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Abstract

We provide in this paper homogenization results for the L2-topology leading to complete
strain-gradient models and generalized continua. Actually we extend to the L2-topology the
results obtained in [1] using a topology adapted to minimization problems set in varying
domains. Contrary to [1] we consider elastic lattices embedded in an soft elastic matrix.
Thus our study is placed in the usual framework of homogenization. The contrast between
the elastic stiffnesses of the matrix and the reinforcement zone is assumed to be very large.
We prove that a suitable choice of the stiffness on the weak part ensures the compactness of
minimizing sequences while the energy contained in the matrix disappears at the limit: the
Γ-limit energies we obtain are identical to those obtained in [1].
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1 Introduction

Homogenization theory of elastic periodic materials has generated a huge literature in the last
decades (see for instance [23, 9, 6]). A part of it focuses on a class of the elastic periodic mate-
rials where the contrast of the elastic parameters of the material is so large that is can become
comparable with the ratio of microscopic and macroscopic lengths. In this high-contrast case, the
assumption of separation of scales must be revisited and the effective material which can result
from the homogenization process may depart from standard elasticity theory.

First examples of such homogenization results were given in [22] in the three-dimensional case
and in [14] in the two-dimensional case. In these papers a material periodically reinforced with par-
allel, very thin and very stiff fibers was studied. Other examples based on pantographic structures
were given in [5, 4, 12, 18, 24].

When such highly contrasted structures are considered, the effective mechanical behavior may
be not of the classical Cauchy elasticity type as it may contain non-local effects [10, 11, 1] or
higher-order gradient effects [22, 14, 1]. The whole class of effective behaviors which can be
obtained through an asymptotic process has been completely characterized in [15, 16].

Periodic homogenization consists in introducing the ratio ε of the “microscopic” periodic size
(wavelength of the varying stiffness coefficients) to the “macroscopic” size of the domain. In
standard periodic homogenization, it is assumed that any stiffness coefficient depends on ε only
through the rescaled space variable ε−1x. In other words, the stiffness is fixed in the rescaled cell.
Taking into account high contrast needs to allow the amplitude of the variations of the stiffness
coefficients also to depend on ε. We emphasize that letting the space dependence of the coefficients
in the rescaled cell still involve ε is also important for getting interesting effective energies.

In [1, 2, 3], a large family of examples based on periodic lattices has been described. In these
recent papers, in the framework of linear elasticity, a class of second-gradient models, including
eventually extra variables has been obtained via Γ-convergence approach: the considered structures
were made of a unique linear elastic material forming a periodic lattice. The space between the
thin substructure was empty. The study of these structures was first reduced to the study of
discrete problems related to the rigid displacements of the nodes of the lattice. Homogenization
of the discrete problems then became a pure algebraic computation which led to strain-gradient
models and generalized continua that is to models enriched with extra kinematic variables. These
results were the first to give explicit examples of rigorous homogenization results in the whole set
of strain-gradient models or generalized continua. However they are difficult to compare to other
homogenization results as they use a different topology. Indeed the presence of voids requires that
the external forces are concentrated on the lattice only. In [1, 2, 3] it was assumed that the external
forces were applied in the vicinity of the nodes. The limit model is set in a limit domain Ω. It
is clear that the Γ-convergence theorem cannot be stated for the L2(Ω) topology like it is done in
[15, 16, 22, 14].

Moreover, a higher-order homogenization procedure at the order ε2 with second-gradient effects
was introduced in [25, 7] revisiting the work of [8]. This procedure also needs that the material
is nowhere degenerate and thus forbids the presence of voids. This procedure seems to be very
robust: even when applied out of its validity domain, it still seem to give the right high-order
stiffness tensors (see [19] for pantographs). In [21], it was numerically shown that this procedure
applied to the elastic periodic structures considered in [1] with the addition of a compliant material
inside the voids leads to the same limit second-gradient models as those obtained in [1]. So the
question was open of the suitable choice of the stiffness of the compliant embedding matrix for
these numerical results to be consolidated.
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The aim of the present paper is to answer this question by extending rigorously the results of
[1] to a continuum elastic material without voids. In that case, the elastic problems are all set in
a fixed domain Ω and external forces can be applied on the whole domain. We show that adding
the compliant matrix has no consequence on the limit model obtained in [1]: for a suitable choice
of the stiffness in the weak part, the energy concentrated in the compliant part disappears when
passing to the Γ-limit.

The paper is organized as follows. We first describe, in Section 2, the geometry and the
considered elasticity problem. We then state the homogenization result (Theorem 1) in Section
3. For sake of clarity, the proof of this theorem is divided in three subsections. The compactness
needs a careful estimation of the capacity of the lattice with respect to the whole domain. The
Γ-lim inf inequality results easily from the results of [1] as it is clear that the energy considered in
this paper is larger than the energy considered there. The Γ-lim sup inequality is obtained by the
explicit construction of an approximating sequence. The novelty lies essentially in the need of a
Lipschitz extension of a displacement field initially defined is the reinforcement lattice only and to
the introduction of a triangulated augmented lattice which makes the construction easier.

2 Initial problem, description of the geometry

2.1 The graph

In the two-dimensional space endowed with an orthonormal coordinate system (0, e1, e2), we con-
sider a weak material periodically reinforced by very strong thin fibers. The fibers form a periodic
planar graph that we first describe. We follow closely the description of [1] or [20]. A proto-
type cell Y = (−1

2
, 1

2
)2 contains a finite number K of nodes the position of which is denoted yr,

r ∈ {1, . . . , K}. Without loss of generality we assume1 that
∑

r∈{1,...,K} yr = 0. This cell is scaled

by a small parameter ε (assumed to be of the form ε = 1
2Nε+1

with N ε ∈ N) and reproduced in

order to make a tiling of the domain Ω = (−1
2
, 1

2
)2. The nodes of the graph are thus the points

yεI,s := ε(ys + ie1 + je2) for I = (i, j) ∈ I ε := {−N ε, . . . , N ε}2 and the cells are the squares

Cε
I := ε(ie1 + je2 + Y). (1)

The reinforcing fibers (called edges in the sequel) may connect some node r of a cell I with some
other node s of the same cell or of one of its closest neighbors2 I+p with p ∈ P := {−1, 0, 1}2. For
any p = (p1, p2) in P we denote p := p1e

1 +p2e
2 the corresponding vector so that yεI+p,r = yεI,r+εp.

The set of edges is characterized by a subset A ⊂ P × {1, . . . , K}2: node yεI,r is connected to
node yεI+p,s if and only if (p, r, s) ∈ A . The considered graph Gε is the union over all I in I ε and
all (p, r, s) in A of the segments [yεI,r, y

ε
I+p,s]. The set A is chosen in such a way that (i) there is no

crossing or overlapping of edges corresponding to different elements of A , (ii) the resulting graph
is connected.

The complementary of the graph is a union of polygons which take a finite number of shapes.
By introducing a set Ã with A ⊂ Ã ⊂ P×{1, . . . , K}2, it is easy to add some edges in the initial
graph in order to get a triangulated graph. This augmented graph, denoted G̃ε, is introduced
for purely technical reasons. The complementary of the augmented graph is a union of triangles

1 The symbol
∑

stands for the mean value (e.g.
∑
r∈{1,...,K} yr = 1

K

∑
r∈{1,...,K} yr).

2It has been shown in [1] that restricting the interactions to the closest neighbors is not an actual restriction.
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which take a finite number of shapes. We call αmin > 0 the smallest angle appearing in all these
triangles.

For any (p, r, s) in A or Ã we introduce the rescaled length and direction of the edge by setting

`p,r,s := ε−1‖yεI+p,s − yεI,r‖ and τp,r,s :=
yεI+p,s − yεI,r

ε`p,r,s
.

We also introduce `min := min(p,r,s)∈A `p,r,s and `max := max(p,r,s)∈A `p,r,s .
The fibers are assumed to have width βε2 with β > 0. Thus we introduce

Ωε :=

{
x ∈ Ω; d(x,Gε) <

β

2
ε2

}
, Ω̃ε :=

{
x ∈ Ω; d(x, G̃ε) <

β

2
ε2

}
(2)

and the reinforcement domain is the “thickened graph” Ωε.
Let us describe some parts (see Fig. 2) of Ω̃ε which will play an essential role in what follows.

First, for any I ∈ I ε and s ∈ {1, . . . , K}, we introduce the balls

Bε
I,s :=

{
x ∈ Ω; d(x, yεI,s) <

β

2
ε2

}
(3)

which will approximately act like small rigid bodies. Then, for any I ∈ I ε and (p, r, s) ∈ Ã , we
introduce the rectangles3

Rε
I,p,r,s :=

{
yεI,r + yεI+p,s

2
+ x1τp,r,s + x2τ

⊥
p,r,s : (x1, x2) ∈

[
−`p,r,s

2
ε,
`p,r,s

2
ε

]
×
[
−β

2
ε2,

β

2
ε2

]}
. (4)

in which a Bernoulli-Navier displacement will be a good approximation of the actual displacement
field. These rectangles overlap in the vicinity of any common node. It is easy to check that such
an overlapping is excluded in the part of the rectangle where x1 is restricted to the interval

x1 ∈
[
−γ

ε`p,r,s
2

ε,
γε`p,r,s

2
ε

]
with γε := 1− β

`min tan(αmin/2)
ε. (5)

The meaning of parameter γε is illustrated in Fig. 2.

Example 1. Let us illustrate the description of the geometry on a specific example. This example
has been first studied in [21] where it has been proved to lead to a non-local limit energy of Cosserat
type. The material is reinforced by a thin square grid braced by diagonals in one square over four
(see Fig. 1 and Fig. 2).

One can describe this situation by considering a cell containing four (K = 4) nodes: y1 =
(−1

4
,−1

4
) y2 = (1

4
,−1

4
), y3 = (1

4
, 1

4
), y4 = (−1

4
, 1

4
). The reinforcement structures consist in all the

rectangles joining nodes y1 and y2, y1 and y3, y1 and y4, y2 and y3, y3 and y4 inside the cell, the
rectangles joining nodes y2 and y3 of the cell with respectively nodes y1 and y4 of the next cell
following e1, and finally the rectangles joining nodes y3 and y4 of the cell with respectively nodes
y2 and y1 of the next cell following e2. All this is resumed by setting:

A = {(0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 3), (0, 3, 4), ((1, 0), 2, 1), ((1, 0), 3, 4), ((0, 1), 3, 2), ((0, 1), 4, 1)}.
3For any vector τ , notation τ⊥ stands for the vector obtained from τ by a rotation of angle +π

2 .
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x1

x2

0

A periodic cell Cε
I

ε

yεI,1 yεI,2

yεI,3yεI,4

Figure 1: An example of periodic graph.

γ
ε ℓ 0

,1
,3ℓ 0,

1,
3

βε

x1

x2

0

1
2

− 1
2

− 1
2

1
2

y1 y2

y3y4

Bε
I,2

Rε
I,0,1,3

Figure 2: The rescaled prototype cell corresponding to Fig. 1. The reinforcement zone is darker.
We illustrate in this figure the fact that the central part with length γε`p,r,s of any connecting
rectangle of length `p,r,s is not overlapping other reinforcement zone.
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In that case, the augmented (triangulated) graph could simply be obtained by adding three missing
diagonals

Ã = A ∪ {((1, 0), 2, 4), ((0, 1), 4, 2), ((1, 1), 3, 1)}.
In Fig. 2 is represented the rescaled cell. One must notice that, despite the rescaling, the geometry
still depend on ε. Indeed the actual thickness of the reinforcement structures being βε2, the rescaled
thickness is βε. This is a rarely explored situation in periodic homogenization.

Let us make a last remark about the set Ω̃ε. Let x and y be two points in Ω̃ε then there
exists a piece-wise C1 path in Ω̃ε connecting these two points whose length is smaller or equal to√

2‖y−x‖√
1−cos(αmin)

. Indeed any part of the segment [x, y] which lies in a triangle part of the complemen-

tary of Ω̃ε can be replaced by a path along the boundary of the triangle. It is easy to check that this

operation does not multiply the length of the path by more than
√

2
1−cos(αmin)

. The consequence

is that, whenever u is a C1 function on Ω̃ε satisfying ‖∇u‖ ≤ C then u is a
√

2C√
1−cos(αmin)

-Lipschitz

function.

2.2 The 2D elastic problem

We study the highly contrasted linear elastic problem4: infu{Eε(u)} where

Eε(u) :=

{∫
Ω
Y (x)

(
1

2(1+ν)
‖e(u)‖2 + ν

2(1−ν2)
(tr(e(u)))2

)
dx if u ∈ H1(Ω,R2),

+∞ if u ∈ L2(Ωε,R2) \ H1(Ωε,R2)
(6)

and the Young modulus Y takes a very large value inside Ωε and a very small one outside of it:

Y (x) =

{
Y0 ε

−3 if x ∈ Ωε,

Y1 ε
a with 0 < a < 2, otherwise.

We study here the non degenerate case where Y1 > 0 and Y0 > 0 and the Poisson coefficient ν,
assumed to be constant for sake of simplicity, satisfies −1 < ν < 1 so that

C‖e(u)‖2 ≤ 1

2(1 + ν)
‖e(u)‖2 +

ν

2(1− ν2)
(tr(e(u)))2 ≤ 1

4
‖e(u)‖2 (7)

with

C =
1

2 min(1 + ν, 1− ν)
> 0.

Let us denote E 0
ε the functional defined like (6) but with Y1 = 0. In other words

E 0
ε (u) :=

{∫
Ωε
Y (x)

(
1

2(1+ν)
‖e(u)‖2 + ν

2(1−ν2)
(tr(e(u)))2

)
dx if u ∈ H1(Ωε,R2),

+∞ if u ∈ L2(Ωε,R2) \ H1(Ωε,R2).
(8)

The functional E 0
ε has been studied in [1] in a two-step process: it has been first proved that

it shares the same asymptotic behavior than the following discrete functional Eε + Fε acting on

4Here e(u) denotes the symmetric part of the gradient of u (e(u) = (∇u + (∇u)t)/2 is the linearized strain
tensor) and tr(e(u)) denotes the trace of the matrix e(u).
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families (UI,r, θI,r) of rigid motions defined at the nodes of the graph (UI,r being vector valued
while θI,r is scalar):

Eε(U) :=
∑

(I,p,r,s)∈Iε×A

Y0β

`p,r,s

(
UI+p,s − UI,r

ε
· τp,r,s

)2

, (9)

Fε(U, θ) := ε2
∑

(I,p,r,s)∈Iε×A

Y0β
3

3`p,r,s

(
3

(
θI+p,s + θI,r −

2

`p,r,s

UI+p,s − UI,r
ε

· τ⊥p,r,s
)2

+ (θI+p,s − θI,r)2

)
.

(10)

Then it has been proved that, for a suitable notion of convergence, Eε + Fε converges to

E (u) := inf
w,v,θ

{
Ē(w, ξu,v) + F̄ (v, ηu, θ); Ē(v, ηu) = 0

}
. (11)

where Ē and F̄ are the continuous counterparts of Eε and Fε, namely

Ē(v, η) :=

∫
Ω

∑
(p,r,s)

Y0β

`p,r,s

(
(vs(x)− vr(x) + ηp,s(x)) · τp,r,s

)2

dx, (12)

F̄ (v, η, θ) :=

∫
Ω

∑
(p,r,s)

Y0β
3

3`p,r,s

(
3
(
θs(x) + θr(x)

− 2

`p,r,s
(vs(x)− vr(x) + ηp,s(x))·τ⊥p,r,s

)2
+
(
θs(x)− θr(x)

)2
)

(13)

and ηu and ξu,v stand for the families defined by

(ηu)p,s := ∇u · p, (14)

(ξu,v)p,s = ∇vs · p +
1

2
∇∇u · p · p. (15)

Note that the functionals in (11) are defined for any u, v, w, θ in L2(Ω) and, by convention, take
value +∞ whenever the integrals are divergent.

3 Homogenization result

The reader may refer to [17, 13] for the properties of Γ-convergence.

Theorem 1. The sequence Eε defined by (6) Γ-converges to E defined by (11) for the weak-L2(Ω)
topology:
(i) Any sequence uε with zero mean rigid motion (

∫
Ω
uε(x) dx = 0 and

∫
Ω
x × uε(x) dx = 0) and

with bounded energy (Eε(uε) ≤M) is relatively compact in L2(Ω).
(ii) For any sequence uε converging weakly in L2(Ω) to some function u, we have lim inf Eε(uε) ≥
E (u).
(iii) For any u such that E (u) < +∞, there exists a sequence uε converging to u in L2(Ω) and
such that lim sup Eε(uε) ≤ E (u).

The energy we consider here is clearly larger than the energy E 0
ε considered in [1]. The com-

pactness property established there for some weak convergence of measures will help us to prove
compactness in L2(Ω) of sequences with bounded energy. Moreover, as we expect the same Γ-limit
for both cases, our Γ-lim inf inequality will essentially be a consequence of the Γ-lim inf inequality
established in [1]. For sake of clarity, the three assertions of Theorem 1 are proved in the following
three subsections.
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3.1 Compactness

We will use the following lemma whose proof, essentially based on the estimation of the capacity
of the periodic network of balls (Bε

I,r)I∈I ε , is postponed to the Appendix.

Lemma 1. To any u ∈ H1(Ω), let us associate the quantities ūεI,s :=
∫
−
BεI,s

u(x) dx and the piece-

wise constant function

ũεs(x) :=
∑
I∈I ε

ūεI,s1CεI (x). (16)

There exists a constant C such that, for any u ∈ H1(Ω),

‖u− ũεs‖2
L2(Ω) ≤ Cε2| ln(ε)|‖∇u‖2

L2(Ω). (17)

The compactness result can now be established.

Proof. Let uε satisfying∫
Ω

uε(x) dx = 0,

∫
Ω

x× uε(x) dx = 0 and Eε(u
ε) ≤M.

Using (7) and Y (x) ≥ Y1ε
a, last inequality implies Y1ε

aC
∫

Ω
‖e(uε)(x)‖2 dx ≤ M. As uε has zero

mean rigid motion, Korn inequality implies∫
Ω

‖∇uε(x)‖2 dx ≤ K

∫
Ω

‖e(uε)(x)‖2 dx ≤ KM

CY1εa
.

Let us consider the family of vectors and the piece-wise constant functions

ūεI,s :=

∫
−
BεI,s

uε(x) dx and ũεs(x) :=
∑
I∈I ε

ūεI,s1CεI (x). (18)

Lemma 1 states that ‖uε − ũεs‖2
L2(Ω) ≤ Cε2| ln(ε)|‖∇uε‖2

L2(Ω) and thus

‖uε − ũεs‖2
L2(Ω) ≤ Cε2−a| ln(ε)| → 0. (19)

Clearly, omitting the elastic energy concentrated in the weak part of the material, we have
Eε(uε) ≥ E 0

ε . It is proved in Theorem 1 of [1] that, for any η > 0 and for ε small enough,

E 0
ε (uε) ≥ Eε((ū

ε
I,s)) + Fε((ū

ε
I,s), (φ

ε
I,s))− η (20)

where φεI,s :=

∫
−
BεI,s

∂1uε2−∂2uε1
2

(x) dx. Inequality (20) is invariant when subtracting a rigid motion.

We set

aε :=
∑
I∈I ε

K∑
s=1

φεI,s, bε :=
∑
I∈I ε

K∑
s=1

ūεI,s, θεI,s = φεI,s−aε, rε(x) := aεx⊥+ bε and vε = uε−rε,

so that the families (v̄εI,s) and (θεI,s) satisfy
∑

I∈I ε

∑K

s=1
v̄εI,s = 0 and

∑
I∈I ε

∑K

s=1
θεI,s = 0 and

we still have Eε((v̄
ε
I,s))+Fε((v̄

ε
I,s), (θ

ε
I,s)) ≤M+η. Here we associate to vε and rε the quantities v̄εI,s

8



and r̄εI,s and the functions ṽε and r̃ε like in (18). Lemma 4 of [1] states that, for any s,
∑

I
‖v̄εI,s‖2 is

uniformly bounded. Thus ‖ũεs− r̃εs‖2
L2(Ω) = ‖ṽεs‖2

L2(Ω) ≤ C. Using (19) we get by triangle inequality

‖uε − r̃εs‖L2(Ω) ≤ C. As
∫
−

Ω
uε(x) dx = 0,

bε =
∑
I∈I ε

K∑
s=1

rε(yεI,s) =
∑
I∈I ε

K∑
s=1

r̄εI,s =
K∑
s=1

∫
−
Ω

r̃εs(x) dx =
K∑
s=1

∫
−
Ω

(uε(x)− r̃εs(x)) dx

and we first deduce ‖bε‖ ≤ C. As
∫
−

Ω
x dx = 0 we have

∫
−

Ω

x× bε dx = 0 and, as we have assumed∫
−

Ω

x× uε dx = 0, we can also deduce

|aε|
∫
−
Ω

‖x‖2 dx =
∥∥∥∫−

Ω

x× (r̃εs(x)− bε) dx
∥∥∥ =

∥∥∥∫−
Ω

x× (r̃εs(x)− uε) dx
∥∥∥ ≤ C.

Hence |aε| < C. Therefore the sequence of rigid motions rε is bounded in L2(Ω). On the other
hand, we have

‖rε −∑
s

r̃εs‖2
L2(Ω) =

∑
s

∑
I

∫
−
CεI

‖rε(x)− r̄εI,s‖2 dx

=
∑
s

∑
I

∫
−
CεI

‖aεx⊥ + bε − (aε(yεI,s)
⊥ + bε)‖2 dx

= (aε)2
∑
s

∑
I

∫
−
CεI

‖x− yεI,s‖2 dx ≤ (aε)2ε2

2
.

So, by triangle inequality, uε is bounded in L2(Ω). Point(i) is proved.

3.2 Γ− lim inf inequality

Proof. Let now uε be a sequence with bounded energy and converging weakly in L2(Ω) to some
u. From estimation (19), we know that, for any s ∈ {1, . . . , K}, ũεs converges to u. For any
ϕ ∈ C0(R2), we have∑

I

ūεI,s

∫
CεI

ϕ(x) dx =

∫
Ω

ũεs(x)ϕ(x) dx→
∫

Ω

u(x)ϕ(x) dx.

On the other hand
∫

Ω
ūεI,s(x)ϕ(x) dx =

∑
I ū

ε
I,s

∫
CεI
ϕ(x) dx. As ϕ is uniformly continuous on the

compact Ω, there exists C such that, for all I, s and x ∈ Cε
I , ‖ϕ(x)− ϕ(yεI,s)‖ ≤ Cε. Hence

∑
I

ūεI,s|Cε
I |ϕ(yεI,s)→

∫
Ω

u(x)ϕ(x) dx.

In other words, we have the convergence in the sense of measures of the sequence of discrete
measures ∑

I

ūεI,sδyεI,s
∗
⇀ u

9



and we can apply the Γ-convergence Theorems 1 and 2 established in [1] which state respectively
that

lim inf
ε→0

E 0
ε (uε) ≥ inf

(θεI,s)
lim inf
ε→0

(Eε((ū
ε
I,s)) + Fε((ū

ε
I,s), (φ

ε
I,s))), (21)

lim inf
ε→0

(Eε((ū
ε
I,s)) + Fε((ū

ε
I,s), (φ

ε
I,s))) ≥ E (u). (22)

Hence we get lim infε→0 Eε(uε) ≥ lim infε→0 E 0
ε (uε) ≥ E (u) and point (ii) is proven.

3.3 Construction of an approximating sequence

Proof. In order to prove assertion (iii), we consider a function u which satisfies E(u) < +∞ and,
by a density argument, belongs to C∞(Ω). We follow the construction given in [1]. We just have
to extend the fields defined there in the weak part of the material and to check that the energy
in this zone is negligible. Thus we introduce (vs, ws, θs) such that E(u) = Ē(w, ξu,v) + F̄ (v, ηu, θ)
and Ē(v, ηu) = 0. The coercivity and the lower semi-continuity of these functionals ensure the
existence of these fields in C∞(Ω). We then define U ε and θε by setting

U ε
I,s := u(yεI) + εvs(y

ε
I) + ε2ws(y

ε
I) and θεI,s := θs(y

ε
I). (23)

Let M ∈ R which, for any s ∈ {1 . . . K}, bounds uniformly the norms

‖u‖, ‖∇u‖, ‖∇∇u‖, ‖∇∇∇u‖, ‖vs‖, ‖∇vs‖, ‖∇∇vs‖, ‖ws‖ and ‖∇ws‖.

We have, for any (p, r, s) ∈ Ã ,∥∥∥∥U ε
I+p,s − U ε

I,r

ε

∥∥∥∥ ≤ CM,
∣∣θεI,r∣∣ ≤M,

∣∣θεI+p,s∣∣ ≤M, (24)

where the constant C depends only on `max := max(p,r,s)∈Ã (`p,r,s).

Finally we define the function uε on Ω by parts

• On each ball Bε
I,r : we set uε(x) := U ε

I,r + θεI,r (x− yεI,r)⊥.

• On each rectangle Rε
I,p,r,s corresponding to an edge (p, r, s) in Ã : the construction

of uε is more cumbersome. In order to simplify the notation, we drop the indices (I, p, r, s)
by using a suitable orthonormal coordinate system (O, ẽ1, ẽ2) with origin at the middle of

the edge O := (yεI,r + yεI+p,s)/2 and with vector ẽ1 :=
yεI+p,s−y

ε
I,r

‖yεI+p,s−y
ε
I,r‖

= τp,r,s along the direction

of the edge. Using this coordinate system the rectangle Rε
I,p,r,s reads

Rε
I,p,r,s =

{
x = εx1ẽ

1 + ε2x2ẽ
2 : (x1, x2) ∈

(
−`p,rs

2
,
`p,rs

2

)
×
(
−β

2
,
β

2

)}
.

For simplifying further the notation we also set

θm := ε−1
(U ε

I+p,s − U ε
I,r) · ẽ2

γε`p,r,s
− (1− γε)(θεI+p,s + θεI,r)

2γε
,
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Um :=
U ε
I+p,s + U ε

I,r

2
− ε (1− γε)`p,r,s(θεI+p,s − θεI,r)

4
ẽ2

and U− := U ε
I,r − Um, U+ := U ε

I+p,s − Um, θ− := θεI,r − θm, θ+ := θεI+p,s − θm (recall that γε

is the geometrical parameter defined in (5)).

On the considered rectangle we use an approximation of the Euler-Bernoulli displacement
adapted to the displacements we just fixed on the balls Bε

I,r and Bε
I+p,s. Indeed this displace-

ment is known to be almost optimal from the energetic point of view. We set, decomposing
x = εx1ẽ

1 + ε2x2ẽ
2,

uε(x) :=


U ε
I,r + θεI,r

(
x+ ε `p,r,s

2
ẽ1
)⊥

if x1 < −γε `p,r,s2
,

U ε
I+p,s + θεI+p,s

(
x− ε `p,r,s

2
ẽ1
)⊥

if x1 > +γε `p,r,s
2

,

Um + θm x
⊥ + uε1(x) ẽ1 + uε2(x) ẽ2 otherwise,

(25)

with

uε1(x) := (U+
1 − U−1 )

x1

γε`p,r,s
−
( 12x2

1

(γε)2
(θ+ + θ−) +

4`p,r,sx1

γε
(θ+ − θ−)− `2

p,r,s(θ
+ + θ−)

) ε2x2

4`2
p,r,s

,

(26)

uε2(x) := ε
γε

8`2
p,r,s

(2x1

γε
(θ+ + θ−) + `p,r,s(θ

+ − θ−)
)(4x2

1

γε2
− `2

p,r,s

)
− εγ

ενϕε(x1)

`2
p,r,s

(
`p,r,s(U

+
1 − U−1 )x2 −

(6x1

γε
(θ+ + θ−) + `p,r,s(θ

+ − θ−)
)ε2x2

2

2

)
(27)

where ϕε stands for the continuous piece-wise affine function defined by

ϕε(t) =

{
1 if |t| < (2γε − 1) `p,r,s

2
,

0 if |t| > γε `p,r,s
2

.

The derivative of ϕε is bounded by

|(ϕε)′(t)| ≤ 2

(1− γε)`p,r,s
≤ 2 tan(αmin/2)

εβ
. (28)

Note that the function uε is multiply-defined in the vicinity of each node yεI,r. These defi-
nitions are coherent since the definitions of uε on the ball and on the rectangle coincide on
Bε
I,r ∩Rε

I,p,r,s. Moreover the definitions on two rectangles Rε
I,p,r,s and Rε

I,q,r,t sharing the same
end-point yεI,r both coincide with U ε

I,r + θεI,r (x− yεI,r)⊥ on Rε
I,p,r,s∩Rε

I,q,r,t owing to our choice
(5) of γε.

On the other hand, when x1 = − `p,r,sγε

2
or x1 = + `p,r,sγε

2
expression (25) reads

uε(x) = U ε
I,r + θεI,r

(
ε

(1− γε)`p,r,s
2

)
ẽ1 + ε2x2ẽ

2
)⊥

or

uε(x) = U ε
I+p,s + θεI+p,s

(
− ε (1− γε)`p,r,s

2
ẽ1 + ε2x2 ẽ

2
)⊥
.
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Thus continuity of uε is ensured inside each rectangle. Up to now the function uε has been
defined as a continuous piece-wise C1 function on the union Ω̃ε of all balls Bε

I,r and all

rectangles Rε
I,p,r,s for (p, r, s) ∈ Ã .

We now estimate the gradient of uε on Ω̃ε. In a ball or near the end-point in a rectangle
we have, using (24), ‖∇uε‖ =

√
2 |θεI,r| ≤ CM . On the central part of each rectangle,

differentiating equation (26) we get

(∇uε)1,1(x) =
1

ε(γε)2`2
p,r,s

(
γε`p,r,s(U

+
1 − U−1 )−

(
6x1(θ+ + θ−) + γε`p,r,s(θ

+ − θ−)
)
ε2x2

)
,

(29)

(∇uε)1,2(x) = −θm −
(( 3x2

1

(γε)2`2
p,r,s

− 1

4

)
(θ+ + θ−) +

x1

γε`p,r,s
(θ+ − θ−)

)
. (30)

Differentiating equation (27) we get

(∇uε)2,1(x) = θm + (θ+ + θ−)
( 3x2

1

γε2`2
p,r,s

− 1

4

)
+

x1

γε`p,r,s
(θ+ − θ−) + ε2(θ+ + θ−)

3νϕε(x1)

`2
p,r,s

x2
2

− γενϕε′(x1)

`2
p,r,s

(
`p,r,s(U

+
1 − U−1 )x2 −

(6x1

γε
(θ+ + θ−) + `p,r,s(θ

+ − θ−)
)ε2x2

2

2

)
, (31)

(∇uε)2,2(x) = −1

ε

νϕε(x1)

`2
p,r,s

(
γε`p,r,s(U

+
1 − U−1 )−

(
6x1(θ+ + θ−) + γε`p,r,s(θ

+ − θ−)
)
ε2x2

)
.

(32)

Using (28) and estimations (24), simple application of triangle inequality shows that the
components of ∇uε on the rectangle Rε

I,p,r,s are all bounded by CM , where the constant C
depends only on the Poisson ratio ν and the global geometrical parameters β, `min, `max. We
already noticed in Section 2.1 that we can deduce from this estimation that uε is kL-Lipschitz

with kL := CM
√

2
1−cos(αmin)

on this domain. Hence, owing to Kirszbraun theorem, we know

that there exists a kL-Lipschitz extension over the whole domain Ω.

• On the complementary set: We simply set uε equal to this kL-Lipschitz extension.

Let us now check that uε converges to u and has the desired limit energy. On each cell Cε
I ,

using the fact that
uε(yεI,r) = U ε

I,r = u(yεI,r) + εv1(yεI,r) + ε2w1(yεI,r)

and bounds (24), we have

‖uε(x)− u(x)‖ ≤ ‖uε(x)− uε(yεI,r)‖+ ‖u(yεI,r) + εv1(yεI,r) + ε2w1(yεI,r)− u(x)‖
≤ ‖uε(x)− uε(yεI,r)‖+ ‖u(yεI,r)− u(x)‖+ ‖εv1(yεI,r) + ε2w1(yεI,r)‖
≤ kL

√
2ε+M

√
2ε+Mε.

Hence uε converges strongly to u in L2(Ω). In order to evaluate Eε(uε), we first remark that the
energy concentrated on Ω \ Ωε tends to zero. Indeed we have, using (7),

∫
Ω\Ωε

Y (x)

(
1

2(1 + ν)
‖e(uε)‖2 +

ν

2(1− ν2)
(tr(e(uε)))2

)
dx ≤ Y1ε

a

∫
Ω\Ωε

1

4
‖e(uε)‖2 dx ≤ Y1ε

ak2
L.
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Moreover, in the vicinity of nodes yεI,r (that is on the balls Bε
I,r and on the parts of the rectangles

where 2|x1| > (1− γε)`p,r,s) the displacement uε coincides with rigid motions. Thus e(uε) vanishes
and no energy is concentrated there.

It remains to estimate the energy concentrated on the “central part” (that is where 2|x1| <
(1− γε)`p,r,s) of the rectangles Rε

I,p,r,s for all (p, r, s) ∈ A . We begin by noticing that we can have
a better estimation of (U ε

I+p,s − U ε
I,r) · τp,r,s when (p, r, s) ∈ A . Indeed, from Ē(v, ηu) = 0 which

reads ∫
Ω

∑
(p,r,s)∈A

Y0β

`p,r,s
((vs(x)− vr(x) +∇u(x) · p) · τp,r,s)2 dx = 0,

we deduce that, for any x ∈ Ω and any (p, r, s) ∈ A ,

(vs(x)− vr(x) +∇u(x) · p) · τp,r,s = 0.

As a consequence,

(U ε
I+p,s − U ε

I,r) · τp,r,s =
(
u(yεI+p)− u(yεI) + ε(vs(y

ε
I+p)− vr(yεI)) + ε2(ws(y

ε
I+p)− wr(yεI))

)
· τp,r,s

=
(
u(yεI+p)− u(yεI)−∇u(yεI) · εp + ε(vs(y

ε
I+p)− vs(yεI)) + ε2(ws(y

ε
I+p)− wr(yεI))

)
· τp,r,s (33)

and thus, using Taylor expansions,∣∣(U ε
I+p,s − U ε

I,r) · τp,r,s
∣∣ ≤ ε2CM, (34)

or still more precisely, using further Taylor expansions,∣∣∣∣(U ε
I+p,s − U ε

I,r −
1

2
∇∇u(yεI) : (ε2p⊗ p)− ε∇vs(yεI) · εp− ε2(ws(y

ε
I)− wr(yεI))

)
· τp,r,s

∣∣∣∣ ≤ ε3CM.

(35)
In the central part of each rectangle Rε

I,p,r,s corresponding to an edge (p, r, s) in A , we have
already computed in equations (29) and (32) the strain components e1,1(uε) and e2,2(uε). From
(30) and (31) we get

e1,2(uε)(x) = ε2(θ+ + θ−)
3νϕε(x1)

`2
p,r,s

x2
2

− γεν(ϕε)′(x1)

`2
p,r,s

(
`p,r,s(U

+
1 − U−1 )x2 −

(6x1

γε
(θ+ + θ−) + `p,r,s(θ

+ − θ−)
)ε2x2

2

2

)
.

Using (34), that is |U+
1 − U−1 | = |(U ε

I+p,s − U ε
I,r) · τp,r,s| ≤ ε2CM , we get

‖e1,2(uε)(x)‖ ≤ ε2CM + ε2|(ϕε)′(x1)|CM (36)

which implies
‖e1,2(uε)(x)‖ ≤ εCM. (37)

We also notice that, on the considered sets, e2,2(uε) = −ϕε(x1)νe1,1(uε). Thus

1

2(1 + ν)

(
(e1,1(uε))2 + (e2,2(uε))2

)
+

ν

2(1− ν2)

(
e1,1(uε) + e2,2(uε)

)2

=
1

2

(
1 +

ν2

1− ν2
(1− ϕε(x1))2

)
(e1,1(uε))2
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which together with (36) gives the following bound for the energy density:

1

2(1 + ν)
‖e(uε)‖2 +

ν

2(1− ν2)
(tr(e(uε)))2

≤ 1

2

(
1 +

ν2

1− ν2
(1− ϕε(x1))2

)
(e1,1(uε))2 + ε4CM2 + ε4|ϕε′(x1)|2CM2.

The energy concentrated in the central part of the rectangle, namely∫ +
γε`p,r,s

2

− γ
ε`p,r,s

2

Y (x)
( 1

2(1 + ν)
‖e(uε)‖2 +

ν

2(1− ν2)
(tr(e(uε)))2

)
ε2dx2

)
εdx1,

can be estimated by considering separately the transition layers (2γε−1)`p,r,s
2

< |x1| < γε`p,r,s
2

where

ϕε varies and the “very central” part |x1| < 2γε−1)`p,r,s
2

where ϕε = 1. As far as the transition
layers are concerned, owing again to (34), we can use the fact that |e1,1| ≤ εkLM and thus that
the energy density is bounded by ε2CM2Y . The integral over these layers is then bounded by
CM2Y ε5(1− γε)β = ε2CM2Y0(1− γε). The sum over all rectangles is bounded by CM2Y0(1− γε)
which tends to zero.

It remains to estimate the energy of the “very central” part:

EI,p,r,s =

∫ +
(2γε−1)`p,r,s

2

− (2γε−1)`p,r,s
2

(∫ +β
2

−β
2

Y (x)
( 1

2(1 + ν)
‖e(uε)‖2 +

ν

2(1− ν2)
(tr(e(uε)))2

)
ε2dx2

)
εdx1,

≤
∫ +

(2γε−1)`p,r,s
2

− (2γε−1)`p,r,s
2

(∫ +β
2

−β
2

(Y0

2
(e1,1(uε))2 + ε4CM2

)
dx2

)
dx1,

≤ Y0

2

∫ +
(2γε−1)`p,r,s

2

− (2γε−1)`p,r,s
2

(∫ +β
2

−β
2

(
(e1,1(uε))2

)
dx2

)
dx1 + ε4CM2β`p,r,s

≤ Y0

2ε2(γε)4`4
p,r,s

∫ +
`p,r,s

2

− `p,r,s
2

(∫ +β
2

−β
2

(
γε`p,r,s(U

+
1 − U−1 )

−
(
6x1(θ+ + θ−) + γε`p,r,s(θ

+ − θ−)
)
ε2x2

)2

dx2

)
dx1 + ε4CM2

≤ Y0

2ε2(γε)4`4
p,r,s

∫ +
`p,r,s

2

− `p,r,s
2

(∫ +β
2

−β
2

(
`2
p,r,s(U

+
1 − U−1 )2

+
(
36x2

1(θ+ + θ−)2 + `2
p,r,s(θ

+ − θ−)2
)
ε4x2

2

)
dx2

)
dx1 + ε4CM2

≤ ε2Y0β

2(γε)4`p,r,s

((
U+

1 − U−1
ε2

)2

+
β2

12

(
3(θ+ + θ−)2 + (θ+ − θ−)2

))
+ ε4CM2

≤ ε2Y0β

2(γε)4`p,r,s

((
(U ε

I+p,s − U ε
I,r) · τp,r,s

ε2

)2

+

β2

12

 3

(γε)2

(
θεI+p,s + θεI,r − 2

(U ε
I+p,s − U ε

I,r) · τ⊥p,r,s
ε`p,r,s

)2

+ (θεI+p,s − θεI,r)2

)+ ε4CM2.
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Let us define the C∞ function Φp,r,s by setting, for any x in Ω,

Φp,r,s(x) :=
(1

2
∇∇u(x) · p · p +∇vs(x) · εp + (ws(x)− wr(x))

)
· τp,r,s

so that bound (35) simply reads∣∣(U ε
I+p,s − U ε

I,r) · τp,r,s − ε2Φp,r,s(y
ε
I)
∣∣ ≤ ε3CM.

As Φp,r,s is clearly bounded (‖Φp,r,s‖L∞(Ω) < CM), this inequality implies(
(U ε

I+p,s − U ε
I,r) · τp,r,s

ε2

)2

≤ (Φp,r,s(y
ε
I))

2 + εCM2. (38)

In a similar way, using Taylor expansions,∣∣∣∣∣θεI+p,s + θεI,r − 2
(U ε

I+p,s − U ε
I,r) · τ⊥p,r,s

ε`p,r,s

∣∣∣∣∣
=

∣∣∣∣∣θεs(yεI) + θεr(y
ε
I)− 2

(u(yεI+p)− u(yεI) + ε(vs(y
ε
I)− vr(yεI)) + ε2(ws(y

ε
I)− wr(yεI))) · τ⊥p,r,s

ε`p,r,s

∣∣∣∣∣
≤
∣∣∣∣∣θεs(yεI) + θεr(y

ε
I)− 2

(∇u(yεI) · p + vs(y
ε
I)− vr(yεI))) · τ⊥p,r,s

`p,r,s

∣∣∣∣∣+ εCM

≤ |Ψp,r,s(y
ε
I)|+ εCM,

where we introduced the function Ψp,r,s(x) := θεs(x)+θεr(x)− 2
`p,r,s

(
∇u(x) ·p+vs(x)−vr(x))

)
·τ⊥p,r,s.

This implies (
θεI+p,s + θεI,r − 2

(U ε
I+p,s − U ε

I,r) · τ⊥p,r,s
ε`p,r,s

)2

≤ (Ψp,r,s(y
ε
I))

2 + εCM2. (39)

Finally,
|θεI+p,s − θεI,r| = |θs(yεI+p)− θr(yεI)| ≤ |θs(yεI)− θr(yεI)|+ εCM

which implies
(θεI+p,s − θεI,r)2 ≤ ((θs − θr)(yεI))2 + εCM2. (40)

Collecting estimations (38), (39) and (40), we obtain

EI,p,r,s ≤
ε2Y0β

2(γε)4`p,r,s

(
(Φp,r,s(y

ε
I))

2 +
β2

12

(
3

(γε)2
(Ψp,r,s(y

ε
I))

2 + ((θs − θr)(yεI))2

))
+ ε3CM2.

Summing over all I corresponds to a Riemann summation of a continuous function and we get∑
I∈I ε

EI,p,r,s ≤
∫

Ω

Y0β

2(γε)4`p,r,s

(
(Φp,r,s(x))2 +

β2

12

(
3

(γε)2
(Ψp,r,s(x))2 + ((θs − θr)(x))2

))
dx+εCM2.

Summing over all (p, r, s) in A leads to the desired result when replacing functions Φp,r,s and Ψp,r,s

by their expressions:

lim
ε→0

Eε(u
ε) = lim

ε→0

∑
(p,r,s)∈A

∑
I∈I ε

EI,p,r,s = Ē(w, ξu,v) + F̄ (v, ηu, θ) = E (u).
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4 Conclusion

In this work, we extended the homogenization result established in [1] for periodic elastic lattices
to the case of a non-degenerate elastic material reinforced by very stiff fibers arranged along such
lattices. We thus enable comparison with homogenization results established for non-degenerate
materials and, in particular, we justify the comparisons made in [21]. More standard external
forces applied in the whole domain can now be taken into account.

Note that we have only considered here free boundary conditions. Imposing a Dirichlet bound-
ary condition or imposing a line density of forces (non homogeneous Neumann boundary condition)
along the boundary of the domain would need a more sophisticated study of the capacity of the
lattice. It is the object of future works.
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5 Appendix

Lemma 1 states the existence of a constant C such that, for any u ∈ H1(Ω),

‖u− ũεs‖2
L2(Ω) ≤ Cε2| ln(ε)|‖∇u‖2

L2(Ω). (41)

where the quantities ūεI,s and the piece-wise constant function ũεs(x) are associated to u by

ūεI,s :=
∫
−
BεI,s

u(x) dx and ũεs(x) :=
∑
I∈I ε

ūεI,s1CεI (x).

Proof. In order to prove this result, we define another auxiliary function ˜̃uεs . For any s ∈ {1, . . . , K}
and I = (i, j) ∈ I ε, we introduce the annulus Dε

i,s := {x : kε < ‖x− yεI,s‖ < 2kε} (the parameter
k is chosen in such a way that Dε

i,s ⊂ Cε
I and ε is small enough for ensuring ε2 < kε) and

we define the quantities ¯̄uεI,s and the piece-wise constant function ˜̃uεs(x) are associated to u by
¯̄uεI,s :=

∫
−
DεI,s

u(x) dx and

˜̃uεs(x) :=
∑
I∈I ε

¯̄uεI,s1CεI (x).

We first remark that there exists a constant C independent on I such that∫
C1
I

∥∥∥u− ∫−
D1
I,s

udy
∥∥∥2

dx ≤ C

∫
C1
I

‖∇u‖2 dx. (42)

Indeed, assume, by contradiction, that there exists a sequence un satisfying∫
C1
I

∥∥∥un − ∫−
D1
I,s

undy
∥∥∥2

dx = 1 and

∫
C1
I

‖∇un‖2 dx→ 0.
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The function vn := un −
∫
−
D1
I,s

undy is bounded in H1(C1
I ), and thus must converge strongly

in L2(C1
I ) to some function v which satisfies

∫
C1
I
‖∇v‖2 dx = 0. Hence v is constant in C1

I . As

0 =

∫
−
D1
I,s

vn →
∫
−
D1
I,s

v dx, we know that v = 0 which is in contradiction with the assumption that∫
C1
I
‖vn‖2 dx = 1. Inequality (42) is now established. A simple rescaling by factor ε transforms it

into ∫
CεI

∥∥∥u− ∫−
DεI,s

udy
∥∥∥2

dx ≤ C ε2

∫
CεI

‖∇u‖2 dx. (43)

Summing over all cells gives

‖u− ˜̃uεs‖2
L2(Ω) ≤ Cε2‖∇u‖2

L2(Ω). (44)

Let us now focus on a cell Cε
I and use there the polar coordinates (ρ, θ) with origin yεI,s. To

any u ∈ H1(Cε
I ), let us associate v(ρ) := 1

2π

∫ 2π

0
u(ρ, θ) dθ. A simple one-dimensional optimization

shows that, for any 0 < ρ1 < ρ2 < 2kε,∫ ρ2

ρ1

‖v′(ρ)‖2ρ dρ ≥ ‖v(ρ2)− v(ρ1)‖2

ln(ρ2)− ln(ρ1)

and thus

‖v(ρ2)− v(ρ1)‖2 ≤ (ln(ρ2)− ln(ρ1))

∫ 2kε

0

‖v′(ρ)‖2ρ dρ.

Now let us take the mean value of both sides of this inequality with respect to the measures ρ1 dρ1

and ρ2 dρ2 for ρ1 ∈ (0, ε2) and ρ2 ∈ (kε, 2kε). Noticing that the mean values of v(ρ1) and v(ρ2)
are nothing else than respectively ũεI,s and ūεI,s and using Jensen inequality, we get

‖ũεI,s − ūεI,s‖2 ≤
(∫ 2kε

kε
ln(ρ2)ρ2 dρ2∫ 2kε

kε
ρ2 dρ2

−
∫ ε2

0
ln(ρ1)ρ1 dρ1∫ ε2
0
ρ1 dρ1

) ∫ 2kε

0

‖v′(ρ)‖2ρ dρ

and so

‖¯̄uεI,s − ūεI,s‖2 ≤ (| ln(ε)|+ ln(k) +
4

3
ln(2))

∫
CεI

‖∇u‖2 ≤ C| ln(ε)|
∫
CεI

‖∇u‖2.

Summing over all cells gives

‖˜̃uεs − ũεs‖2
L2(Ω) =

∑
I∈I ε

|Cε
I |‖¯̄uεI,s − ūεI,s‖2 = ε2

∑
I∈I ε

‖¯̄uεI,s − ūεI,s‖2 ≤ Cε2| ln(ε)|
∫

Ω

‖∇u‖2. (45)

Finally inequality (41) results from (44) and (45) by triangle inequality.

17



References

[1] H. Abdoul-Anziz and P. Seppecher. Homogenization of periodic graph-based elastic structures.
Journal de l’Ecole polytechnique–Mathématiques, 5:259–288, 2018.
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