probability ρ (see [3], Theorem 3.6 or
[6] for the sharp constant). More precisely, for every ρ ∈ P−, we define

K(ρ) = sup
{
ρ({x}) : x ∈ R

d
}
.

Then if K(ρ) < 1
N

, it is shown in [3, 6] that there exists an optimal continuous
bounded Lipschitz potential u ∈ B. As a preamble, we prove that in fact this
optimal potential u can be chosen in the subclass A, i.e. u is constant at infinity.

Proposition 4.1. Let ρ ∈ P and let u ∈ B be an upper bounded optimal potential
for ρ. Then ũ := max{u, u∞} is still an optimal potential for ρ. In particular if u is
continuous (resp. Lipschitz continuous), the optimal potential ũ belongs to A (resp.
to A∩ Lip).

Proof. It is enough to check that ũ is admissible which follows from Lemma 3.1. �

Now we are going to extend this existence and regularity result to sub-probabilities
under the following assumption on ρ:

‖ρ‖ < 1, ∃δ > 0 : C((1 + δ)ρ) < +∞ (4.1)

Theorem 4.2. Let ρ ∈ P− satisfying (4.1) for a given δ > 0. Then there exist a
Lipschitz optimal potential u ∈ C0 ⊕ R solving (3.3). The Lipschitz constant of u
depends only on δ. Furthermore any solution to (3.3) coincides with a Lipschitz one
on the support of ρ.

Remark 4.3. The finiteness condition in (4.1) is fulfilled in particular if the concen-
tration satisfies K(ρ) < 1

N
. Indeed, we may chose δ and a smooth density measure

ν so that (1 + δ)ρ+ ν is a probability measure with a concentration still lower than
1
N

, thus with finite cost. By applying Corollary 3.4 we infer that

C
(
(1 + δ)ρ

)
≤ C

(
(1 + δ)ρ+ ν

)
= C

(
(1 + δ)ρ+ ν

)
< +∞.

The proof of Theorem 4.2 is quite involved and is given in the remaining part of
this Section. First we need to fix some notations and give some preparatory results
which are collected in the next subsection.
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4.1. Preliminary results. We recall the expression (3.16) for C(ρ) that we are
using. The existence of an optimal potential u amounts to find a function ϕ ∈ C0

such that

C(ρ) = IN(ϕ) where IN(ϕ) :=

∫
ϕdρ−MN (ϕ) (4.2)

where we recall

MN (ϕ) = sup

{
1

N

N∑

i=1

ϕ(xi)− cN(x1, . . . , xN ) : xi ∈ R
d

}

We notice that the definition of MN(ϕ) above can be obviously extended to any
upper bounded Borel function. Accordingly we have very useful properties which
are given in the two next Lemmas.

Lemma 4.4. Let ϕ : Rd → R an upper bounded Borel function and set ϕ∞ :=
lim sup|x|→+∞ϕ(x). Then the following inequalities hold:

1

N
supϕ+

N − 1

N
ϕ∞ ≤MN (ϕ) ≤ supϕ. (4.3)

1

N
ϕ∞ +MN−1

(N − 1

N
ϕ
)
≤MN (ϕ). (4.4)

Proof. The inequality MN (ϕ) ≤ supϕ is trivial. On the other hand, it holds for
every x = (xi) in (Rd)N :

MN(ϕ) ≥
ϕ(x1)

N
+

N∑

j=2

1

|x1 − xj |
+

(
1

N

N∑

i=2

ϕ(xi)− cN−1(x2, . . . , xN)

)

By sending all points xi (with i ≥ 2) to infinity and then taking the supremum in
x1, we deduce the first inequality in (4.3). On the opposite, if we send first x1 to
infinity and then optimize with repect to all xi with i ≥ 2, we get (4.4) �

A consequence of (4.3) is that for elements ϕ ∈ C+
0 , MN (ϕ) is equivalent to the

uniform norm. In the sequel we will denote

∆N (ϕ) :=MN(ϕ)−MN−1

(N − 1

N
ϕ
)
. (4.5)

By (3.14), we have ∆N(ϕ) ≥ 0 for every ϕ ∈ C0. Now if ϕ is a nonnegative element
of Cb, a every useful recipe in order to show that ϕ belongs to C0 is to verify that
∆N(ϕ) = 0 (just by applying by (4.4)).

Lemma 4.5. Let ϕn : Rd → R be a family of Borel functions such that

ϕn+1 ≥ ϕn, ϕ := sup
n
ϕn ≤ C,

where C is a suitable constant. Then, for every k ∈ N, it holds

lim
n→∞

Mk(ϕn) = sup
n
Mk(ϕn) =Mk(ϕ).

Proof. Clearly Mk(ϕn) ≤ Mk(ϕn+1) ≤ Mk(ϕ), so that limnMk(ϕn) ≤ Mk(ϕ). On
the other hand, as ϕn → ϕ pointwise, we have for every x = (xi) ∈ (Rd)k:

lim inf
n

Mk(ϕn) ≥ lim
n

1

k

k∑

i=1

ϕn(xi)− Ck(x) =
k∑

i=1

ϕ(xi)− Ck(x),

hence lim infnMk(ϕn) ≥Mk(ϕ) by optimizing with respect to x. �
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Next, for every upper bounded Borel function ϕ, we introduce the new function:

[MNϕ](x) := sup

{
1

N

N∑

i=1

ϕ(xi)− cN (x1, . . . , xN ) : x1 = x, (x2, . . . , xN) ∈ (Rd)N−1

}
.

By construction, it holds MN(ϕ) = sup{[MNϕ](x) : x ∈ R
d}. It turns out that,

for ϕ ∈ C0, the limit of [MNϕ] at infinity is nothing else but MN−1

(
N−1
N
ϕ
)
. A key

argument in the proof of Theorem 4.2 is the introduction of the regularization of ϕ
defined as follows:

ϕ̂(x) = ϕ(x) + N

(
MN−1

(N−1

N
ϕ
)
− [MNϕ](x)

)
(4.6)

It is easy to check that ϕ̂ can be rewriten in the following form

ϕ̂(x) = inf
x2,x3,...,xN

{
N cN(x, x2, . . . , xN )−

N∑

i=2

ϕ(xi)

}
+N MN−1

(N − 1

N
ϕ
)
. (4.7)

Here we used an additional constant in order to preserve the vanishing condition
at infinity (see the Lemma 4.8 hereafter). The next fundamental Lipschitz estimate
enlights the regularization effect of the map ϕ 7→ ϕ̂.

Proposition 4.6. For every R > 0, there exists a constant γN(R) such that:

{ϕ̂ : ϕ ∈ C0, ϕ ≤ R} ⊂ LipγN (R)(R
d). (4.8)

Proof. Let ϕ ∈ C0. Recalling the expression (4.7) for ϕ̂, a preliminary estimate is
the following:

inf
x2,...,xN

{
NcN (x, x2, . . . , xN )−

N∑

i=2

ϕ(xi)

}
≤ 0,

which is obtained taking x2, . . . , xn arbitrarily away from x and from each others.
A more delicate estimate is this: let x ∈ R

d and let ε > 0. Then there exists
η = η(ε) > 0 such that for all x2, . . . , xN which almost realize ϕ̂(x) in the sense that

NcN (x, x2, . . . , xN)−
N∑

i=2

ϕ(xi) +NMN−1

(N − 1

N
ϕ
)
≤ ϕ̂(x) + ε

and

NcN (x, x2, . . . , xN )−
N∑

i=2

ϕ(xi) ≤ ε

it holds

|x− xi| ≥ η, i = 2, . . . , N.

Hence the xi’s need to be at least at distance η from x where η does not depends
on x. In fact for all i ∈ {2, . . . , N},

ε ≥ NcN(x, x2, . . . , xN )−
N∑

i=2

ϕ(xi) ≥ N
1

|x− xi|
− (N − 1)R

so that

|x− xi| ≥
N

ε+ (N − 1)R
.
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In particular we may choose η(ε) = N
ε+(N−1)R

and for all ε ∈ (0, 1] we have η(ε) ≥
N

1+(N−1)R
.

We may now make the Lipschitz estimates for ϕ̂. Let x ∈ R
d, let ε ≤ 1 and let y

be such that |y − x| ≤ δ
4

we choose xi for i ∈ {2, . . . N} which almost realize ϕ̂(x)
in the sense above. We use the xi in both formulas for ϕ̂(x) and ϕ̂(y) to obtain

ϕ̂(y)− ϕ̂(x)− ε ≤ NcN (y, x2, . . . , xN)−
N∑

i=2

ϕ(xi)−NcN (x, x2, . . . , xN) +

N∑

i=2

ϕ(xi)

= N
N∑

i=2

(
1

|y − xi|
− 1

|x− xi|

)
≤ N

N∑

i=2

|x− y|
|ξi − xi|2

≤ N(N − 1)16

9δ2
|x− y| ≤ (N − 1)(1 + (N − 1)R)216

9N
|x− y|,

where the inequality of the second line, holding for a suitable ξi, follows from La-
grange intermediate value theorem applied to the functions 1/|·−xi|. This is allowed
since |x − xi| > η and |x − y| ≤ η/4; in particular |ξi − xi| ≥ 3η/4. From the in-
equalities above one gets a Lipschitz estimate for ϕ̂ in B(x, η/4) with a constant
independent of x that we denote by γN(R). Then, clearly we have a global Lipschitz
estimate with the same constant. �

Remark 4.7. The second addendum in (4.7) is estimated as

MN−1

(
N − 1

N
ϕ

)
= sup

x2,...,xN

{
N∑

i=2

1

N
ϕ(xi)− cN−1(x2, . . . , xN )

}
≤ N − 1

N
R,

which is obtained by the fact that cN−1 is positive and ϕ ≤ R. All in all we have
ϕ̂ ≤ (N − 1)R

We conclude this subsection with a crucial technical result.

Lemma 4.8. Let ϕ ∈ C0, ϕ̂ defined by (4.6) and ∆N (ϕ) defined in (4.5). Then

i) ϕ̂ belongs to C0.
ii) The function ψ = (1− 1

N
)ϕ+ 1

N
ϕ̂ satisfies:

MN (ψ) =MN−1

(N − 1

N
ϕ
)
. (4.9)

IN (ψ) ≥ IN (ϕ) + (1− ‖ρ‖)∆N(ϕ). (4.10)

ψ ≥ ϕ−∆N (ϕ). (4.11)

Proof. Let us prove i). By Proposition 4.6, we know already that ϕ̂ is Lipschitz
continuous. Owing to (4.6), we have only to show that

lim
|x|→+∞

[MNϕ](x) =MN−1

(N−1

N
ϕ
)
.

First, as cN(x1, x2, . . . , xN ) ≥ cN−1(x2, . . . , xN), we deduce that:

[MNϕ](x) ≤
ϕ(x)

N
+ sup

(x2,...,xN )

{
1

N

N∑

i=2

ϕ(xi)− cN−1(x2, . . . , xN )

}

=
ϕ(x)

N
+MN−1

(N−1

N
ϕ
)
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Thus, as ϕ ∈ C0, we have

lim sup
|x|→∞

[MNϕ](x) ≤MN−1

(N−1

N
ϕ
)
.

For the converse inequality, we observe that, for every (x2, . . . , xn), it holds

[MNϕ](x) ≥
ϕ(x)

N
−

N∑

j=2

1

|x− xj |
+

1

N

N∑

i=2

ϕ(xi)− cN−1(x2, . . . , xN ).

hence the conclusion by sending first |x| to infinity and then optimizing with respect
to x2, . . . , xN .

We prove now ii). First the lower bound of ψ given in (4.11) is obtained by recalling
that [MNϕ](x) ≤MN(ϕ). Then we infer that:

ϕ̂(x) ≥ ϕ(x) +N
(
MN−1

(N−1

N
ϕ
)
−MN (ϕ)

)
= ϕ(x)−∆N (ϕ).

In order to show (4.9), we observe that, by the definition of function [MNϕ], we have

N∑

i=1

[MNϕ](xi) ≥
N∑

i=1

ϕ(xi)−N cN(x1, x2, . . . , xN).

By applying the definitions of ψ with ϕ̂ given by (4.6), it follows that, for every
x = (x1, x2, . . . , xN ) ∈ (Rd)N :

∑

i

ψ(xi) =
∑

i

ϕ(xi) +N MN−1

(N − 1

N
ϕ
)
−
∑

i

[MNϕ](xi)

≤ N MN−1

(N − 1

N
ϕ
)
+N cN(x)

Therefore
1

N

∑

i

ψ(xi)− cN (x) ≤MN−1

(N−1

N
ϕ
)

and the inequality MN(ψ) ≤ MN−1

(
N−1
N
ϕ
)

follows by maximizing with respect to
x. The converse inequality holds true since, by (4.11)

MN (ψ) ≥MN (ϕ)−∆N (ϕ) =MN−1

(N − 1

N
ϕ
)
.

Eventually we infer also (4.10) as a consequence of (4.9) and (4.11). �

4.2. Proof of Theorem 4.2. We proceed in several steps.

Step 1. Let δ as given by the assumption (4.1). Then there exists R = R(δ) > 0
such that:

C(ρ) = sup
{
IN(ϕ) : ϕ ∈ C0(R

d, [0, R])
}
.

Indeed, by (3.15), we have MN(ϕ+) = MN(ϕ), thus IN(ϕ+) ≥ IN (ϕ) for every
ϕ ∈ C0. Therefore the supremum of IN(ϕ) is unchanged if we restrict to ϕ ∈ C+

0 .
On the other hand, for every given ε > 0, we may restrict the supremum to the
subclass

Aε :=
{
ϕ ∈ C+

0 : IN(ϕ) ≥ C(ρ)− ε
}
.

Since

C((1 + δ)ρ) ≥ (1 + δ)

∫
ϕdρ−MN(ϕ),
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we deduce that, for every ϕ ∈ Aε, it holds:

C((1 + δ)ρ)− (1 + δ)C(ρ) ≥ δ MN(ϕ)− ε ≥ δ

N
supϕ− ε.

Therefore Aε ⊂ C0(R
d, [0, R]) for small ε, provided

R >
C((1 + δ)ρ)− (1 + δ)C(ρ)

Nδ
.

Step 2. For every ε > 0, there exists ψ ∈ C0(R
d, [0, NR]) such that

IN(ψ) ≥ C(ρ)− ε, MN(ψ) ≤ R, Lip(ψ) ≤ γN(NR). (4.12)

The existence of ψ satifying (4.12) will be derived after designing a suitable
sequence (un) in C0. We start with an element ϕε ∈ C0(R

d; [0, R]) such that
IN(ϕε) > C(ρ)− ε as given in Step 1. Then we define a sequence (un) as follows:

u0 = ϕε, un+1 =
1

N
ûn +

N − 1

N
un.

Applying Proposition 4.8 we get

IN(un+1) ≥ IN(un) + (1− ‖ρ‖)∆N(un) (4.13)

un+1 ≥ un −∆N (un) (4.14)

MN (un) ≥MN−1

(N − 1

N
un

)
=MN (un+1). (4.15)

From (4.13) follows that IN(un) is non-decreasing. Since IN(ϕε) ≤ IN (un) ≤ C(ρ),
its limit satisfies:

C(ρ)− ε < lim
n
IN (un) ≤ C(ρ) . (4.16)

Now we use the condition ‖ρ‖ < 1 to infer from (4.13) that

∞∑

n=1

∆N(un) ≤
ε

1− ‖ρ‖ < +∞.

Let us denote by εn :=
∑

k≥n∆N (uk) the remainder of the series; we see from (4.14)
that vn = un − εn is monotone non-decreasing. Therefore un and vn share the same
point-wise limit u(x) which at least is a lower semicontinuous function. Next we
can derive in a straightforward way a uniform upper bound for the un by applying
the monotonicity property (4.15). Indeed, according to the choice u0 = ϕε for the
initial term which satisfies sup u0 ≤ R, we have

1

N
sup un ≤MN (un) ≤MN (u0) ≤ R. (4.17)

Then we may apply to (vn) the continuity property on monotone sequences given in
Lemma 4.5 for k = N − 1 and k = N , noticing that Mk(un) =Mk(vn) + εn:

MN (un) →MN (u), MN−1(
N − 1

N
un) →MN−1(

N − 1

N
u) .

It follows that

∆N(u) = lim
n

∆N(un) = 0.
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As a consequence of (4.4), we deduce that

u∞ = lim sup
|x|→∞

u(x) ≤ 0 .

Next, in order to gain the Lipschitz regularity of u, we are going to apply Propo-
sition 4.6 to the sequence (un). By construction, we have ûn − un = N(un+1 − un).
Therefore ûn − un → 0 and ûn → u poitwise on R

d. As a consequence of (4.8) (ûn)
is equi-Lipschitz with constant γN(NR). By Arzelá-Ascoli’s Theorem, it converges
to u uniformly on compact subsets of Rd. Its limit u satisfies as well sup u ≤ NR
and it is Lipschitz continuous with the constant γN(NR).

Eventually we claim that the function ψ = u+ satisfies the three requirements in
(4.12). Indeed, u+(ω) ≤ 0 implies that ψ is an element of C0(R

d; [0, NR]. It has the
same Lipschitz constant γN(NR). In addition, by Lemma 3.15 and (4.17), we have
MN(Ψ) =MN (u) ≤ R. Eventually, by monotone convergence, we have:

lim
n
IN(un) = lim

n

∫
un dρ− lim

n
MN(un) =

∫
u dρ−MN (u) = IN (u),

and the first condition in Claim (4.12) follows from (4.16).

Step 3. There exists a sequence (ϕn) ∈ C0(R
d, [0, R]) and a function ϕ ∈ C0(R

d, [0, NR])
with Lip(ϕ) ≤ γN(NR) such that

ϕn+1 ≥ ϕn, IN(ϕn) → C(ρ), sup
n
ϕn = ϕ. (4.18)

By applying step 2 for ε = 1
n
, we obtain a sequence (ψn) in C0(R

d; [0, NR]) with

a uniform Lipschitz constant γN(NR) and such that IN(ψn) → C(ρ). By Ascoli-
Arzela’s Theorem and possibly after passing to a suitable subsequence, we may
assume that ψn converges uniformly on compact subsets to a Lipschitz continuous
ϕ ∈ C(Rd; [0, NR]). At this point, we would need also a uniform convergence on the
whole R

d in order to conclude that ϕ vanishes at infinity. To avoid this difficulty,
we turn to another sequence in C0(R

d, [0, NR]), namely (ϕn) defined by

ϕn := inf {ψm : m ≥ n} .
Clearly the pointwise convergence ψn → ϕ implies that ϕn converges increasingly to
ϕ. As MN (ϕn) ≤MN (ψn), we have

IN(ϕn) ≥ IN(ψn)− rn, rn =

∫
(ψn − ϕn) dρ,

where rn → 0 by dominated convergence. Therefore (ϕn) is a maximizing sequence
for (3.16) and by applying the assertion iii) of Theorem 3.12 for k = N − 1 (see
Remark 3.14), we deduce that

MN (ϕn)−MN−1

(
N − 1

N
ϕn

)
→ 0.

Thus, again by the monotonicity property of Lemma 4.5, we are led to the equality

MN(ϕ)−MN−1

(
N − 1

N
ϕ

)
= 0

from which follows that ϕ∞ ≤ 0 (see Lemma 4.4). As ϕ is continuous nonnegative,
we conclude that ϕ ∈ C0 thus (4.18).
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Concluding the proof. The ϕ constructed in Step 3 obviously satisfies (4.2). Indeed
the convergence ϕn → ϕ is strong in C0 (as a consequence of Dini’s Theorem on
the compact set R

d ∪ {ω}) and therefore, recalling that the map MN : C0 → R

is Lipschitz continuous (see Lemma 3.10), it holds MN (ϕn) → MN(ϕ). Thus u =
ϕ−MN (ϕ) is an optimal potential for the dual problem (3.3). Its Lipschitz constant
is not larger than γN(NR) given by Proposition 4.6, being R = R(δ) given in Step
1.

Eventually let be v be another solution to (3.3). Then v = ϕ̃ −MN (ϕ) for an

element ϕ̃ ∈ C0 solving (4.2). Thanks to (4.10), the function ψ = (1 − 1
N
)ϕ̃ + 1

N
̂̃ϕ

introduced in Lemma 4.8 satisfies:

IN(ψ) ≥ IN(ϕ̃) + (1− ‖ρ‖)∆N(ϕ̃).

The optimality of ϕ̃ implies that IN (ψ) = IN(ϕ̃) and that ∆N(ϕ̃) = 0, thus ψ ≥ ϕ̃

thanks to (4.11). It follows that ψ = ϕ̃ = ψ̂ holds ρ a.e., hence on spt(ρ) by
continuity. As sup ϕ̃ ≤ R = R(δ) by step 1, then MN (ψ) ≤ MN (ϕ̃) implies that
supψ ≤ NR and, by applying(4.8), ψ is Lipschitz with constant γN(NR) while it
coincides with ϕ̃ on spt(ρ). �

5. Quantization of relaxed minimizers

In this Section we focus on the relaxed problem mentioned in the introduction
namely

min

{
C(ρ)−

∫
V dρ : ρ ∈ P−

}
, (5.1)

where V is a given potential in C0. Note that the infimum above would blow-up to
−∞ if V is not upper bounded, as for instance in the case of Coulomb potential.
The existence of solutions to (5.1) in P− is straightforward as we minimize a convex
lower semicontinuous functional on the weakly* compact set P−. On the other hand,
as the minimum in (5.1) agrees with that of

inf

{
C(ρ)−

∫
V dρ : ρ ∈ P

}
, (5.2)

any solution ρ ∈ P to (5.1) is also a solution to (5.2) and vice-versa.

We pay now attention to the set of minimizers

SV =
{
ρ ∈ P− : ρ solves (5.1)

}
.

As by (3.16) C(ρ) agrees with the Fenchel conjugate of MN , we may interpret SV
in the language of convex analysis as the sub-differential of MN at V , i.e.

SV =

{
ρ ∈ P− : C(ρ)−

∫
V dρ+MN(V ) ≤ 0

}
.

In particular SV is a convex weakly* compact subset of P−. Note that in general
SV is not a singleton as the functional C is not stricly convex. Besides we observe
that the minimum value of (5.1) is strictly negative unless the positive part of V
vanishes. Indeed , by considering competitors ρ such that ‖ρ‖ ≤ 1

N
(thus C(ρ) = 0

by Proposition 3.7), we have the following estimate

inf
{
(5.1)

}
≤ − 1

N
supV +. (5.3)
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One of the major questions in the ionization problem, as developed for instance
in [12, 13, 21, 22] in a much more complex case, is to determine conditions on the
potential V under which (5.1) admits solutions in P. We give here a sufficient
condition.

Theorem 5.1. Assume that the potential V satisfies the condition

MN (V ) > MN−1

(N − 1

N
V
)
. (5.4)

Then all solutions ρ to (5.1) satisfy ‖ρ‖ = 1, that is SV ⊂ P. Moreover the supre-
mum defining MN(V ) in (3.12) is a maximum.

Proof. Assume that there exists a solution ρ such that ‖ρ‖ < 1. Then, as V is
a solution to the dual problem associated with ρ, we may apply the optimality
conditions derived in Theorem 3.12. Let {ρl} be optimal in (2.6). Then by Remark
3.14, we know that it exists at least one index l ≤ N − 1 such that ‖ρl‖ > 0 and
therefore, condition iii) is satisfied for k = N − 1. Thus MN(V ) = MN−1(

N−1
N
V ),

in contradiction with our assumption. For the last statement, we consider a point
x̄ ∈ XN (recall that X = R

d ∪ {ω}) such that:

MN(V ) = sup
x∈(Rd)N

1

N

N∑

i=1

V (xi)− cN(x) =
1

N

N∑

i=1

V (xi)− c̃N(x̄) ,

being c̃N the natural upper semicontinuous extension of cN to XN (see (2.1)). Such
an optimal x̄ exists since we maximize an u.s.c. function on a compact set. If the
infimum is not reached in (Rd)N , that means that xi = ω for at least one index i for
instance i = N and we are led to

MN (V ) =

N−1∑

i=1

V (xi)− c̃N−1(x1, x2, . . . , xN−1) ≤MN−1

(N − 1

N
V
)
,

in contradiction with (5.4). �

In view of Theorem 5.1, a meaningful issue is now to understand what happens
when equality MN (V ) =MN−1(

N−1
N
V ) holds. To that aim it is useful to introduce:

kN(V ) := max

{
k ∈ {1, 2, . . . , N} : Mk

( k
N
V
)
> Mk−1

(k − 1

N
V
)}

. (5.5)

Here we set by convention M0(0) = 0 so that kN(V ) is well defined if V + does not
vanish. Otherwise we set kN(V ) = 0.

Corollary 5.2. Let V be a potential V ∈ C+
0 such that:

β := lim sup
|x|→+∞

|x|V (x) > 0.

Then the condition (5.4) is satisfied whenever

β > N(N − 1). (5.6)

In particular the conclusions of Theorem 5.1 apply in this case.
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Proof. To help the reader, we begin with a first step assuming that the supremum in

the definition of MN−1

(
N−1
N
V
)

is reached by a system of N−1 points x1, x2, . . . xN−1

in R
d that is

MN−1

(N − 1

N
V
)
=

1

N

N−1∑

i=1

V (xi)− cN−1(x1, . . . , xN−1).

Then for every xN , we have:

MN (V ) ≥MN−1

(N − 1

N
V
)
+
V (xN )

N
−

N−1∑

1

1

|xN − xi|
. (5.7)

Now as (5.6) holds, we can choose |xN | so large to have

V (xN)

N
−

N−1∑

i=1

1

|xN − xi|
> 0 (5.8)

and (5.4) follows. This proof can be extended to the case where the N − 1 points

infimum related to MN−1

(
N−1
N
V
)

is not attained in (Rd)N−1, by considering instead

of N − 1 the index k̄ := kN−1(V ) defined by (5.5). It satisfies:

MN−1

(N − 1

N
V
)
=MN−2

(N − 2

N
V
)
= · · · =Mk̄

( k̄
N
V
)
> Mk̄−1

( k̄ − 1

N
V
)

(notice that k̄ ≥ 1 since β > 0 implies that V 6= 0). By applying the last statement
of Theorem 5.1 with N = k̄, we deduce the existence of a system of k̄ points
x1, x2, . . . xk̄ in R

d where k̄ ≤ N − 1 such that

Mk̄

( k̄
N
V
)
=

1

k̄

k̄∑

i=1

V (xi)− ck̄(x1, . . . , xk̄).

Accordingly the counterpart of the inequality (5.7) is the following

MN (V ) ≥ Mk̄

( k̄
N
V
)
+
∑

k̄<j≤N

V (xj)

N

−
∑

1≤i≤k̄<j≤N

1

|xi − xj|
−

∑

k̄<j<l≤N

1

|xj − xl|
. (5.9)

As (5.9) holds for all xj with j > k̄ and for all xl with l > j, by sending |xl| → ∞
and then |xj | → ∞ for k̄ < j ≤ N − 1, we are led to

MN(V )−MN−1

(N − 1

N
V
)
=MN (V ) −Mk̄

( k̄
N
V
)
≥ V (xN)

N
−
∑

1≤i≤k̄

1

|xi − xN |
,

which holds for every xN ∈ R
d. The conclusion follows by choosing |xN | so large to

have:
V (xN )

N
−
∑

1≤i≤k̄

1

|xi − xN |
> 0

(note that this condition is weaker than (5.8) if k̄ < N − 1). �
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Remark 5.3. As a consequence of Theorem 5.1, we obtain that optimal solutions
belong to P as far as V is “large” enough. More precisely, if the positive part of
V does not vanish, then there exists a constant t∗ ≥ 0 such that for Z > t∗, the
potential ZV satisfies (5.4). Indeed, by applying (3.13), we derive that

lim
Z→+∞

Mk

(
k
N
ZV
)
−Mk−1

(
k−1
N
ZV
)

Z
=

1

N
supV > 0,

Moreover, if the potential V is strong enough at infinity, we may even have t∗ =
0. Indeed by applying Corollary 5.2 to a potential V ∈ C+

0 satisfying β = +∞
(confining potential), we obtain that StV ⊂ P hold for all t > 0. Unfortunately
we do not know in general if the opposite condition t < t∗ implies that StV ∩ P
is empty. In Example 5.5, we merely show that the latter set is empty if V has
compact support and t < t∗ for a suitable t∗ ≤ t∗

Remark 5.4. The minimization problem (5.1) can be also studied for potentials
V possibly unbounded. In fact an important case, which is beyond the scope of
this paper, occurs when lim|x|→∞ V = −∞. In this case the minimum is reached
on probability measures and we observe that, extending the definition of MN to
such potentials, we have a relation with the so called systems of points interactions
theory confined by an external potential (see [15, 19, 20]), since

−MN (−N2V ) = inf
{
HN(x1, x2, . . . , xN ) : xi ∈ R

d
}

where HN is of the form

HN(x1, x2, . . . , xN) =
∑

1≤<i<j

ℓ(|xi − xj |) +N

N∑

i=1

V (xi).

In such a setting, the asymptotic limit as N → ∞ is one of the main point of interest
of the mathematical physics community.

Example 5.5. (Non existence of an optimal probability) Let V ∈ C+
0 with compact

support and let R > 0 such that spt V ⊂ BR. Then it easy to check that any solution
ρ to (1.1) such that ‖ρ‖ = 1 must satisfy as well spt ρ ⊂ BR. Indeed, otherwise we
can move away the part of such a ρ which lies outside BR letting

∫
V dρ invariant

and making C(ρ) decrease. For instance we may consider ρ′ = T#(ρ) where

T (x) = kR(|x|) x with kR(x) := max
{
1,

|x|
R

}
.

For such a map we have |Tx−Ty| ≥ |x− y| with strict inequality whenever (x, y) /∈
B2
R, so that C(ρ′) < C(ρ) unless spt ρ ⊂ BR.
Next by applying a lower bound estimate for C(ρ) in term of the variance of ρ

(see Prop 2.2 in [2]), we infer that:

C(ρ) ≥ N(N − 1)

4
√

Var(ρ)
≥ N(N − 1)

4R
.

On the other hand, by (5.3) and as ρ is optimal, it holds C(ρ) ≤ (1 − 1
N
) supV .

Therefore a solution in P cannot exist unless the following lowerbound holds for
supV :

N2

4R
≤ supV.
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This necessary condition applies of course if we substitute potential V with tV and
we deduce that StV ∩ P is empty whenever t < t∗ where

t∗ :=
N2

4R supV
.

We are now in a position to state the quantization phenomenon we have announced
in the Introduction. For every non-vanishing V ∈ C0, we define:

IN(V ) := min {‖ρ‖ : ρ ∈ SV } . (5.10)

The minimum in (5.10) is achieved by the weak* lower semicontinuity of the map
ρ 7→ ‖ρ‖ and optimal ρ represent elements with minimal norm in SV On the other
hand, IN(V ) depends only on the positive part of V i.e. IN(V ) = IN(V +).

Theorem 5.6. Let V ∈ C0, N ∈ N
∗ and kN(V ) given by (5.5). Then

IN (V ) =
kN(V )

N
.

As a consequence, the map V ∈ C0 7→ IN (V ) ranges into the finite set
{
k

N
: 0 ≤ k ≤ N

}
.

Proof. First we observe that the result is trivial if kN(V ) = 0. Indeed in this case,
V + ≡ 0 implies that the minimum in (5.1) vanishes. The minimal set is then reduced
to ρ = 0 and IN(V ) = 0. We may therefore assume that kN(V ) ≥ 1. To lighten
the notations, let us set now k̄ := kN(V ). First we show that IN (V ) ≤ k̄. By (5.5),

we have that Mk̄

(
k̄
N
V
)
> Mk−1

(
k̄−1
N
V
)

while, recalling the monotonicity property

(3.14), it holds Mk(
k
N
V ) = MN(V ) for every k ≥ k̄. Let us apply Proposition 5.1

taking instead of C = CN the k̄ multi-marginal energy and choosing k̄V/N as a
potential. Therefore it exists a probability ρk̄ such that:

Ck̄(ρk̄)−
∫

k̄V

N
dρ = −Mk̄

( k̄V
N

)
.

Then we claim that ρ := k̄
N
ρk̄ solves (5.1) (i.e. belongs to SV ). Indeed, by (2.8), we

have:

C(ρ)−
∫
V dρ ≤ Ck̄(ρk̄)−

∫
k̄V

N
dρk̄ = −Mk̄

( k̄V
N

)
= −MN (V ).

As the mass of ρ is exacly k̄/N , we infer that IN (V ) ≤ k̄/N .

Let us prove now the opposite inequality. Let ρ ∈ SV and let {ρk} be an optimal
decomposition for ρ according to (2.6), with

ρ =
N∑

k=1

k

N
ρk.

By the optimality conditions of Theorem 3.12, it holdsMk

(
k
N
V
)
=MN (V ) whenever

‖ρk‖ > 0. Then we observe that the latter equality cannot hold for k ≤ k̄−1. Indeed,
by the monotonicity property (3.14):

Mk

( k
N
V
)
≤Mk̄−1

( k̄ − 1

N
V
)
< Mk̄

( k̄
N
V
)
=MN (V ).
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Therefore we have ρk = 0 for every k ≤ k̄ − 1. Thus recalling that
∑

k ‖ρk‖ = 1 by
the optimality conditions (assertion i) of Theorem 3.12):

‖ρ‖ =

N∑

k=k̄

k

N
‖ρk‖ ≥ k̄

N

N∑

k=k̄

‖ρk‖ ≥ k̄

N
.

Accordingly we obtain the opposite inequality IN (V ) ≥ k̄/N . �

Remark 5.7. The functional V ∈ C0 7→ IN (V ) is lower semicontinous with respect
to the uniform convergence. Indeed if Vn → V uniformly and if we take ρn ∈ SVn
such that ‖ρn‖ = IN (Vn), then any weak* limit ρ of a subsequence of (ρn) is such
that ρ ∈ SV and

IN(V ) ≤ ‖ρ‖ ≤ lim inf
n

‖ρn‖ = lim inf
n

IN(Vn).

In general the potential V depends on several charge parameters and takes the
form

V (x) =
M∑

k=1

Zk Vk(x) Zk > 0.

It is then interesting to analyse the function

IN (V ) = IN
( M∑

k=1

Zk Vk

)

as a function depending on the Zk’s. It turns out that this question is a very
delicate one which will motivate future works. In case of a single charge parameter
Z > 0 applied to a given potential V ∈ C+

0 , it is natural to expect that the map
Z ∈ R

+ 7→ IN(ZV ) is a non-decreasing step function encoded by threshold values
0 = t0 ≤ t1 ≤ · · · ≤ tN < tN+1 = +∞ such that IN(ZV ) = k

N
for Z ∈ (tk, tk+1].

At present a proof of this fact is available only in the case N = 2 where it is a
consequence of the fact that the set {Z ≥ 0 : M2(ZV/2) > M1(ZV ) = Z supV } is
an half line.
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