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OPTIMAL DESIGN VERSUS MAXIMAL MONGE-KANTOROVICH METRICS

KAROL BO LBOTOWSKI AND GUY BOUCHITTÉ

Abstract. The connection between the minimal elastic compliance problem and Monge transport involving

the euclidean metric cost has been evidenced in the years 1997. The aim of this paper is to renew this connection

and adapt it to some variants in optimal design, focusing in particular on the optimal pre-stressed membrane

problem. We show that the underlying metric cost is associated with an unknown maximal monotone map

which maximizes the Monge-Kantorovich distance between two measures. In parallel with the classical duality

theory leading to existence and PDE optimality conditions, we present a geometrical approach arising from a

two-point scheme in which geodesics with respect to the optimal metric play a central role. It turns out from

examples that optimal structures are very often truss-like, i.e. supported by piecewise affine geodesics. In case

of a discrete load, we are able to relate the existence of such truss-like solutions to an extension property of

maximal monotone maps that is of independent interest.

Keywords: Minimal compliance, pre-stressed membrane, monotone maps, peusdo-metric, Monge-

Kantorovich distance, geodesics, duality and saddle point
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1. introduction

The analysis of the behaviour of elastic structures has always been a central problem in Mathematics

and in Engineering. In the last decades, the optimal design of such structures took benefit of the dramatic

improvement of the powerful tools of calculus of variations and geometric measure theory which have been

developed meanwhile. Among them homogenization and Γ-convergence techniques allowed decisive break-

downs as for instance the emergence of topological optimization methods [2] which are now very popular in

civil and mechanical engineering.

For the first time, in the year 1997, a remarkable connection between optimal design and Monge transport

problem was discovered. It concerned specifically the classical optimal compliance problem in the scalar

case [12] that may be related to designing a heat conductor and then it was developped further in the

framework of elasticity [8]. This new approach turned out to be very fruitful as it was possible to consider

concentrated loads f and low dimensional structures as competitors, in particular trusses of bars as they

appear in Michell problem [15] in case of a vanishing volume fraction limit of available elastic material.

From the Monge-Kantorovich optimal transport point of view, the main limitation of this approach is that

the underlying cost is always related to the Euclidean metric on the ambient space Rd (d = 2 or d = 3 in

practice).

In this work we will bring to the fore a new family of optimal design problems for which the Monge-

Kantorovich approach mentioned above can be used but needs to be adapted with a major modification:

the transport cost is now an unknown that will be determined by solving a maximization problem in a
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2 OPTIMAL DESIGN VERSUS MAXIMAL MONGE-KANTOROVICH METRICS

suitable class of admissible metric costs on Rd (including the Euclidean one). This family includes the two-

dimensional problem of designing a membrane subject to an out-of-plane load f . Two approaches can be

distinguished:

(A) The optimal elastic membrane problem which relies on a non-linear model inspired by the von

Kármán’s plate theory (see e.g. [21], Section 6 in [26], Section II.4 in [29]); the design variable is a mass

distribution µ for which the in-plane stress field σ is an effect of elastic response to the loads;

(B) The simplified optimal pre-stressed membrane problem which relies on the classical linear model (see

e.g. Section IV.10.3 in [22]) where the design variable is the (non-negative) in-plane stress field σ which is

subject to the equilibrium constraint.

Note that in both cases the transverse stiffness of the membrane does not depend directly on the consti-

tutive law of the underlying elastic material yet does depend on the in-plane stress field σ which point-wisely

is a positive semi-definite symmetric tensor. It turns out that the two problems above are in some sense

equivalent to each other and surprisingly also to another 3D design problem that fits into a class of long

standing engineering problems of form finding :

(C) The optimal vault problem where over a horizontal 2D reference domain one is to find a surface

z = z(x1, x2) and elastic material’s distribution on this surface. The shell/vault thus constructed ought to

carry the vertical load f by means of compression only; vertical position of the load is a design variable, i.e.

f tracks the shape z of the vault.

The equivalence between (C) and (B) is established in a recent work of the first author [5] where (C)

appears as a generalization of the Rozvany-Prager optimal arch-grid problem [31], [23] (the latter one being

recovered when the vault must compose of two mutually orthogonal families of arches).

A detailed presentation of the different optimal design problems sketched above will be skipped for

the sake of conciseness but we ask to keep in mind that they all lead precisely to the same mathematical

framework, up to changing the mechanical interpretation of the paramaters coming into play. In the present

paper we will focus on model (B) namely the optimal pre-stressed membrane problem. The motivation for

choosing this variant is that it can be obtained through a simple modification of the classical optimal

compliance model in the spirit of [8, 12] and then we may describe step by step how we pass from the Monge

OT approach involving the Euclidean cost to a model requiring the identification of an optimal metric cost.

In a first step let us briefly describe the scalar mass optimization and its variant we call free material

design problem (see [6] for the vectorial variant). Given a bounded domain Ω ⊂ Rd (design region), Σ0 being

a compact subset of Ω and a bounded signed Radon measure f ∈ M(Ω;R), we consider an unknown mass

distribution µ ∈M+(Ω) of material and define the compliance to be

EΩ,f,Σ0(µ) = E(µ) = sup

{ˆ
u df − 1

2

ˆ
|∇u|2dµ : u ∈ D(Rd) , u = 0 on Σ0

}
.

The mass optimization problem (MOP) with respect to a given amount of mass m reads as follows

β(m) := inf

{
C(µ) : µ ∈M+(Ω),

ˆ
dµ ≤ m

}
(MOP)
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If Σ0 is void (pure Neumann problem) we need to assume that f is balanced, i.e.
´
f+ =

´
f−. Then if Ω is

convex it is shown in [8] that β(m) =
(W1(f+, f−))2

2m
, where

W1(f+, f−) = inf

{ˆ
Ω×Ω
|x− y| γ(dxdy) : γ ∈ Γ(f+, f−)

}
(1.1)

denotes the Monge-Kantorovich distance and γ ∈ Γ(f+, f−) means that γ as a measure onM+

(
Ω

2)
(trans-

port plan) admits f+, f− as marginals. Notice that, if Ω is non-convex, we simply need to substitute |x− y|
with the geodesic distance in Ω between x and y. In case Σ0 is a non-empty compact subset of ∂Ω and f is

a non-negative measure (that is f− = 0), the latter formula for the infimum of (MOP) can be recast from

the Monge distance of f to Σ0 namely (see [12])

β(m) := inf(MOP) =

(
W1(f,Σ0)

)2
2m

, (1.2)

where

W1(f,Σ0) := min
{
W1(f, ν) : ν ∈M+(Σ0)

}
=

ˆ
dist(x,Σ0) f(dx). (1.3)

Then a geometric characterization of optimal µ can be deduced from the geodesics transport rays connecting

points in the support of f to Σ0. Let us mention that the case where Σ0 = ∂Ω is classical in sandpile models

(see for instance [18]).

Next, an anisotropic generalization of the (MOP) problem can be considered in which, instead of looking

at optimal mass distributions, we search for optimal conductivity tensor field σ ∈ M(Ω;Sd×d+ ) where Sd×d+

is the set of positive semi-definite symmetric tensors:

inf

{
C(σ) : σ ∈M(Ω;Sd×d+ ),

1

d

ˆ
Trσ ≤ m

}
(FMD)

where, for a prescribed Dirichlet region Σ0, the compliance reads

C(σ) = sup

{ˆ
u df − 1

2

ˆ
〈σ,∇u⊗∇u〉 : u ∈ D(Rd), u = 0 on Σ0

}
. (1.4)

With the notations above, we see that for σ = Idµ it holds C(σ) = E(µ) and the choice of the constraint

to be the integral of the trace of σ, although debatable, intends to be the natural counterpart of the mass

constraint in (MOP). Note that in the vector case of linear elasticity, the design variable σ is rather a fourth

order tensor (inducing Hooke’s law) and the related version of (FMD) is more involved (see the recent work

[6]). Nevertheless, as will be seen later, the (FMD) variant is very close fo the initial (MOP) problem and

optimal solutions σ can be recovered in the same way by selecting geodesics with respect to the Euclidean

metric.

We may now readily pass to the optimal pre-stressed membrane model. As in the (FMD) problem, the

unknown design variable is an element of M(Ω;Sd×d+ ) whereas now the tensor measure σ represents the

in-plane stress in the membrane occupying a plane horizontal domain Ω. The positivity condition imposed

on σ rules out compressive stress, which is reasonable when the membrane is very thin and thus perfectly

immune to buckling. We assume that the membrane is subject to vertical pressure f ∈ M(Ω;R) and to an

in-plane load exerted on the boundary only. The latter forces depend on the designer and play the role of

a pre-load that generates the pre-stress σ in the whole domain which in turn provides stiffness against f .

Since in the interior of the design region only the out-of-plane component of load is non-zero the in-plane

equilibrium requires that Div σ = 0 in the distributional sense in Ω. Virtually, it is the divergence free
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condition on σ that converts the (FMD) problem for heat conductor to the optimal design model for a

pre-stressed membrane:

inf

{
C(σ) : σ ∈M(Ω;Sd×d+ ), Divσ = 0 in Ω,

1

d

ˆ
Trσ ≤ m

}
, (OM)

where the load f enters through C(σ) (defined in (1.4)) together with Σ0 being the part of the boundary

where the membrane is pinned in the vertical direction; the function u represents deflection (the out-of-plane

displacement) of the membrane.

A first observation is that the problems (FMD) and (OM) do not share the same infimum in general.

This is due to the divergence constraint which rules out many possible competitors. In particular:

• An isotropic tensor field of the kind σ = a(x) Id L2 Ω is not admissible unless a is constant.

• Let σ = p(x) τ(x)⊗ τ(x)H1 C with C being a simple curve, p(x) a positive weight and τ(x) a unit

vector vector. Then σ is admissible iff C is a straight line connecting two points of ∂Ω while τ is a

constant vector parallel to C and p is constant.

In fact as will be seen later, pre-stress tensor fields supported by networks of bars or, as they should be called

within the membrane model, strings are favoured in the (OM) problem. To give a flavour of the geometry

of solutions, we illustrate in Figure 1 below the optimal configurations for (FMD) and (OM) in the case

where f is a single Dirac pressure exerted at a point of a square membrane which is pinned along all its

boundary, i.e. Σ0 = ∂Ω. For (OM) problem the support of optimal measure σ is described by a finite union

of strings of different thickness that are tied at the loaded point. Such lower dimensional solutions shall be

referred to as trusses or truss structures. In Figure 1 the arrows indicate the direction of the gradient flow

of the deflection function u.

(a) (b)

Figure 1. An optimal solution σ in the case of a point-source f = δx0 and of a square

domain Ω: (a) for the (FMD) problem; (b) for the (OM) problem. Ω. The points ai are

centres of the square’s sides.

An unexpected discovery we wish to promote in this paper is that the (OM) problem has a very deep

relation with another interesting issue in geometry and optimal transport theory: the search of optimal

metrics in a suitable class which maximize the associated Monge distance between two measures. More

precisely, if we consider the membrane problem for Σ0 = ∂Ω and f ∈M+(Ω), then it holds that min(OM) =
Z2

0
2m0

where Z0 = Z0(f,Ω) is given by

Z0 = sup
{
Wcv(f, ∂Ω) : v ∈ C∞(R2;R2), e(v) ≥ 0, v = id in R2 \ Ω

}
, (1.5)
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where e(v) is the symmetrized gradient of v, cv is the geodesic distance associated with the metric tensor

e(v) and Wcv stands for the Monge distance related to the cost cv. Our results include the existence of an

optimal maximal monotone map v for a relaxed version of the right hand member of (1.5). Note that the

problem of maximizing a geodesic distance among particular classes of scalar metrics has been considered

in a different context by several authors [27], [34].

The paper is organized as follows:

In Section 2, we revisit the link between the (FMD) problem and Monge-Kantorovich theory in the spirit

of [8]. In particular we establish an equivalence between (MOP) and (FMD) and we give a full description

of the optimal measure σ in terms of the transport rays connecting the support of f to the boundary of ∂Ω.

In addition we show that the strict inequality inf (FMD) < inf (OM) holds unless the load f is supported

on a geometrically identifiable compact subset of Ω.

In Section 3, we show the existence of an optimal σ ∈ M(Ω;Sd×d+ ) for (OM) and we develop a primal-

dual framework based on the introduction of an additional unknown horizontal vector field w : Ω → R2

vanishing on ∂Ω whose symmetrized distributional gradient will play the role of a Lagrange multiplier for

the divergence free constraint. Accordingly we are led to a dual problem

Z0 := sup

{
〈f, u〉 : e(w) +

1

2
∇u⊗∇u ≤ Id

}
(1.6)

where pairs (u,w) are in duality with measures (λ, σ) ∈ M(Ω;Rd) × M(Ω;Sd×d) (λ coresponds to the

transverse internal force in the membrane caused by its deflection). Then, upon rewriting the constraint in

(1.6) in terms of an equivalent two points conditions, namely:

1

2
|u(y)− u(x)|2 + 〈w(y)− w(x), y − x〉 ≤ |x− y|2 ∀(x, y) ∈ (Ω)2, (1.7)

we put forward an alternative duality scheme which fits perfectly to characterize truss-like optimal pairs

(λ, σ) in the sense that they are decomposable in the form (λπ, σΠ) given in (1.10), (1.11). Here, as far as

they exist, π and Π are measures on Ω × Ω which play the role of Lagrange multipliers of the two-point

constraint (1.7).

In Section 4, we give necessary and sufficient conditions of optimality for two pairs (λ, σ) and (u,w)

assuming that (u,w) is Lipschitz regular. These conditions are particularized in the case of a truss configu-

ration (λ, σ) = (λπ, σΠ). Then, examples of explicit optimal configurations are established in the radial case

or for the load f being a single Dirac mass (confirming in particular the optimality of the structure depicted

in Figure 1(b)).

In Section 5, we exploit the two-point condition (1.7) to establish a connection between the optimal

membrane problem (OM) and the search of a monotone map v = id−w maximizing a Monge-Kantorovich

distance as stated in (1.5). To that aim we begin with a preliminary subsection which could be consid-

ered of independent interest where we define the intrinsic pseudo-distance cv associated with a maximal

monotone map v : Rd → Rd which agrees with the identity outside Ω. Then we prove the existence of a

maximal monotone v associated with the worst Monge-Kantorovich metric (1.5) and derive a saddle point

characterization of an optimal pair (v, γ) where γ is selected among the optimal transports plans solving

Wcv(f, ∂Ω) = inf
{´

Ω×Ω cv(x, y) γ(dxdy) : γ ∈ Γ(f, ν), ν ∈ M+(∂Ω)
}
. Next we give a general criterion of

optimality for a truss solution and establish the existence of such a solution in case of a finitely supported

load f assuming an extension property for monotone maps that we conjecture to be true.
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In Section 6, we present several numerical simulations for the (OM) problem taking for design subset Ω

a square domain in R2. It turns out that in most cases optimal stress measures σ exhibit a truss structure.

The numerical method is based on a duality scheme which involves the two-point condition (1.7) restricted

to a discrete subset of Ω×Ω. It is worked out through a conic programming algorithm introduced recently

in [5].

Eventually we provide in the appendix several classical tools of convex analysis, a short survey about

tangential calculus with respect to a measure and some useful approximation properties of convex functions

of measures.

To conclude this introduction, let us point out that the existence issue for the coupling measures (π,Π)

allowing the truss representation of a solution (λ, σ) (see (1.10), (1.11)) is not ensured in general for the

infinite dimensional setting. However we expect it to be true in the case of a finitely supported measure f

once the extension property for monotone metrics conjectured in Section 5 can be proved.

Acknowledgements. The first author is grateful to the Laboratoire IMATH, Université de Toulon for

hosting his two-month visit there in the fall of 2019 where this research was initiated. He would also like to

thank the National Science Centre (Poland) for the financial support and acknowledge the Research Grant

no 2019/33/B/ST8/00325 entitled ”Merging the optimum design problems of structural topology and of the

optimal choice of material characteristics. The theoretical foundations and numerical methods”.

Notations. Throughout the paper we will use the following notations:

- Ω denotes a bounded domain of Rd that in general we assume to be convex; although our mechanical

context requires d = 2, the mathematical arguments will often be valid for any natural d;

- Σ0 will be a compact subset of ∂Ω on which a Dirichlet condition is prescribed;

- the Euclidean norm of z ∈ Rd is denoted by |z|; Sd−1 denores the unit sphere {|z| = 1};
- by ∆ we denote the diagonal of Rd, namely ∆ =

{
(x, x) : x ∈ Rd

}
;

- by Sd×d we shall see the space of d×d symmetric matrices, while Sd×d+ will be its subset whose elements

are positive semi-definite. Given A,B ∈ Sd×d, we will write A ≤ B if B − A ∈ Sd×d+ ; TrA denotes the

trace of A, rankA the rank of A; Id denotes the identity matrix while id denotes the identity map on

Rd;
- by χB we will denote the indicator function of the set B taking value 0 in B and +∞ outside. Instead

we denote by 1lB the characteristic function of B taking value 1 in B and 0 outside;

- if A ⊂ Rd is an open subset, D(A) denotes be space of C∞ functions compactly supported in A; D(Ω\Σ0)

denotes the set of restrictions to Ω of elements in D(Rd \ Σ0);

- C0(Ω) denotes the Banach space of continuous functions on Ω while CΣ0(Ω) (resp. C0(Ω)) denotes the

subset of C0(Ω) consisting of functions vanishing in Σ0 (resp. in ∂Ω);

- Lip(Ω) (or Lip(Ω)) stands for the space of Lipschitz continuous functions on Ω (resp Ω) while Lip0(Ω)

(resp. LipΣ0
(Ω)) denotes the subspace of elements vanishing on ∂Ω (resp. Σ0);

- for k > 0, Lipk(Ω) is the subset of Lip(Ω) of functions u such that |u(x)− u(y)| ≤ k |x− y| for all (x, y)

(if Ω is convex, it coincides with {u ∈W 1,∞(Ω) : |∇u| ≤ k a.e.});
- M+(Rd) denotes the space of Borel measures on Rd with values in [0,+∞]. Unless explicitely specified,

we will additionaly assume that elements of M+(Rd) are finite on compact subsets; the topological

support of µ ∈ M+(Rd) is denoted spt(µ) while µ A; represents its trace on a Borel subset A ⊂ Rd;
M+(A) will the subset of elements µ ∈ M+(Rd) such that µ = µ A (or such that spt(µ) ⊂ A if A is

closed);
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- M(Ω) (resp. M(Ω;Rd) or M(Ω;Sd×d+ )) is the space of signed finite Radon measures on Rd which are

compactly supported in Ω (resp. Borel regular measures from Ω to Rd or Sd×d+ ); given ν ∈ M(Ω;Rd)
and µ ∈ M+(Ω), then ν � µ means that ν = ζµ for a suitable ζ ∈ L1

µ(Ω;Rd) whereas ν ⊥ µ means

that µ and ν are mutually singular;

- for every Borel set A, P(A) := {µ ∈M+(A) : µ(A) = 1} denotes the set of probalities on A;

- given an open subset A, D′(A) denotes the set of distributions on A (the dual of D(A)); D′(Ω) stands

for the subset of D′(Rd) consisting of distributions supported in Ω; to a distribution in D′(Rd) we may

associate its trace on any open subset A defining a unique element of D′(A).

- the distributional divergence of a matrix field σ ∈ M(Ω;Sd×d+ ) is an element in D′(Rd;Sd×d+ ) that we

will be denoted Div(σ) while divλ ∈ D′(Rd;Rd) will stand for the standard distributional divergence

acting on a vector measure λ ∈ M(Ω;Rd); for A being an open subset of Rd, the equality −divλ = f

on A means that the two distributions have the same trace on A;

- the topological support of a function f (resp.of a measure µ) will be denoted spt(f) (resp. spt(µ));

- the bracket 〈 · , · 〉 shall be used to denote a canonical scalar product in the finite dimensional space of

vectors or matrices, whilst in the case of infinite dimensional spaces we shall use the same bracket while

sometimes specifying the functional spaces involved in the lower index;

- C0, 1
2 (Ω) denotes the space of 1

2 -Hölder continuous functions on Ω, while C1(Ω) denotes its subclass

consisting of continuously differentiable functions;

- given Σ0 ⊂ ∂Ω, for every x ∈ Ω we denote by d(·,Σ0) the euclidean distance to Σ0 and by pΣ0(x) the

subset of Σ0 defined by

pΣ0(x) =
{
z ∈ Σ0 : d(x,Σ0) = |x− z|

}
; (1.8)

the graph of pΣ0 as a map from Ω to subsets of Σ0 will be denoted GΣ0 ;

- for every (x, y) ∈ Ω × Ω such that x 6= y, we denote by λx,y and σx,y the elements of M(Ω;Rd) and

M(Ω;Sd×d+ ), respectively, defined by:

λx,y = τx,yH1 [x, y], σx,y = τx,y ⊗ τx,yH1 [x, y], τx,y =
y − x
|y − x|

(1.9)

(by convention, we set λx,y = 0 and σx,y = 0 if x = y). Note that λy,x = −λx,y while σy,x = σx,y;

- for any π ∈M(Ω× Ω), we denote by
´
λx,y π(dxdy) the measure λπ ∈M(Ω;Rd) such that

〈λπ, ψ〉 :=

ˆ
〈λx,y, ψ〉π(dxdy) ∀ψ ∈ C0(Ω,Rd); (1.10)

- for any Π ∈M+(Ω× Ω), we denote by
´
σx,y Π(dxdy) the measure σΠ ∈M(Ω;Sd×d+ ) such that

〈σΠ,Ψ〉 :=

ˆ
〈σx,y,Ψ〉Π(dxdy) ∀Ψ ∈ C0(Ω,Sd×d+ ). (1.11)

2. Monge-Kantorovich approach for the free material design problem

Throughout the whole section we will assume that the load f is a non-negative measure that we normalize

to satisfy
´
f = 1. As the Dirichlet condition u = 0 is prescribed on Σ0, it is not restrictive to assume that

f(Σ0) = 0. To simplify the presentation, we also assume that the design Ω is a convex domain. Note that

this convexity assumption can be removed if we assume that Σ0 = ∂Ω. Keeping the notations from the

introduction, we consider the optimal design of heat conductor (FMD) for a given mass m:

α(m) := inf

{
C(σ) : σ ∈M(Ω;Sd×d+ ),

1

d

ˆ
Trσ ≤ m

}
, (2.1)
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with the compliance C(σ) being defined in (1.4). Here the mass constraint is intended as the overall integral

of the arithmetic mean of the eigenvalues of the conductivity tensor. This normalization, although it may

look arbitrary, is convenient in order to compare with the (MOP) problem where the infimum is restricted

to the subclass of isotropic conductivity tensor fields σ = Idµ. Therefore β(m) defined in (1.2) satisfies the

inequality α(m) ≤ β(m). A more precise relation will be derived in Proposition 2.2. Let us first show how

we can handle the mass parameter m by introducing the reduced problem associated with (FMD), namely

Z := inf

{
C(σ) +

ˆ
Trσ : σ ∈M(Ω;Sd×d+ )

}
. (2.2)

By exploiting the 2-homogeneity with respect to u in the definition (1.4) of C(σ), we easily infer the scaling

properties:

C(t σ) =
1

t
C(σ) ∀t > 0 , α(m) =

α(1)

m
∀m > 0. (2.3)

Lemma 2.1. The infimum problem (2.2) admits at least one solution. All such solutions satisfy the equi-

repartition principle C(σ) =
´

Trσ = Z
2 . Moreover, for given m > 0, σ̃ is optimal for α(m) if and only if

σ = Z
2md σ̃ is optimal for (2.2). Accordingly, the value function in (2.1) is given by α(m) = Z2

4md and any

minimizer σ for (2.2) is optimal for α(m0) for m0 := Z
2d and vice-versa.

Proof. The existence of an optimal σ for (2.2) is a consequence of the direct method of Calculus of Variations

that we apply on the space M(Ω;Sd×d+ ) equipped with the weak* topology. Indeed the functional σ ∈
M(Ω;Sd×d+ ) 7→ C(σ) ∈ [0,+∞] is convex lower semicontinuous as a supremum over u ∈ D(Rd) of the

affine weakly* continuous functions : Lu(σ) =
´
u df − 1

2

´
〈σ,∇u⊗∇u〉. On the other hand, the functional

σ ∈M(Ω;Sd×d+ ) 7→
´

Trσ is convex l.s.c. with weakly* compact sublevel sets (notice that the trace coincides

with the restriction to Sd×d+ of a norm on symmetric matrices). Let σ be any solution for (2.2). Then the

function t ∈ R+ 7→ C(tσ) +
´

Tr(tσ) = 1
t C(σ) + t

´
Trσ is minimal at t = 1, thus C(σ) =

´
Trσ = Z

2 as

claimed and Z
2 = α( Z2d). In addition, by using (2.3), we get α(m) = Z

2md α
(
Z
2d

)
= Z2

4md . Eventually we notice

that σ̃ := 2md
Z σ is admissible for α(m) while, from (2.3), we infer that C(σ̃) = Z

2md C(σ) = Z2

4md . Thus σ̃ is

optimal for α(m). The converse implication can be derived in a similar way. The last statement is obvious

since, for any solution σ of (2.2), it holds that C(σ) = Z
2 = α(m0) while

´
Trσ = Z

2 = α(m0).

�

Proposition 2.2. For Z defined by (2.2) let

I(f,Σ0) := sup
{
〈f, u〉 : u ∈ Lip1(Ω) , u = 0 on Σ0

}
. (2.4)

The following statements hold true:

(i) Let W1(·, ·) denote the Monge distance defined in (1.1), then

I(f,Σ0) = W1(f,Σ0) := min
{
W1(f, g) : g ∈ P(Σ0)

}
=

ˆ
d(x,Σ0) f(dx); (2.5)

(ii) The following equality holds: Z =
√

2 I(f,Σ0);

(iii) Let σ be a solution to (2.2). Then µ = Trσ solves the mass optimization problem (MOP) with
´
µ = Z

2 .

As a consequence µ(Σ0) = 0 and the value functions for (MOP) and (FMD) are linked by the relation

β(m) = dα(m). Furthermore σ is the rank-one tensor measure given by

σ = (∇µū⊗∇µū) µ where ū := d(x,Σ0). (2.6)

(∇µū denotes the µ-tangential gradient of the Lipschitz function ū as defined in Proposition B.1).
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Proof. For the assertion (i), we refer to [8]. The convexity assumption on Ω ensures that the geodesic distance

in Ω coincides with the Euclidean one. Let us establish (ii). In order to use a compactness argument, we

go back to the constrained problem (2.1) noticing that, by Lemma 2.1, we recover the desired equality by

showing that α(d−1) = 1
2

(
I(f,Σ0)

)2
. The latter equality is a consequence of the following chain of equalities:

α(d−1) = inf
σ∈M(Ω;Sd×d+ )´

Trσ≤1

sup
u∈D(Ω\Σ0)

{
〈f, u〉 − 1

2

ˆ
〈σ,∇u⊗∇u〉

}

= sup
u∈D(Ω\Σ0)

inf
σ∈M(Ω;Sd×d+ )´

Trσ≤1

{
〈f, u〉 − 1

2

ˆ
〈σ,∇u⊗∇u〉

}

= sup
u∈D(Ω\Σ0)

{
〈f, u〉 − 1

2
‖∇u‖2∞

}
=

1

2

(
I(f,Σ0)

)2
where in the first line, we switch infimum and supremum by applying Ky Fan’s Theorem (see Theorem A.2

in Appendix) to the convex-concave Lagrangian L(σ, u) = 〈f, u〉− 1
2

´
〈σ,∇u⊗∇u〉 taken on X×D(Ω\Σ0)

where X :=
{
σ ∈ M(Ω;Sd×d+ ) :

´
Trσ ≤ 1

}
is convex and compact for the weak* topology and where to

pass from the first to the second line, we optimize with respect to σ ∈ X by taking tensors of the form

σ = τ ⊗ τ δx where δx is the Dirac mass at x and τ is a unit vector in Rd. The last equality can be readily

obtained by writing competitors u in the form u = tv where v ∈ Lip1(Ω) and t ∈ R and by maximizing in t

first and then with respect to v.

Let us now prove the assertion (iii). Let m0 = Z
2d as given in Lemma 2.1 and let σ solve (2.2). Then

µ := Trσ satisfies
´
µ = Z

2 and, in view of the assertions (i) and (ii) and taking (1.2) into account, we infer

that:

C(Idµ) ≥
(
I(f,Σ0)

)2
2
´
µ

=
Z

2
.

Since 0 ≤ σ ≤ Idµ, it follows from definition (1.4) that C(σ) ≥ C(Idµ), hence Z =
´

Trσ + C(σ) ≥
Z
2 + C(Idµ) ≥ Z. As a consequence, we are led to the equalities:

C(σ) = C(Idµ) =
Z

2
. (2.7)

It follows that µ is optimal for (MOP) subject to the mass constraint
´
µ = Z

2 . In particular µ(Σ0) = 0 as

a consequence of [8, Prop 3.7] and we have C(Idµ) = β(dm0) = 1
dβ(m0). On the other hand, it holds that

C(σ) = α(m0) since σ is optimal for (FMD) with the upper bound on the mass being m0. Therefore we

obatin the equality β(m0) = dα(m0) that we extend to all m > 0 by the scaling property.

To conclude the proof of Proposition 2.2 it remains to show that any optimal σ is uniquely determined in

terms of its trace µ := Trσ by the relation (2.6). To that aim, we exploit (2.7) and the fact that the function

ū(x) := d(x,Σ0) is optimal in (2.4). It turns out that optimality of µ for (MOP) implies that |∇µū| = 1

µ-a.e (see [8]). Next, we rewrite the supremum problem involved in the definition of the compliance C(Idµ)

(resp. C(σ)) by extending to Lipschitz competitors as follows:

C(Idµ) = sup

{
〈f, v〉 − 1

2

ˆ
|∇µv|2dµ : v ∈ Lip(Ω), v = 0 on Σ0

}
(2.8)

C(σ) = sup

{
〈f, v〉 − 1

2

ˆ
〈S,∇µv ⊗∇µv〉 dµ : v ∈ Lip(Ω), v = 0 on Σ0

}
(2.9)
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where S ∈ L∞µ (Ω;Sd×d+ ) satisfies σ = Sµ and TrS = 1. To justify the equalities (2.8), (2.9), it is enough to

approximate any element v ∈ Lip(Ω) vanishing on Σ0 by an equi-Lipschitz sequence vn in D(Rd \ Σ0) and

apply the assertion (ii) of Proposition B.1. Taking into account (2.7) and that |∇µū| = 1, one checks easily

that v̄ :=
√

2 ū is optimal in (2.8). Indeed by (2.5), we have

C(Idµ) ≤ 〈f, v̄〉 − 1

2

ˆ
|∇µv̄|2dµ =

√
2 I(f,Σ0)−

ˆ
µ =

Z

2
= C(Idµ).

On the other hand by (2.9), we have C(σ) ≥ 〈f, v̄〉 − 1
2

´
〈S,∇µv̄ ⊗∇µv̄〉 dµ. Hence, considering (2.7) and

assertion (ii), we deduce that ˆ
〈S,∇µv̄ ⊗∇µv̄〉 dµ ≥

ˆ
|∇µv̄|2 dµ.

Obviously the same inequality holds after substituting v̄ with ū. Then, since TrS = 1 µ-a.e., we may localize

to obtain:

〈S,∇µū⊗∇µū〉 = |∇µū|2 µ-a.e.

and then conclude that S = ∇µū⊗∇µū as claimed in (2.6). �

The rest of the section is devoted to the representation of optimal σ through transport rays connecting

the support of f to Σ0.

Theorem 2.3. Let γ̄ ∈ M+(GΣ0) be a pairing measure with first marginal being equal to f . Then, the

tensor measure σ̄ := 1√
2

´
σx,y γ̄(dxdy) is optimal for (2.2). Conversely, any optimal measure σ for (2.2)

can be represented in this form for a suitable γ ∈M+(GΣ0).

Proof. Let µ = Tr σ̄. Then, since
´

Trσx,y = |x− y|, we haveˆ
µ =

1√
2

ˆ
Ω×Ω
|x− y| γ(dxdy) =

1√
2

ˆ
d(x,Σ0) f(dx) =

1√
2
I(f,Σ0) =

Z

2
.

This implies that σ meets the mass constraint for m0 = Z
2d given in Lemma 2.1. On the other hand, by [8,

Thm 4.6], the measure µ is optimal for (MOP) for that prescribed mass m0. It follows that

C(σ̄) ≤ C(Idµ) =
I(f,Σ0)2

2m0
=
Z

2
,

hence the optimality of σ̄ in (2.2) since C(σ̄) +
´

Trσ̄ ≤ Z.

Conversely let σ be optimal for (2.2) and let µ = Trσ. By assertion (iii) of Proposition 2.2 we know

that µ is optimal for (MOP) and that σ is rank-one according to (2.6). As a result, it is enough to show the

existence of a transport plan γ ∈M+(GΣ0) such that µ is represented by the slicing formula:

〈µ, ϕ〉 =
1√
2

ˆ
Ω×Ω

(ˆ
[x,y]

ϕdH1

)
γ(dxdy) ∀ϕ ∈ C0(Rd).

This is a consequence of Lemma 2.4 given hereafter that we apply to µ whose mass is m0 = Z
2 = I(f,Σ0)√

2
. �

Lemma 2.4. Let f ∈ P(Ω) be a probability measure on Ω, I(f,Σ0) defined by (2.4) and ū = d(x,Σ0).

Then:

(i) Let µ ∈M+(Ω) such that C(Idµ) < +∞. Then there exists g ∈ P(Σ0) such that

C(Idµ) = sup
v∈C1(Ω)

{
〈f − g, v〉 − 1

2

ˆ
|∇v|2 dµ

}
= min

q∈L2
µ(Ω;Rd)

{
1

2

ˆ
|q|2 dµ : −div(q µ)= f − g in D′(Rd)

}
.

(2.10)
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(ii) Assume further that µ is optimal for (MOP) with mass m = Z
2 . Then the minimum on the right hand

side of (2.10) is reached for a vector field q̄ such that we have |q̄| = I(f,Σ0)
m and q̄ = I(f,Σ0)

m ∇µū holding

µ-a.e. Moreover, there exists a suitable γ̄ ∈ M+(GΣ0) with γ̄ ∈ Γ(f, g) such that the vector measure

λ̄ = q µ can be decomposed as follows:

〈
λ̄, ψ

〉
= −

ˆ
Ω×Ω

(ˆ
[x,y]

〈
ψ,

y − x
|y − x|

〉
dH1

)
γ̄(dxdy) ∀ψ ∈ C0(Rd;Rd).

Note that the assertion (i) above (whose validity requires that f ≥ 0) provides an equivalence principle

between a Dirichlet condition on Σ0 and a Neumann condition associated with a suitable source term g

supported on Σ0.

Proof of the assertion (i). We show that as a measure g satisfying the assertion (i) we may take any

minimizer for the problem:

min
{
G(ν) : ν ∈ P(Σ0)

}
, G(ν) := sup

v∈C1(Ω)

{
〈f − ν, v〉 − 1

2

ˆ
|∇v|2 dµ

}
. (2.11)

Next by applying again the commutation argument for convex concave Lagrangians (see Theorem A.2), we

get

min
{
G(ν) : ν ∈ P(Σ0)

}
= inf

ν∈P(Σ0)
sup

v∈C1(Ω)

{
〈f − ν, v〉 − 1

2

ˆ
|∇v|2 dµ

}
= sup

v∈C1(Rd)

inf
ν∈P(Σ0)

{
〈f − ν, v〉 − 1

2

ˆ
|∇v|2 dµ

}
= sup

v∈C1(Rd)

{〈
f, v − sup

Σ0

v
〉
− 1

2

ˆ
|∇v|2 dµ

}
= sup

u∈Lip+(Rd)

{
〈f, u〉 − 1

2

ˆ
|∇µu|2 dµ : u = 0 on Σ0

}
= C(Idµ),

where:

- in the third line we used the fact that for every v ∈ C1(Rd) the non-negative Lipschitz function

u = (v − supΣ0
v)+ vanishes on Σ0 while its energy 〈f, u〉 is larger than 〈f, v〉 since f ≥ 0 ;

- in the last line, we used the fact that, for a positive load f , the supremum in the definition of the

compliance functional is unchanged if we restrict to non-negative Lipschitz functions u.

By taking g to be a minimizer in (2.11), we are led to the first equality in (2.10). The second equality is a

byproduct of classical duality in the Hilbert space L2
µ after noticing that the divergence condition holding

in D′(Rd) is equivalent to the equality 〈f − g, v〉 =
´
〈q,∇v〉 dµ holding for every v ∈ C1(Rd).

Proof of the assertion (ii) If µ is optimal for (MOP) with mass m0, we know from [8, Thm 2.3 and Thm

3.9] that any q̄ solving (2.10) has a constant norm |q̄| = I(f,Σ0)
m0

while the vector measure λ̄ = q̄ µ is optimal

for the PDE formulation of the Monge distance between f and g:

W1(f, g) = min
λ∈M(Ω;Rd)

{ˆ
|λ| : −divλ = f − g in D′(Rd)

}
.

Next, by applying a deep argument in geometric measure theory due to S.K. Smirnov (see [35] and Proposi-

tion 2.3 in [25]), we may decompose the optimal vector measure λ̄ into the form λ̄ =
´

Ω×Ω λ
x,y γ̄(dxdy) (for
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definition of λx,y see (1.9)) with γ̄ ∈ Γ(f, g) being a suitable pairing measure such thatˆ
|λ̄| =

ˆ
Ω×Ω
|λx,y| γ̄(dxdy) =

ˆ
Ω×Ω
|x− y| γ̄(dxdy).

Then, recalling that by (2.5) one has W1(f, g) =
´
d(x,Σ0) f(dx), we infer that

´
Ω×Ω |x − y| γ̄(dxdy) =´

d(x,Σ0) f(dx). It follows that γ̄ is supported in GΣ0 as claimed.

�

Thanks to Theorem 2.3 we are able to characterize the special geometric configurations for which the

inequality inf (FMD) ≤ inf (OM) mentioned in the introduction becomes an equality. Recalling the definition

(1.8) of pΣ0 , let us introduce:

M(Ω,Σ0) :=
{
x ∈ Ω \ Σ0 : x ∈ co

(
pΣ0(x)

)}
. (2.12)

Notice that M(Ω,Σ0) is empty if Σ0 = co(Σ0). Otherwise it is a non-empty compact subset of co(Σ0) as

shown in Lemma 2.7 below.

Corollary 2.5. Let f ∈ P(Ω). Then the reduced (FMD) problem (2.2) admits a divergence free solu-

tion if and only if spt(f) ∩ Ω ⊂ M(Ω,Σ0). If this condition is violated, then we have the strict inequality

inf (FMD) < inf (OM).

Proof. Assume that spt(f) ⊂ M(Ω,Σ0). By Choquet’s theorem, for f -a.e. x, there exists a probability px

supported in pΣ0(x) whose barycenter [px] satisfies [px] = x. As the map (x, p) ∈ Ω×P(Σ0) 7→ [p]−x is Borel

regular, we can select px so that x→ px is f -measurable (see for instance [20]). Then a plan γ̄ ∈M+(GΣ0)

with first marginal f is obtained by setting for every ϕ ∈ C0(Ω× Ω):

〈γ̄, ϕ〉 :=

ˆ
Ω

〈
px, ϕ(x, ·)

〉
f(dx). (2.13)

Then, by invoking Theorem 2.3, the tensor measure σ̄ := 1√
2

´
σx,y γ̄(dxdy) is optimal for (2.2). Furthermore,

in view of definition (1.9), we may evaluate the divergence of σ against a test function ψ ∈ D(Ω;Rd):
√

2 〈Div σ̄, ψ〉 = −
ˆ

Ω×Ω
〈σx,y,∇ψ〉 γ̄(dxdy) = −

ˆ
Ω×Ω

〈
ψ(y)− ψ(x),

y − x
|y − x|

〉
γ̄(dxdy)

=

ˆ
Ω

(ˆ 〈
ψ(x),

y − x
|y − x|

〉
px(dy)

)
f(dx)

=

ˆ
Ω

〈ψ(x), [px]− x〉
d(x,Σ0)

f(dx) = 0 ,

where in the second line we used (2.13) and the fact that ψ vanishes on ∂Ω hence px-a.e., while in the last

line we exploit the fact that |y − x| = d(x,Σ0) for all y ∈ pΣ0(x), thus px-a.e.

In order to prove the converse implication, we assume that (2.2) admits σ as a divergence free solution.

Invoking again Theorem 2.3, we may write σ = 1√
2

´
σx,y γ(dxdy) for a suitable γ ∈ M+(GΣ0) with the

first marginal being equal to f . This pairing measure γ admits a disintegration of the form (2.13) for a

measurable family of probabilities {px} such that spt(px) ⊂ pΣ0(x) for f -a.e x ∈ Ω. Then, after the same

computations as before, we are led to the equality

√
2 〈Div σ, ψ〉 =

ˆ
Ω\Σ0

〈ψ(x), [px]− x〉
d(x,Σ0)

f(dx) = 0,

holding for every test function ψ ∈ D(Ω;Rd). It follows that [px] = x for f -a.e. x ∈ Ω, thus spt(f) ∩ Ω ⊂
M(Ω,Σ0) since M(Ω,Σ0) is closed by Lemma 2.7. We conclude the proof of Corollary 2.5 by noticing
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that the existence of a divergence free solution to (2.2) induces the equality min (FMD) = min (OM) and

vice-versa. �

Remark 2.6. The requirement for f given in Corollary 2.5 implies that spt(f) ∩ Ω is contained in co(Σ0)

as well as in the closure of the set where d(·,Σ0) is not differentiable. In general these sets are strictly

larger than M(Ω,Σ0). For instance, if Ω = {|x1| < a, |x2| < b} with a ≤ b and Σ0 = ∂Ω, we infer that

inf (FMD) < inf (OM) unless spt(f) ⊂ M(Ω) = {x1 = 0, |x2| ≤ b−a}. The fact that pΣ0 can be multi-

valued (namely at points of non-differentiability of d(·,Σ0)) implies the existence of multiple solutions to

the (FMD) problem. In the example above, if f is a Dirac mass located at a point x0 = (0, t0) with

|t0| < b − a, then all solutions to (FMD) arise from the family of pairings {γθ : 0 ≤ θ ≤ 1} where

γθ = (1−θ) δ(0,t0) ⊗ δ(−a,t0) + θ δ(0,t0) ⊗ δ(a,t0). Among them the only one which meets the divergence free

constraint is obtained for θ = 1
2 and the optimal stress is σ̄ = e1 ⊗ e1H1 [(−a, t0), (a, t0)].

Lemma 2.7. Assume that Σ0 is a strict subset of co(Σ0). Then M(Ω,Σ0) is a non-empty compact subset

of co(Σ0) \ Σ0. If Σ0 = ∂Ω, it coincides with the high ridge of Ω defined by:

M(Ω) :=
{
x ∈ Ω : d(x, ∂Ω) ≥ d(z, ∂Ω) ∀z ∈ Ω

}
. (2.14)

Proof. Let u = d(·,Σ0) and define, for every x /∈ Σ0, the convex compact set of Sd−1:

C0(x) := co

({
x− y
|x− y|

: y ∈ pΣ0(x)

})
It turns out that C0(x) coincides with the Clarke’s gradient of u on Rd \ Σ0. Moreover, by [19, Prop 4.4.1,

Thm 3.2.6], u is locally semi concave in Rd \ Σ0 and its lower directional derivative

u0
−(x, θ) := lim inf

h→0+, y→x

u(y + hθ)− u(y)

h

is lower semicontinuous and satisfies |u0
−(x, θ)| ≤ |θ|, while for every (x, θ) ∈ (Rd \ Σ0)× Rd:

u0
−(x, θ) := lim

h→0+

u(y + hθ)− u(y)

h
= min

{
〈p, θ〉 : p ∈ C0(x)

}
.

In view of definition (2.12) and noticing that u0(x, θ) > 0 if x ∈ Σ0 and θ has a direction pointing inward

to the convex set Ω, we deduce the following equivalences:

x ∈M(Ω,Σ0) ⇐⇒ x /∈ Σ0 and C0(x) ⊃ {0} ⇐⇒ u0
−(x, θ) ≤ 0 ∀ θ ∈ Rd. (2.15)

It follows from the lower semicontinuity of u0
− that M(Ω,Σ0) is a closed subset of co(Σ0) \ Σ0.

If Σ0 = ∂Ω, then the function u is concave on Ω (see for instance [24]) and C0(x) coincides with the

superdifferential ∂+u(x) in the sense of convex analysis. Therefore the condition 0 ∈ C0(x) in (2.15) is

equivalent to saying that the maximum of u on Ω is reached at x. Thus in this case, we obtain the equality

M(Ω,Σ0) = M(Ω) with M(Ω) defined in (2.14), which in turn is a non-empty convex compact subset.

Eventually we have to show that M(Ω,Σ0) is non-empty in the general case. Since we assumed that

K0 := co(Σ0) + Σ0, there exists x̄ ∈ K0 such that u(x̄) = maxK0 u > 0. We argue that x̄ ∈ M(Ω,Σ0). If

x̄ belongs to the interior of K0 then u0
−(x̄, θ) ≤ 0 for every θ ∈ Rd and our claim follows from (2.15). In

fact we may always reduce ourselves to this case by considering a finite subset Σx̄ ⊂ Σ0 whose convex hull

Kx̄ contains x̄ while having minimal cardinality (at most d + 1). Noticing that u(x̄) = maxKx̄ u, we apply

the same arguments to the restriction of u to the affine subspace x̄ + V spanned by Kx̄. As x̄ /∈ Σx̄, by
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construction x̄ belongs to the relative interior of Kx̄ while pΣ0(x̄) = pΣx̄(x̄). Therefore u0(x̄, θ) ≤ 0 for θ ∈ V
and, by applying the counterpart of (2.15) in V , we deduce that

0 ∈ co

({
x̄− y
|x̄− y|

: y ∈ pΣx̄(x̄)

})
,

thus arriving at the same conclusion as the right handside above is a subset of C0(x).

�

Remark 2.8. The validity of Corollary 2.5 requires that f is a non-negative measure. In case of a signed

load f , Example 6.7 (see in particular the configuration depicted in Fig. 9(c)) furnishes a counter-example

in which Σ0 = ∂Ω and, despite f not being supported in M(Ω), a solution σ to (FMD) exists such that

Div σ = 0 in Ω.

3. The optimal pre-stressed membrane problem

In this section Ω denotes a bounded convex domain of Rd and Σ0 a closed subset of ∂Ω. we investigate

the optimal design problem described in the introduction:

α0(m) := inf

{
C(σ) : σ ∈M(Ω;Sd×d+ ), Divσ = 0 in Ω,

1

d

ˆ
Trσ ≤ m

}
(OM)

where C(σ) = CΩ,f,Σ0(σ) is defined in (1.4). In practice d = 2 and f ∈M(Ω) represents the vertical pressure

exerted on the membrane, u the deflection function and Σ0 the part of the boundary where the membrane is

pinned in the vertical direction. We may assume that f(Σ0) = 0. Recall that in Section 2 (see Corollary 2.5)

we showed that the infimum in (OM) is stricly larger than the infimum of (FMD) (that is α(m) ≤ α0(m)),

except if f is supported in the set M(Ω,Σ0) defined in (2.12). Although the two problems exhibit in general

very different solutions, they have some common features, in particular the 2-homogeneity argument used

in Lemma 2.1. Then it is easy to derive that

α0(m) =
Z2

0

4md
(null indices recall the divergence free constraint)

where Z0 denotes the infimum of the following reduced membrane problem

Z0 := inf

{
C(σ) +

ˆ
Trσ : σ ∈M(Ω;Sd×d+ ), Divσ = 0 in Ω

}
. (3.1)

As will be seen later optimal tensor measures σ for (3.1) exist and every optimal σ satisfies the equi-

repartition of energy principle ˆ
Trσ = C(σ) =

Z0

2
. (3.2)

Nonetheless, the duality argument leading to Proposition 2.2 has to be modified in a significant way. In order

to account for the divergence free constraint in Ω it is necessary to introduce, as a Lagrange multiplier, the

symmetrized gradient

e(w) :=
1

2

(
∇w + (∇w)T

)
,

of a smooth function w ∈ Lip(Ω;Rd) vanishing on ∂Ω. Accordingly, the counterpart of the supremum

problem (2.4) will read as follows

I0(f,Σ0) := sup

{ˆ
u df : (u,w) ∈ K

}
, (3.3)



OPTIMAL DESIGN VERSUS MAXIMAL MONGE-KANTOROVICH METRICS 15

where K denotes the convex subset consisting of all Lipschitz pairs (u,w) ∈ Lip(Ω)1+d such that:
u = 0 on Σ0, w = 0 on ∂Ω, (3.4a)

1

2
∇u⊗∇u+ e(w) ≤ Id a.e in Ω. (3.4b)

The natural duality involved will be now between continuous pairs (u,w) (that is the deflection and

in-plane deformation of the membrane) and measures (λ, σ) ∈ M(Ω;Rd) ×M(Ω;Sd×d) (transverse force

and in-plane stress). As a primal problem we will consider the (OM) problem (3.1) rewritten in the form:

inf
{
J(λ, σ) : (λ, σ) ∈ A

}
(P)

where J is a suitable functional on measures (see (3.14)) and the admissible set A is defined by

A :=
{

(λ, σ) ∈M(Ω;Rd × Sd×d+ ) : −div λ = f in Rd \ Σ0, Div σ = 0 in Ω
}
. (3.5)

In parallel we put forward an alternative duality scheme based on a two-point equivalent of the condition

(3.4b) (see forthcoming Lemma 3.5), namely:

1

2
|u(y)− u(x)|2 + 〈w(y)− w(x), y − x〉 ≤ |x− y|2 ∀(x, y) ∈ Ω× Ω. (3.6)

This complementary approach is useful in order to characterize solutions of (P) which are decomposable in

the spirit of Theorem 2.3, i.e. which are of the form λπ and σΠ (see definitions (1.10) and (1.11)) for suitable

scalar measures (π,Π) on Ω×Ω. These measures act as Lagrange multipliers of the two-point constraint and

they will encode an optimal truss-like solution (λπ, σΠ) to (P) if they are minimal in the following problem:

inf
{
J (π,Π) : (π,Π) ∈ A

}
(P)

where J is a suitable a suitable convex local functional on measures (see (3.20)) and A denotes the class

of pairs (π,Π) ∈M(Ω× Ω;R2) such that (λπ, σΠ) ∈ A. One can check easily that

(π,Π) ∈ A ⇐⇒


(i)

´ (
u(y)− u(x)

)
π(dxdy) = 〈f, u〉 ∀u ∈ CΣ0(Ω),

(ii)
´
〈w(y)− w(x), τx,y〉Π(dxdy) = 0 ∀w ∈ C0(Ω;Rd),

(iii) Π ≥ 0 on Ω× Ω\∆

(3.7)

Note that, by a density argument, conditions (i) and (ii) above hold once they are checked for smooth pairs

(ϕ, φ) ∈ D(Ω \ Σ0)×D(Ω;Rd).

The main point of this section consists in showing the following equalities

I0(f,Σ0) = Z0 = min(P) = inf(P) (3.8)

that render the zero duality gap and moreover allow to choose truss structures (λπ, σΠ) as minimizing

sequences for the (OM) problem. This result is established in Section 3.2 after a preliminary Section 3.1

devoted to some properties of the convex set K and to the duality properties of the functionals J and J
which appear in problems (P) and (P), respectively. Before proceeding several remarks are in order:

Remark 3.1. If we restrict the supremum in the right hand member of (3.3) to pairs (u,w) ∈ K such that

w ≡ 0, we recover I(f,Σ0) defined in (2.4) up to factor
√

2. This discrepancy is due to the 1
2 factor in front

of ∇u⊗∇u that we set in order to better fit to the mechanical viewpoint and in particular with applications

of our theory to several issues in civil engineering mentioned in the introduction.
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Remark 3.2. In contrast with the (FMD) problem where the dual attainment in (2.4) is straightforward,

here a major difficulty is that we cannot ensure the existence of Lipschitz maximizers for (3.3). Indeed,

as will seen later, the convex subset K is merely bounded in C0, 1
2 (Ω) ×W 1,1(Ω;Rd) and relaxed solutions

solutions (u,w) may appear as a limit of maximizing sequences and this limit could be even discontinuous.

A complete characterization of the closure of K in C0(Ω) × L1(Ω;Rd) that employs a suitable extension of

the two-point condition (3.6) will appear in Section 5 within the framework of maximal monotone maps.

Remark 3.3. A major drawback of the two-point duality strategy is the lack of solutions to problem

(P) in the general case, which will be confirmed by a simple counter-example (see Remark 4.6). This

failure of existence is mainly due to the fact that minimizing sequence (πn,Πn) = (αn Πn,Πn), despite the

natural estimate supn J (πn,Πn) = supn
´

(1 + α2
n
2 ) |x − y|Πn(dxdy) < +∞, can exhibit very large mass

concentrations of Πn on the diagonal ∆. The same kind of difficulty arises in the mathematical approach

towards Michell’s truss problem developed in [15]. Nevertheless, we expect that for finitely supported loads

f a solution (π,Π) always exists thanks to an extension argument for monotone maps that we present in

Section 5 as a conjecture. Should it be true, the optimal discrete measure Π induces an optimal design

σΠ composed of bars (or strings) as it is confirmed analytically through the examples in Section 4 and

numerically through the simulations in Section 6.

Remark 3.4. The admissible set A for (P) a priori involves signed measures π while σΠ ≥ 0 requires

that Π ≥ 0. In fact the infimum of (P) is unchanged if one restrict to measures π of the kind π = αΠ with

α ≥ 0 or, as will appear more natural in the context of Monge-Kantorovich problem (see Section 5.3), with

α ≤ 0. Indeed, if (αΠ,Π) is an element of the admissible set A , then so is (|α| Π̃, Π̃) where Π̃ is defined by

〈Π̃, ϕ〉 :=
´
α≥0 ϕ(x, y) dΠ +

´
α<0 ϕ(y, x) dΠ for every ϕ ∈ C0(Ω

2
). Clearly this new admissible pair shares

the same energy i.e. J (|α| Π̃, Π̃) = J (αΠ,Π). This will be also the case for the admissible pair (−|α| Π̂, Π̂)

where Π̂ is the image of Π̃ under the map (x, y) 7→ (y, x).

3.1. Preliminary results.

Lemma 3.5. Let there be given (u,w) ∈ Lip(Ω)1+d; then the pointwise constraint (3.4b) is equivalent to

the two-point condition (3.6). In particular they imply that the function v := id − w is monotone on Ω. In

addition the equality is reached in (3.6) for (x, y) if and only if u and 〈v(·), y − x〉 are affine functions on

[x, y].

Proof. First let us assume that condition (3.4b) is satisfied. Let (x, y) ∈ Ω
2

be any pair of distinct points

and set τ = y−x
|y−x| . Since the trace of (u,w) on the segment [x, y] is Lipschitz continuous, we have

〈w(y)− w(x), y − x〉 = |y − x|
ˆ

[x,y]
〈∇w, τ〉 dH1 = |y − x|

ˆ
[x,y]
〈e(w), τ ⊗ τ〉 dH1

|u(y)− u(x)|2 =

∣∣∣∣∣
ˆ

[x,y]
〈∇u, τ〉 dH1

∣∣∣∣∣
2

≤ |y − x|
ˆ

[x,y]
〈∇u⊗∇u, τ ⊗ τ〉 dH1,

where in the second line we used Schwarz’s inequality. From the above and taking (3.4b) into account, we

deduce that

1

2
|u(y)− u(x)|2 + 〈w(y)− w(x), y − x〉 ≤ |y − x|

ˆ
[x,y]

〈
1

2
∇u⊗∇u+ e(w), τ ⊗ τ

〉
dH1 ≤ |y − x|2.
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Conversely assume that (3.6) holds and let us chose a point of differentiability x ∈ Ω for (u,w). Then, by

taking any τ ∈ Sd−1 and y = x + h τ for small h > 0, we infer directly from the two-point condition (3.6)

that〈
1

2
∇u(x)⊗∇u(x) + e(w), τ ⊗ τ

〉
= lim

h→0

{
1

2

(
u(x+ h τ)− u(x)

h

)2

+

〈
w(x+ h τ)− w(x)

h
, τ

〉}
≤ 1.

Due to arbitrariness of τ we are led to the desired inequality (3.4b) since the differentiability of the Lipschitz

map (u,w) holds a.e. x ∈ Ω. The asserted equivalence is established. Moreover, by (3.6), the function

v = id − w satisfies 1
2 |u(y)− u(x)|2 ≤ 〈v(y)− v(x), y − x〉, hence the monotonicity property. In order to

check the last statement let us consider a pair (x, y) where (3.6) holds with an equality. Then, the Schwarz’s

inequality mentioned above becomes an equality and therefore 〈∇u, τ〉 is a constant α on [x, y]. Then the

scalar Lipschitz function ϕ(t) = 〈v(x+ tτ), τ〉 satisfies ϕ′ ≥ α2

2 a.e. while ϕ(1)− ϕ(0) = 1
2

(u(y)−u(x))2

|y−x|2 = α2

2 .

Thus ϕ has a constant slope α2

2 . �

Remark 3.6. If Ω is a general domain the equivalence stated in Lemma 3.5 is still valid if we restrict the

condition (3.6) to those pairs (x, y) satisfying [x, y] ⊂ Ω.

Construction and properties of the functional J . As directly related to the constraint (3.4b), we consider

the following subset

C :=

{
(z,M) ∈ Rd × Sd×d :

1

2
z ⊗ z +M ≤ Id

}
(3.9)

which can be seen as the level set {g ≤ 1} of the function g : Rd × Sd×d → R+ defined by

g(z,M) := ρ+

(
1

2
z ⊗ z +M

)
, (3.10)

ρ+ being the semi-norm on Sd×d given by

ρ+(A) := sup
{
〈S,A〉 : S ≥ 0, TrS ≤ 1

}
. (3.11)

Lemma 3.7. For A ∈ Sd×d let σA be the set of eigenvalues of A. Then:

(i) ρ+(A) = min{s ≥ 0 : A ≤ s Id} = max
{
λ+ : λ ∈ σA

}
.

(ii) Assume moreover that ρ+(A) = 1 and by iA denote the multiplicity of eigenvalue 1. Then any S optimal

in (3.11) satisfies: rank(S) ≤ iA ≤ rank(A). In particular, we have rank(S) ≤ d− 1 if A 6= Id.

Remark 3.8. The rank-one property of optimal σ = Sµ in the (FMD) problem obtained in Proposition

2.2 can be seen as a consequence of Lemma 3.7 applied to the rank-one tensor function A = ∇µu ⊗ ∇µu.

For d = 2 note also that rank(S) = 1 is true unless A = ρ+(A) Id.

Proof. The assertion (i) is straightforward by evaluating the supremum in (3.11) with S = a ⊗ a where

|a| = 1. Let now A and S ≥ 0 be such that 1 = ρ+(A) = 〈S,A〉 and TrS = 1. We can chose an orthonormal

base {ai, 1≤ i≤d} so that A =
∑

i λi ai ⊗ ai and S =
∑

i µi ai ⊗ ai where the real eigenvalues λi, µi satisfy:

1 = λ1 = max
i
λi, µi ∈ [0, 1],

∑
i

µi = 1.

Then the equality 1 = 〈S,A〉 is equivalent to
∑

i µi(1 − λi) = 0. Since λi ≤ 1, this implies that µi = 0 for

every index i such that λi < 1. Thus rank(S) = ]
(
{i : µi > 0}

)
≤ ]
(
{i : λi = 1}

)
= iA. �
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Lemma 3.9. The function g defined in (3.10) is convex continuous. Therefore C is a closed (unbounded)

convex subset of Rd × Sd×d. Its support function is given by

χ∗C(θ, S) =

{
TrS + 1

2〈S, q ⊗ q〉 if S ∈ Sd×d+ , q ∈ Rd and θ = Sq,

+∞ if S /∈ Sd×d+ or if θ /∈ Im(S)
(3.12)

and we have the following lower bound:

χ∗C(θ, S) ≥ 1

2
TrS + |θ|. (3.13)

We notice that the expression given in (3.12) for θ ∈ Im(S) is independent of the choice of q such that

θ = S q. With a small abuse of notation, we will sometimes write χ∗C(θ, S) = TrS + 1
2

〈
S−1θ, θ

〉
.

Proof. It is is easy to check that g is locally bounded and that g = sup|a|=1 ga where, for every a ∈ Rd, ga
is the convex continuous function given by

ga(z,M) :=
1

2
|〈z, a〉|2 + 〈Ma, a〉.

It follows that g is convex continuous hence C is a closed convex subset of Rd × Sd×d.
Let us now prove (3.12). First, by considering pairs (0,−s Id) which belong to C for s > 0 being arbitrarily

large, we infer that χ∗C(θ, S) = +∞ unless S ≥ 0. Next, assuming that S ≥ 0, we compute

χ∗C(θ, S) = sup
z∈Rd

sup
M∈Sd×d

{
〈θ, z〉+ 〈M,S〉 :

1

2
z ⊗ z +M ≤ Id

}

= sup
z∈Rd

{
〈θ, z〉+ sup

M∈Sd×d

{
〈M,S〉 : M ≤ Id− 1

2
z ⊗ z

}}

= TrS + sup
z∈Rd

{
〈θ, z〉 − 1

2
〈Sz, z〉

}
.

Clearly the supremum with respect to z is infinite if θ is not orthogonal to the kernel of S. If it is not the

case, then θ ∈ Im(S) and the concave function z 7→ 〈θ, z〉 − 1
2〈Sz, z〉 achieves its maximum at z = q for q

being any solution of Sq = θ, thus rendering the maximum equal to 1
2〈Sq, q〉.

Eventually, we deduce (3.13) by noticing that the right hand side of the inequality coincides with the

support function of
{

(z,A) : |z| ≤ 1 , 2A ≤ Id
}

which clearly is a subset of C. �

Following [28], to the one-homogeneous integrand χ∗C : Rd × Sd×d → [0,+∞] and any pair (λ, σ) ∈
M(Ω;Rd × Sd×d) we can associate a scalar measure defined for all Borel subsets B ⊂ Ω by:ˆ

B
χ∗C(λ, σ) :=

ˆ
B
χ∗C

( dλ
dm

,
dσ

dm

)
dm

for m being any measure in M+(Ω) such that (λ, σ) � m (the choice of m is immaterial due to the

homogeneity of χ∗C). By fixing B = Ω we obtain a functional depending on (λ, σ):

J(λ, σ) :=

ˆ
Ω
χ∗C(λ, σ) ∀ (λ, σ) ∈M(Ω;Rd × Sd×d). (3.14)

Convex one-homogeneous functionals on measures of this type have been studied in [10]. In particular, J

can be characterized in terms of the duality between M(Ω;Rd × Sd×d) and C0(Ω;Rd × Sd×d):

Lemma 3.10. The following statements hold true:
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(i) The functional J is convex, weakly* lower semicontinuous and 1-homogeneous on M(Ω;Rd × Sd×d).
Moreover, in order that J(λ, σ) < +∞, it is necessary that σ ∈ M(Ω;Sd×d+ ) and λ � µ := Trσ. In

this case

J(λ, σ) =


´

Trσ + 1
2

´
〈Sq, q〉 dµ where σ = Sµ and λ = Sq µ,

+∞ if µ
({

dλ
dµ /∈ Im(S)

})
> 0.

(ii) J is the support function of the set UC of continuous selections of C defined by:

UC :=
{

(ψ,Ψ) ∈ C0(Ω;Rd × Sd×d) : (ψ(x),Ψ(x)) ∈ C ∀x ∈ Ω
}
.

In particular, for every µ ∈M+(Ω) and (q, S) ∈ L1
µ(Ω;Rd × Sd×d+ ), we have

J(qµ, Sµ) = sup

{ˆ (
〈q, ψ〉+ 〈S,Ψ〉

)
dµ : (ψ,Ψ) ∈ UC

}
;

(iii) Let C(σ) be the compliance functional defined in (1.4). Then we have:

C(σ) +

ˆ
Trσ = min

{
J(λ, σ) : λ ∈M(Ω;Rd), −divλ = f in D′(Rd \ Σ0)

}
. (3.15)

Proof. For (i), we notice that χ∗C(z, 0) < +∞ implies that z = 0. Therefore if σ = Sµ and λ = θ µ+ θsms

is the Lebesgue decomposition of λ with respect to µ (with ms ⊥ µ), then J(λ, σ) =
´
χ∗C(θ, S) dµ +´

χ∗C(θs, 0) dms < +∞ implies that θs = 0, thus (λ, σ) = (θ, S)µ. The integral representation of J(λ, σ)

follows from the definition (3.14) and Lemma 3.9.

For the assertion (ii), we refer to [10, Thm 5] and [16, Thm 11]. Let us now establish assertion (iii). Let

σ = Sµ with S ∈ L∞µ (Ω;Sd×d+ ) and TrS = 1. In view of the expression for J obtained in (i) we have to show

that:

inf

{
1

2

ˆ
〈Sq, q〉 dµ : −div(Sqµ) = f in D′(Rd \ Σ0)

}
= sup

u∈C1(Rd)
u=0 on Σ0

{
〈f, u〉 − 1

2

ˆ
〈S∇u,∇u〉 dµ

}
.

This equality follows from standard duality arguments in L2
µ where in addition we exploit the density result

of Lemma 3.14 to show that the divergence condition −div(Sqµ) = f in D′(Rd \ Σ0) is equivalent to the

equality 〈f, v〉 =
´
〈Sq, v〉dµ holding for every v ∈ C1(Rd) that vanishes on Σ0. �

Construction of the functional J . We introduce the closed (unbounded) convex subset of R2:

C :=

{
(s1, s2) ∈ R2 :

1

2
(s1)2 + s2 ≤ 1

}
(3.16)

which is directly related with the two-point condition (3.6). Indeed, if for distinct pairs (x, y) ∈ Ω × Ω we

set

ζ1(x, y) = u(y)− u(x), ζ2(x, y) :=

〈
w(y)− w(x),

y − x
|y − x|

〉
, (3.17)

then we can rewrite (3.6) as (ζ1, ζ2) ∈ |x− y|C for all (x, y) ∈ Ω × Ω (where ζ2(x, y) = 0 for x = y by

convention).

In what follows, a pair of scalar measures (π,Π) on Ω×Ω will play the role of Lagrange multipliers for the

two-point constraint. The convex functional J (π,Π) involved in the truss problem (P) will be associated

with the support function χ∗C of the convex set C . Recalling definition (3.9) and formula (3.12), it turns out

that this convex one homogeneous integrand χ∗C is closely related to χ∗C:
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Lemma 3.11. The support function of C is a one-homogeneous convex l.s.c. non-negative function given

by

χ∗C (t1, t2) =

{(
1 + 1

2 a
2
)
t2 if t2 ≥ 0 and t1 = a t2,

+∞ if t2 < 0 or if t2 = 0, t1 6= 0 .
(3.18)

It satisfies the relation

χ∗C (t1, t2) = χ∗C(t1 τ, t2 τ ⊗ τ) ∀ τ ∈ Sd−1. (3.19)

Proof. The formula (3.18) follows directly from (3.12) once we have shown (3.19). For every (z,M) ∈ C and

any τ ∈ Sd−1 we have 1
2

(
〈z, τ〉

)2
+ 〈M, τ ⊗ τ〉 =

〈
1
2 z ⊗ z +M, τ ⊗ τ

〉
≤ 1, thus (s1, s2) =

(
〈z, τ〉, 〈M, τ ⊗ τ〉

)
belongs to C and therefore

χ∗C (t1, t2) ≥ sup
{
t1 〈z, τ〉+ t2 〈M, τ ⊗ τ〉 : (z,M) ∈ C

}
= χ∗C(t1 τ, t2 τ ⊗ τ).

To obtain the opposite inequality, we associate to any element (s1, s2) ∈ C the pair (z,M) ∈ C defined by

z = s1 τ and s2 τ ⊗ τ . We are led to

χ∗C(t1 τ, t2 τ ⊗ τ) ≥ sup
{
s1 t1 + s2 t2 : (s1, s2) ∈ C

}
= χ∗C (t1, t2).

�

Following the Goffman-Serrin construction, we may associate to any (π,Π) ∈ M(Ω × Ω;R2) the non-

negative Borel measure χ∗C (π,Π) ranging in [0,+∞]. The functional J is defined as follows:

J (π,Π) :=

ˆ
Ω×Ω
|x− y| χ∗C

(
π,Π

)
(dxdy) ∀ (π,Π) ∈M(Ω× Ω;R2). (3.20)

Lemma 3.12. The functional J is convex, weakly* lower semicontinuous and 1-homogeneous on M(Ω ×
Ω;R2). In order that J (π,Π) < +∞, it is necessary that Π ≥ 0 and π � Π on Ω× Ω\∆. In this case, it

holds that

J (π,Π) =

ˆ
Ω×Ω
|x− y|

(
1 +

1

2

(
dπ

dΠ

)2
)

Π(dxdy). (3.21)

Furthermore, for every (π,Π) ∈M(Ω;R2) we have the inequality

J(λπ, σΠ) ≤ J (π,Π). (3.22)

Remark 3.13. Although one has J(αλx,y, σx,y) = J (αδ(x,y), δ(x,y)) for every pair (x, y) and α ∈ R, the

inequality (3.22) is strict in general. This happens for instance when Π charges two pairs (x, y) and (x′, y′)

such that H1([x, y] ∩ [x′, y′]) > 0. We expect however that it is possible to avoid this discrepancy by

substituting (π,Π) with a suitable equivalent pair (π̃, Π̃) such that (λπ̃, σΠ̃) = (λπ, σΠ) and no overlapping

between segments [x, y] occurs as (x, y) runs over spt(Π̃).

Proof. Since the integrand χ∗C is convex, 1-homogeneous and lower semicontinuous from R2 to [0,+∞], we

know that, for every open subset B ⊂ Ω× Ω, the map

(π,Π) ∈M(Ω× Ω;R2) 7→ χ∗C (π,Π)(B)

is weakly* lower semicontinous. In particular applying this to each level set Bt = {|x − y| > t}, it follows

fom Fatou’s lemma that

lim inf
n
J (πn,Πn) = lim inf

n

ˆ +∞

0
χ∗C (πn,Πn)(Bt) dt ≥

ˆ +∞

0
χ∗C (π,Π)(Bt) dt = J (π,Π)
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whenever (πn,Πn)
∗
⇀ (π,Π), hence the desired lower semicontinuity property of J . Further, if π = αΠ + πs

with πs ⊥ Π denotes the Lebesgue-Nikodym decomposition of π with respect to Π, we have χ∗C (π,Π) =

χ∗C (αΠ,Π) + χ∗C (πs, 0), hence by Lemma 3.11 for every t > 0:

χ∗C (π,Π)(Bt) =

{´
(1 + α2

2 ) dΠ if Π Bt ≥ 0 and |πs|(Bt) = 0,

+∞ otherwise.

Since ∪t>0Bt = Ω× Ω\∆, by integrating with respect to t between 0 and +∞, we recover the conditions

required for the finiteness of J (π,Π) and the equality (3.21).

Let us now prove (3.22). It is not restrictive to assume that J (π,Π) < +∞ so that Π ≥ 0 and π = αΠ

on Ω× Ω\∆ for a suitable Borel function α. Then, for any continuous selection (ψ,Ψ) of the convex set C

(see (3.9)), we have

〈λπ, ψ〉+ 〈σΠ,Ψ〉 =

ˆ
Ω×Ω\∆

(
α(x, y)〈λx,y, ψ〉+ 〈σx,y,Ψ〉

)
Π(dxdy)

=

ˆ
Ω×Ω\∆

(ˆ
[x,y]

(
α(x, y) 〈τx,y, ψ〉+ 〈τx,y ⊗ τx,y,Ψ〉

)
dH1

)
Π(dxdy)

≤
ˆ

Ω×Ω\∆

(ˆ
[x,y]

χ∗C
(
α(x, y), 1

)
dH1

)
Π(dxdy)

=

ˆ
Ω×Ω\∆

|x− y| χ∗C (π,Π)(dxdy) ≤ J (π,Π)

where, to pass from second to the third line, we used that
(
ψ(z),Ψ(z)

)
belongs to the convex set C for all

z ∈ [x, y] so that, in virtue of (3.19), we have
(
〈τx,y, ψ(z)〉, 〈τx,y ⊗ τx,y,Ψ(z)〉

)
∈ C . We conclude with the

desired inequality upon recalling the assertion (ii) of Lemma 3.10 and by taking the supremum of the left

hand side with repect to all pairs (ψ,Ψ) ∈ UC. �

A density result and generalized integration by parts. We first need the following approximation result:

Lemma 3.14. Let us assume (u,w) ∈ (Lip(Ω))1+d such that u = 0 on Σ0 and w = 0 on ∂Ω; then there

exists a sequence (un, wn) and and a constant M > 0 such that:

(i) (un, wn) ∈ D(Rd \ Σ0)×D(Ω) and (un, wn)→ (u,w) uniformly in Ω;

(ii) Lip(un) + Lip(wn) ≤M ;

(iii) lim sup
n→∞

‖g
(
∇un, e(wn)

)
‖L∞(Ω) ≤ ‖g

(
∇u, e(w)

)
‖L∞(Ω), where g is defined in (3.10).

Proof. Let (u,w) be as given in the statement. It is not restrictive to assume that 0 belongs to the interior

of the convex set Ω and by pΩ we denote the element of Lip1(Rd; Ω) defined by

pΩ(x) = x if x ∈ Ω, pΩ(x) =
x

jΩ(x)
if Rd \ Ω

where jΩ(x) = min
{
t ≥ 0 : x ∈ tΩ

}
is the gauge of Ω. We proceed in three steps:

Step1 We construct a Lipschitz extension (ũ, w̃) of (u,w) to whole Rd by setting

w̃ = 0 in Rd \ Ω, ũ = u ◦ pΩ.

This extension is bounded and satisfies

‖g
(
∇ũ, e(w̃)

)
‖L∞(Rd) = ‖g

(
∇u, e(w)

)
‖L∞(Ω).
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Indeed, if k denotes the right hand side, then g
(
∇( u√

k
), e(wk )

)
≤ 1 a.e. and by Lemma 3.5 we have the

two-point condition

1

2
|ũ(y)− ũ(x)|2 + 〈w̃(y)− w̃(x), y − x〉 =

1

2

∣∣u(pΩ(y)
)
− u
(
pΩ(x)

)∣∣2 +
〈
w
(
pΩ(y)

)
− w

(
pΩ(x)

)
, pΩ(y)− pΩ(x)

〉
≤ k |pΩ(y)− pΩ(x)|2 ≤ k |y − x|2

holding for all (x, y) ∈ (Rd)2.

Step2 In this step we construct a sequence (un, wn) ∈ Lip(Rd;R1+d) which fulfils conditions (ii), (iii) of

the lemma, but instead of (i), we merely require that spt(un) ∩ Σ0 = ∅ and spt(wn) b Ω. To that aim, we

consider a small parameter δ > 0 and we contract the pair (ũ, w̃) defined in Step 1 as follows:

uδ(x) =
1

1 + δ
ũ
(
(1 + δ)x

)
, wδ(x) =

1

1 + δ
w̃
(
(1 + δ)x

)
.

Clearly we have g
(
∇uδ, e(wδ)

)
(x) = g

(
∇ũ, e(w̃)

)(
(1+δ)x

)
≤ ‖g

(
∇u, e(w)

)
‖L∞(Ω) while spt(wδ) ⊂ Ω

1+δ b Ω.

By construction we also have uδ = 0 on Σ0 but unfortunately spt(uδ) may touch a part of Σ0. To remedy

this we slightly modify uδ to arrive at vδ vanishing on {|uδ| ≤ δ}; we consider:

vδ := uδ − δ on {uδ ≤ −δ}, vδ := 0 on {|uδ| ≤ δ}, vδ := uδ + δ on {uδ ≥ δ}.

Then, clearly, vδ is a Lipschitz function such that spt(vδ)∩Σ0 = ∅. Besides one easily checks that∇vδ⊗∇vδ ≤
∇uδ ⊗∇uδ a.e. hence g

(
∇vδ, e(wδ)

)
≤ g
(
∇uδ, e(wδ)

)
. Eventually, since |uδ − vδ| ≤ δ and (ũ, w̃) is bounded

and Lipschitz, we have that (vδ, wδ) → (u,w) uniformly in Ω while keeping the same Lipschitz constant.

Hence the Step 2 is completed by taking (un, wn) = (vδn , wδn) as approximating sequence with δn → 0.

Step3 To each pair (un, wn) constructed in Step 2 we apply a smooth convolution kernel θε(x) = ε−dθ(xd )

where θ is a radial symmetric element of D+(Rd) such that
´
θ = 1. Since spt(wn) b Ω and spt(un) b Rd\Σ0,

the pair (uεn, w
ε
n) := (un ∗ θε, wn ∗ θε) belongs to D(Rd \ Σ0) × D(Ω) for ε small enough and still satisfies

condition (ii). On the other hand, since the integrand g is convex lower semicontinuous, it follows from

Lemma ?? applied to ξ =
(
∇un, e(wn)

)
that

g
(
∇uεn, e(wεn)

)
≤ g

(
∇un, e(wn)

)
≤ ‖g

(
∇u, e(w)

)
‖L∞(Ω).

Then, by using a classical diagonalization argument we may choose a sequence εn → 0 so that (un, wn) :=

(uεnn , w
εn
n ) satisfies the required conditions (i), (ii), (iii). The proof of Lemma 3.14 is complete. �

As a consequence of Lemma 3.14 elements (u,w) ∈ K (see (3.4)) which are characterized by condition

‖g(∇u, e(w))‖L∞(Ω) ≤ 1 can be approximated uniformly by smooth elements of K that satisfy (i), (ii), (iii).

Moreover, by using tangential differential calculus (see Appendix B) with respect to a measure, we can

deduce an integration by parts formula (see (3.23) below):

Corollary 3.15. Let (u,w) ∈ K and µ ∈M+(Ω). Then:

(i) ∇µu = 0 µ-a.e. in Σ0 and eµ(w) = 0 µ-a.e. in ∂Ω;

(ii) for all (θ, S) ∈ L1
µ(Ω;Rd×Sd×d+ ) with −div(θµ) = f in D′(Σc

0) and Div(Sµ) = 0 in D′(Ω) it holds that:

〈f, u〉 =

ˆ
〈θ,∇µu〉 dµ+

ˆ
〈S, eµ(w)〉 dµ, (3.23)

〈θ,∇µu〉+ 〈S, eµ(w)〉 ≤ χ∗C(θ, S) µ-a.e. (3.24)
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Proof. By Lemma 3.14 there exits an equi-Lipschitz approximating sequence (un, wn) ∈ K converging uni-

formly to (u,w) and such that un, wn are smooth and compactly supported in Σc
0 and Ω respectively. It

follows that (
∇µun, eµ(wn)

) ∗
⇀
(
∇µu, eµ(w)

)
in L∞µ (Ω;Rd × Sd×d). (3.25)

The assertion (i) is then a consequence of the fact that, for each n, ∇µun = Pµ∇un vanishes on Σ0 while

eµ(wn) = Pµ
(
e(wn)

)
Pµ vanishes on ∂Ω.

Let now (θ, S) ∈ L1
µ(Ω;Rd×Sd×d+ ) as given in the lemma. The condition −div(θµ) = f in D′(Σc

0) implies

(see Proposition B.4) that θ(x) ∈ Tµ(x) for µ-almost all x in the open subset Σc
0. In the same way the

condition Div(Sµ) = 0 in D′(Ω) implies that PµSPµ = S holds µ-a.e. in Ω. Therefore, recalling that un
vanishes in a neighbourhood of Σ0, we have

〈f, un〉 =

ˆ
Ω\Σ0

〈θ,∇un〉 dµ+

ˆ
Ω
〈S, e(wn)〉 dµ =

ˆ
Ω\Σ0

〈θ,∇µun〉 dµ+

ˆ
Ω
〈S, eµ(wn)〉 dµ.

Passing to the limit n → ∞ with the help of (3.25) and of the assertion (i) we obtain (3.23). In order to

derive (3.24), we start with the inequality:ˆ
B\Σ0

〈θ,∇un〉 dµ+

ˆ
B∩Ω
〈S, e(wn)〉 dµ ≤

ˆ
B
χ∗C(θ, S) dµ

which holds for any Borel set B ⊂ Ω since (∇un, e(wn)) ∈ C everywhere in Ω. Passing to the limit with the

same arguments as before we getˆ
B
〈θ,∇µu〉 dµ+

ˆ
B
〈S, eµ(w)〉 dµ ≤

ˆ
B
χ∗C(θ, S) dµ

thus (3.24) follows by localizing. �

3.2. Primal and dual formulations. We recall our primal problem

inf
(λ,σ)∈M(Ω;Rd×Sd×d+ )

{
J(λ, σ) : −div λ = f in Rd \ Σ0, Div σ = 0 in Ω

}
(P)

where J is the functional on measures defined in (3.14). By minimizing with respect to λ first, with the help

of (3.15) we immediately recover that inf(P) = Z0 where Z0 is the infimum of the reduced (OM) problem

(3.1). We also recall the truss variant of (P) given by

inf
{
J (π,Π) : (π,Π) ∈ A

}
(P)

where J and A are defined by (3.20) and (3.7) respectively. In virtue of Lemma 3.12 and of the definition

of the admissible set A , we clearly have the inequality inf(P) ≤ inf(P).

The dual problem is a relaxed version of the supremum problem (3.3) that we shall write as

sup

{ˆ
u df : (u,w) ∈ K

}
(P∗)

where K denotes the closure of the convex constraint K, defined in (3.4), as a subset of the Banach space

C0(Ω)× L1(Ω). The choice of this topology is induced by the following estimate result:

Lemma 3.16. Let R denote the diameter of Ω. Then, for every (u,w) ∈ K it holds that:

(i) ‖w‖L∞(Ω) ≤ R;

(ii) |u(x)− u(y)| ≤
√

2R |x− y|
1
2 for every (x, y) ∈ Ω× Ω;

(iii)
´

Ω |Dw|+
´

Ω |∇u|
2 dx ≤ d |Ω|+ cdR

d (with cd depending on d only).
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As a consequence, if Σ0 is non-empty, K is a bounded convex subset of (C0, 1
2 (Ω) ∩ W 1,2(Ω)) × (W 1,1 ∩

L∞)(Ω;Rd), hence it is relatively compact in C0(Ω)× L1(Ω;Rd).

The complete characterization of the compact K (as a subset of C0(Ω) × BV (Ω;Rd)) will be given in

Section 5.

Proof. Let us take an element (u,w) ∈ K. By Lemma 3.5 the two point condition (3.6) holds for all (x, y) ∈
Ω×Ω. In particular, we have 〈w(y)− w(x), y − x〉 ≤ |x−y|2 while w(y) = 0 for all y ∈ ∂Ω. Fix an arbitrary

x ∈ Ω. Then, for every every τ ∈ Sd−1, there exists a unique real t ∈ (0, R) such that x′ = x + tτ ∈ ∂Ω.

Thus we get −〈w(x), τ〉 ≤ t ≤ R and |w|(x) ≤ R as τ is arbitrary. This proves (i). Furthermore, if x, y ∈ Ω

are distinct and τx,y = y−x
|y−x| , there exists s, t > 0 such that x′ = x − sτx,y, y′ = y + tτx,y belong to ∂Ω

and s+ t+ |x− y| = |y′ − x′| ≤ R. We deduce from the above that −〈w(y)− w(x), τx,y〉 ≤ s+ t ≤ R, thus

−〈w(y)− w(x), y − x〉 ≤ R|x− y|. Eventually the assertion (ii) follows by exploiting again (3.6):

1

2
|u(y)− u(x)|2 ≤ |x− y|2 − 〈w(y)− w(x), y − x〉 ≤ 2R |x− y|.

The assertion (iii) is a consequence of applying [1, Prop 5.1] to the Lipschitz monotone map v : Rd → Rd

where v(x) := x− w(x) in Ω and v(x) = x in Rd \ Ω. Then, owing to Remark 5.2 in [1], it holds thatˆ
Ω
|Dv| ≤ CdRd−1 osc(v,Ω)

(
osc(v,Ω) := sup

{
|v(x)− v(y)|, (x, y) ∈ Ω2

})
for a suitable universal constant Cd. Since by (i) the oscillation of v in Ω is not larger than 2R, we get´

Ω |Dv| ≤ 2CdR
d. On the other hand, (3.4b) implies that 1

2 ∇u ⊗ ∇u ≤ e(v), hence 1
2 |∇u|

2 ≤ Div v by

taking the traces. All in all, we deduce the estimate (iii) with cd = 6Cd. �

As a consequence of the compactness of K, the linear continuous form (u,w) ∈ C0(Ω) ∩ ×L1(Ω;Rd) 7→
〈f, u〉 achieves its maximum and (P∗) admits (possibly non-Lipschitz) solutions. In addition, by applying

the Hölder estimate (ii) and the Dirichlet condition u = 0 on Σ0, we get:

max (P∗) = I0(f,Σ0) ≤
√

2 diam(Ω)

ˆ
|f | < +∞. (3.26)

An important tool for proving the equalities announced in (3.8) is the following perturbation of the dual

problem: given K being a closed subset of Ω×Ω we define hK : (p, q) ∈ C0(Ω×Ω;R2)→ [−∞, 0] to be the

functional defined by

hK(p, q) := inf
u,w

{
−〈f, u〉

∣∣∣∣∣ (u,w) ∈
(
Lip(Ω)

)d+1
, u = 0 in Σ0, w = 0 in ∂Ω,(

ζ1(u) + p, ζ2(w) + q
)
∈ |x− y|C for all (x, y) ∈ K

}
(3.27)

where

ζ1(u)(x, y) := u(y)− u(x), ζ2(w)(x, y) := 〈w(y)− w(x), τx,y〉. (3.28)

Proposition 3.17. Let K be a compact subset of Ω
2

and define the (possibly empty) convex subset AK :={
(π,Π) ∈ A : spt

(
(π,Π)

)
⊂ K

}
. Then:

(i) The conjugate of hK in the duality between C0(Ω× Ω;R2) and M(Ω× Ω;R2) is given by

h∗K(π,Π) =

{
J (π,Π) if (π,Π) ∈ AK ,

+∞ otherwise;
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(ii) hK is convex; it is finite at (0, 0) if and only if AK ∩ dom(J ) is non-empty. If this is the case and

if moreover K does not intersect the diagonal ∆, then hK is continuous at (0, 0) and there exists a

minimizer for the problem

inf
{
J (π,Π) : (π,Π) ∈ AK

}
(PK)

(iii) The function h := hΩ×Ω is finite and lower semicontinuous at (0, 0).

Proof. Let us compute the conjugate of hK at (π,Π). We have

h∗K(π,Π) = sup
p,q,u,w

{
〈π, p〉+ 〈Π, q〉+ 〈f, u〉

∣∣∣∣∣ (u,w) ∈
(
Lip(Ω)

)d+1
, u = 0 in Σ0, w = 0 in ∂Ω,(

ζ1(u) + p, ζ2(w) + q
)
∈ |x− y|C for all (x, y) ∈ K

}

= sup
p̃,q̃

{
〈π, p̃〉+ 〈Π, q̃〉 : (p̃, q̃) ∈ |x− y|C for all (x, y) ∈ K

}
+ sup

u,w

{
〈f, u〉 − 〈π, ζ1(u)〉 − 〈Π, ζ2(w)〉 : (u,w) ∈ (Lip

(
Ω)
)d+1

, u = 0 in Σ0, w = 0 in ∂Ω
}
,

where, to pass from the first to the second line, we have set (p̃, q̃) = (ζ1(u) + p, ζ2(w) + q) which in fact run

over all C0(Ω × Ω;R2) selections of the multifunction |x − y|C whatever is (u,w). This allows to split the

supremum into the sum a(π,Π) + b(π,Π) where a is the supremum with respect to (p̃, q̃) in the second line

and b is the supremum with respect to (u,w) in the third line. By linearity, we see that b(π,Π) coincides

with the indicator of the set of measures (π,Π) satisfying the conditions (i) and (ii) in (3.7) for Lipschitz

test functions thus, by using a density argument, we get b = χA . Next we rewrite a(π,Π) in the form

a(π,Π) = sup

{ˆ
ζ1 dπ +

ˆ
ζ2 dΠ : ζ1, ζ2 ∈ C0(Ω× Ω) , (ζ1, ζ2) ∈ Γ(x, y) on Ω× Ω

}
where Γ(x, y) = |x − y|C if (x, y) ∈ K and Γ(x, y) = R2 if (x, y) ∈ Ω

2 \ K. It is easy to check that Γ is

lower semicontinuous as a multifunction ranging in the family of closed convex subsets of R2. The support

function of Γ(x, y) determines a one-homogeneous lower semicontinuous integrand ϕ : Ω
2 × R2 → [0,+∞]

given by ϕ
(
(x, y), z

)
= |x−y|χ∗C (z) if (x, y) ∈ K and by ϕ

(
(x, y), z

)
= χ{0}(z) otherwise. Then, by applying

[16, Theorem 5] and by using once more the Goffmann-Serrin convention, we deduce that

a(π,Π) =

ˆ
Ω

2
ϕ
(
(x, y), (π,Π)

)
=

{
J (π,Π) if spt(π,Π) ⊂ K,

+∞ otherwise.

Therefore, recalling that h∗K(π,Π) = a(π,Π) + b(π,Π), we recover the expression given by the assertion (i).

Lets us now prove the assertion (ii). The convexity of hK is straightforward due to convexity of the set of

elements {(u,w), (p, q)} which satisfy the constraint in (3.27). Notice that hK ≤ 0 (by taking (u,w) = (0, 0)).

On the other hand, in view of assertion (i), AK ∩ dom(J ) is non-empty if and only if inf h∗K < +∞. In this

case we have hK(0, 0) ≥ h∗∗K (0, 0) = − inf h∗K > −∞ and the function hK is convex, proper and finite at

(0, 0).

Assume now that the compact subset K is such that K ∩∆ is empty. Then there exists δ > 0 such that

|x− y| ≥ δ for all (x, y) ∈ K. By evaluating the infimum in (3.27) with (u,w) = (0, 0) and in view of (3.16),

we obtain that

hK(p, q) ≤ 0 whenever max
K

{
p2

2
+ q

}
≤ δ,

from which follows that the convex function hK is continuous at (p, q) = (0, 0). An important consequence

is that h∗K attains its minimum on M(Ω × Ω;R2) and that −hK(0, 0) = −h∗∗K (0, 0) = minh∗K (see Lemma

A.1), hence the assertion (ii).
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The proof of the assertion (iii) is delicate and requires technical tools about maximal monotone maps

developed in Section 5. Let (pn, qn) be a sequence such that (pn, qn) → 0 in C0(Ω
2
). It is not restrictive to

assume that |pn(x, y)| ≤ 1 and |qn(x, y)| ≤ 1 for any n and (x, y) ∈ Ω × Ω and that supn h(pn, qn) < +∞.

By definition (3.27), we may choose (un, wn) ∈ CΣ0(Ω)× (C0(Ω))d so that

−〈f, un〉 ≤ h(pn, qn) +
1

n
,

1

2
|ζ1(un) + pn|2 + |x− y|

(
ζ2(wn) + qn

)
≤ |x− y|2 ∀(x, y) ∈ (Ω)2 . (3.29)

In particular, recalling definition (3.28), we deduce that

〈wn(y)− wn(x), y − x〉 ≤ |x− y|2 − qn(x, y)|x− y| ≤ |x− y|(|x− y|+ 1).

From this we deduce that wn is uniformly bounded by slightly modifying the proof of claim (i) in Lemma

3.16. Indeed, by choosing for any x ∈ Ω, any vector τ ∈ Sd−1 and a real t such that |t| ≤ diam(Ω) and

y = x+ tτ ∈ ∂Ω, we obtain that −〈w(x), τ〉 ≤ t+ 1 ≤ R+ 1 where R = diam(Ω). As τ is arbitrary, we arrive

at the uniform bound sup |wn| ≤ 1 +R yielding in particular that ζ2(wn) + qn ≥ −2(R+ 1)− 1. Going back

to the inequalities in (3.29), we obtain the following estimate on (un)

|un(y)− un(x) + pn(x, y)| ≤ C
√
x− y ∀(x, y) ∈ Ω× Ω, (3.30)

where we can take C =
(
6R + 6

)1/2
. Since pn tends to zero uniformly in Ω we infer equi-continuity of

{un} and, since un = 0 on Σ0, in virtue of Arzelà-Ascoli theorem, we may extract a subsequence unk that

converges uniformly to a function u ∈ CΣ0(Ω)

Next, upon extending wnk by zero to whole Rd, we may choose a subsequence (without further relabelling)

wnk that K-converges to a multifunction w̃ : Rd → 2R
d

of a closed graph. This multifunction w̃ is of full

domain since for each x ∈ Rd the set {wnk(x)}k is bounded and hence the sequence
(
x,wnk(x)

)
admits a

cluster point. Moreover, obviously we have w̃ = {0} on Ω
c
. For arbitrary pair (x, y) ∈ Ω × Ω we choose

any x̂ ∈ w̃(x) and ŷ ∈ w̃(y). Then there exists a sequence (xk, yk) ∈ Ω× Ω such that (xk, yk)→ (x, y) and(
wnk(xnk), wnk(ynk)

)
→ (x̂, ŷ). Directly from (3.29) we have

1

2

(
unk(yk)− unk(xk) + pnk(xk, yk)

)2
+ 〈wnk(yk)− wnk(xk), yk − xk〉+ qnk(xk, yk) |xk − yk| ≤ |xk − yk|2.

Since un, pn and qn converge uniformly on Ω we find that in the limit

1

2
|u(y)− u(x)|2 + 〈ŷ − x̂, y − x〉 ≤ |x− y|2 ∀ x̂ ∈ w̃(x), ŷ ∈ w̃(y), ∀(x, y) ∈ Ω× Ω (3.31)

rendering ṽ := id−w̃ a monotone multifunction of closed graph and of full domain. In case ṽ is not maximal

we define v(x) = co
(
ṽ(x)

)
arriving at a maximal monotone map v ⊃ ṽ according to [1, Corollary 1.4] (v

has a closed graph due to the finite dimension of the domain). Still we have v(x) = {x} for x ∈ Rd \Ω while

(3.31) implies that

1

2
|u(y)− u(x)|2 ≤ 〈ŷ − x̂, y − x〉 ∀ x̂ ∈ v(x), ŷ ∈ v(y), ∀(x, y) ∈ Ω× Ω.

Eventually, by taking the infimum with respect to admissible pairs (x̂, ŷ) and with the notations introduced

in Section 5, we arrive at the condition u(x)− u(y) ≤ `v(x, y) holding for all (x, y) ∈ Ω× Ω, which implies

the metric inequality (see assertion (ii) of Proposition 5.11)

u(x)− u(y) ≤ cv(x, y) ∀(x, y) ∈ Ω× Ω.

Then, keeping in mind that u ∈ CΣ0(Ω) while v is an element of MΩ, (u,v) is a competitor for the geo-

metric version (P∗geo) of the dual problem. Therefore 〈f, u〉 ≤ I0(f,Σ0) and the desired lower semicontinuity
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inequality follows since, by the first inequality in (3.29), we have

lim inf
n

h(pn, qn) ≥ lim inf
n

{
− 〈f, un〉

}
= −〈f, u〉 ≥ −I0(f,Σ0) = h(0, 0).

�

We are now in position to state the main result of Section 3:

Theorem 3.18. The following (no-gap) equalities hold:

max(P∗) = inf(P) = inf(P)

Moreover the problem (P) admits solutions and any minimizer (λ, σ) vanishes on Σ0.

Proof. We begin by proving inequality inf(P) ≥ sup(P∗). It is a consequence of the following claim:

(u,w) ∈ K and (λ, σ) ∈ A ⇒ 〈f, u〉 ≤ J(λ, σ). (3.32)

To show (3.32), we may assume that J(λ, σ) < +∞ so that λ� µ := Trσ and we can write (λ, σ) = (θ, S)µ

for a suitable (θ, S) in L1
µ(Ω,Rd×Sd×d+ ) so that J(λ, σ) =

´
χ∗C(θ, S) dµ. Then we may apply the integration

by parts formula (3.23) in Corollary 3.15 and conclude by integrating the inequality (3.24).

On the other hand, by the definition of A (see (3.7)) and in virtue of inequality J(λπ, σΠ) ≤ J (π,Π) (see

Lemma 3.12), we infer that inf(P) ≥ inf(P). Thus, in order to establish the pursued equalities, it is enough

showing that inf(P) = sup(P∗). Thanks to the last assertion of Lemma 3.17, the perturbation function h

obtained in (3.27) for K = Ω × Ω is convex, finite and l.s.c. at the origin and, by construction, such that

h(0, 0) = −I0(f,Σ0). Therefore, by Lemma A.1, it holds that I0(f,Σ0) = −h(0, 0) = −h∗∗(0, 0) = inf h∗.

Then, by applying assertion (i) of Lemma 3.17 and (3.26), we deduce the claimed equality

max(P∗) = inf
{
J (π,Π) : (π,Π) ∈ A

}
= inf(P).

Eventually it remains to show the existence of solutions to (P). Let (λn, σn) ∈ M(Ω,Rd × Sd×d) be a

minimizing sequence, namely

J(λn, σn)→ Z0, (λn, σn) ∈ A.

Since Z0 = I0(f,Σ0) < +∞ (thanks to (3.26)) and by the coercivity condition (3.13), we infer that (λn, σn) is

uniformly bounded hence weakly* precompact inM(Ω,Rd×Sd×d). It follows then from lower semicontinuity

of J and from closedness of the set A that any cluster point (λ, σ) is a minimizer for (P). Eventually we

observe that, for such a minimizer, the pair (λ, σ) (Ω\Σ0) still belongs to A. Therefore Z0 =
´

Ω χ
∗
C(λ, σ) ≥´

Ω\Σ0
χ∗C(λ, σ) from which follows that

´
Σ0
χ∗C(λ, σ) = 0. Therefore, by (3.13), we have (λ, σ) Σ0 = 0 as

claimed. �

4. Optimality conditions and examples

4.1. Optimality conditions for (P). In virtue of Theorem 3.18, an admissible pair (λ, σ) for (P) and a

pair (u,w) ∈ K are solutions to (P) and (P∗), respectively, if and only if the following extremality condition

holds:

〈f, u〉 = J(λ, σ). (4.1)

The next step is to find how this equality can be localized in order to obtain a pointwise relation (associated

law) between the optimal (λ, σ) and (u,w). As we are particularly interested with situations where optimal

design are concentrated on lower dimensional sets, the validity of an integration by parts formula applying

to possibly singular measures (λ, σ) turns out to be crucial. To that aim we use some tools of tangential
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differential calculus which we can apply successfully only in the case of a Lipschitz solution to (P∗) (that is

for (u,w) ∈ K).

Recall that a solution (λ, σ) to (P) must satisfy J(λ, σ) < +∞. Therefore, by applying assertion (i) of

Lemma 3.10 and setting µ = Trσ, such a solution can be represented in terms of a triple (µ, q, S) as follows

σ = Sµ, TrS = 1 µ-a.e., λ = Sq µ, (4.2)

where (q, S) is a suitable element of L2
µ(Ω;Rd) × L∞µ (Ω;Sd×d+ ). We recall that Ω is a convex domain, Σ0

is a non-empty compact subset of ∂Ω and f is an element of M(Ω). It is not restrictive to assume that

f(Σ0) = 0.

Theorem 4.1. Let (λ, σ) be an element ofM(Ω;Rd×Sd×d+ ) given in the form (λ, σ) = (Sq µ, Sµ) according

to (4.2) and let (u,w) ∈ Lip(Ω;R1+d). Then the pairs (λ, σ) and (u,w) are optimal for (P) and (P∗),
respectively, if and only if all the following conditions are satisfied:

(i) u = 0 on Σ0, w = 0 on ∂Ω,

(ii) −div(Sq µ) = f in D′(Ω\Σ0), Div(S µ) = 0 in D′(Ω),

(iii) 1
2 ∇u⊗∇u+ e(w) ≤ Id Ld-a.e. in Ω,

(iv) Sq = S∇µu µ-a.e.,

(v)
〈

1
2 ∇µu⊗∇µu+ eµ(w), S

〉
= TrS µ- a.e.,

(vi) µ(Σ0) = 0.

(4.3)

Remark 4.2. The choice of q satisfying (iv) does not affect the solution λ and we may drop (iv) taking

directly q = ∇µu in (ii). On the other hand, it is not mandatory to represent σ in the form σ = Sµ with

the normalization µ = Trσ (so that TrS = 1 in (v)). We may alternatively choose any µ̃ such that µ� µ̃.

Proof. Let (λ, σ) and (u,w) be admissible pairs (that satisfy (i), (ii), (iii)). Then (u,w) ∈ K and, by Corollary

3.15, we have the pointwise inequality

〈Sq,∇µu〉+ 〈S, eµ(w)〉 ≤ χ∗C(Sq, S) µ-a.e. (4.4)

Then, by applying the integration by parts formula (3.23) and integrating (4.4) with respect to measure µ,

we recover the inequality

〈f, u〉 =

ˆ
Ω
〈Sq,∇µu〉 dµ+

ˆ
Ω
〈S, eµ(w))〉 dµ ≤ J(λ, σ).

Moreover, as TrS = 1 and recalling (3.12), the inequality above becomes an equality if and only if

〈Sq,∇µu〉+ 〈S, eµ(w)〉 = 1 +
1

2
〈Sq, q〉 µ-a.e. (4.5)

Therefore, under the admissibility conditions (i), (ii), (iii), checking the optimality of (λ, σ) and (u,w) (that

is the extremality condition (4.1)) amounts to verifying whether (4.5) holds true.

First we observe that if (iv), (v) are satisfied then by symmetry of S we have 〈Sq,∇µu〉 = 〈Sq, q〉 =

〈S,∇µu⊗∇µu〉 holding µ-a.e. and it is clear that (4.5) follows. Conversely, assume that (4.5) holds true.

Then, by integrating this equality on Σ0 and taking into account assertion (i) of Corollary 3.15, we get

0 =

ˆ
Σ0

(〈Sq,∇µu〉+ 〈S, eµ(w)〉) dµ = µ(Σ0) +
1

2

ˆ
Σ0

〈Sq, q〉 dµ ≥ µ(Σ0),
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from which, we infer the condition (vi). On the other hand, after easy computations, we may rewrite (4.5)

as follows: 〈
S, eµ(w) +

1

2
∇µu⊗∇µu

〉
= 1 +

〈
S(q −∇µu), q −∇µu

〉
µ-a.e.

Since S ∈ Sd×d+ the right hand side is not smaller than 1 while, by (3.24) the first term is not greater than

1. This implies that 〈S(q −∇µu), q −∇µu〉
〉

vanishes µ-a.e. therefore (iv) must hold true and, in turn, so

does (v).

�

4.2. Optimality conditions for (P). In order to characterize truss-like solutions we give here optimality

conditions for (P). Note that they do not require the Lipschitz regularity of the pair (u,w) solving the dual

problem (P∗) but merely its continuity. In fact a non-smooth generalization of Proposition 4.3 below will

appear in Section 5 where the continuity assumption on w is skipped. We recall the admissibility conditions

given in (3.7) for the competitors of problem (P).

Proposition 4.3. Let (π,Π) be an element of M(Ω× Ω;R× R+) given in the form (π,Π) = (αΠ,Π) with

α ∈ L1
Π(Ω×Ω) and let (u,w) ∈ C0(Ω;Rd+1). Then the pairs (π,Π) and (u,w) are optimal for, respectively,

(P) and (P∗) if and only the following conditions are satisfied:

(i) u = 0 on Σ0, w = 0 on ∂Ω,

(ii) (αΠ,Π) ∈ A ,

(iii) 1
2 |u(y)− u(x)|2 + 〈w(y)− w(x), y − x〉 ≤ |x− y|2 ∀ (x, y) ∈ Ω× Ω,

(iv) α(x, y) = u(y)−u(x)
|y−x| for Π-a.e. (x, y),

(v) 1
2 |u(y)− u(x)|2 + 〈w(y)− w(x), y − x〉 = |x− y|2 for Π-a.e. (x, y).

(4.6)

Proof. The admissibility of (π,Π) = (αΠ,Π) in (P) and of (u,w) in (P∗) are equivalent to conditions

(i), (ii), (iii). Based on (i), (ii) and by exploiting (3.7) we may write

〈f, u〉 =

ˆ
Ω×Ω

(
α(x, y)

(
u(y)− u(x)

)
+
〈
w(y)− w(x),

y − x
|y − x|

〉)
Π(dxdy)

≤
ˆ

Ω×Ω
|x− y|

(
1 +

1

2

(
α(x, y)

)2)
Π(dxdy) = J (αΠ,Π),

where to pass to the second line we use the pointwise inequality α ζ1(u)+ζ2(w) ≤ |x− y|χ∗C (α, 1) (see (3.18))

taking into account that, by condition (iii), the pair
(
ζ1(u), ζ2(w)

)
defined in (3.17) belongs to |x− y|C for

every (x, y) ∈ Ω × Ω. Therefore, in virtue of the equality inf P = supP∗ obtained in Theorem 3.18, the

optimality of (π,Π) and (u,w) is equivalent to the localized equality:

α(x, y)
(
u(y)− u(x)

)
+
〈
w(y)− w(x),

y − x
|y − x|

〉
= |x− y|

(
1 +

1

2

(
α(x, y)

)2)
for Π-a.e. (x, y)

that, after multipying by |x− y|, we can rewrite as

1

2
|u(y)− u(x)|2 + 〈w(y)− w(x), y − x〉 − |x− y|2 =

1

2

(
u(y)− u(x)− |y − x|α(x, y)

)2
.

From (iii), we see that the latter equality holds if and only if (iv) and (v) are both satisfied. �

Remark 4.4. The equality in (v) implies that u and 〈id− w, y − x〉 is affine on every segment ]x, y[

whenever (x, y) ∈ spt Π. In particular, for any such a pair (x, y), we have H1([x, y] ∩ Σ0) = 0. Indeed, if

H1([x, y]∩Σ0) > 0, then x, y ∈ ∂Ω and, as u is affine on [x, y], we get u(x) = u(y) = 〈w(y)− w(x), y − x〉 = 0,

which is in contradiction with (v). We thus recover condition (vi) of Theorem 4.1.



30 OPTIMAL DESIGN VERSUS MAXIMAL MONGE-KANTOROVICH METRICS

4.3. Optimal configurations in the radial case. For R > 0 we consider a circular domain Ω =
{
x ∈

R2 : |x| < R
}

and a Dirichlet condition on the whole boundary (that is Σ0 = ∂Ω). We also assume that

the load f is radial (note that f can be a signed measure). It is then completely described by the bounded

repartition function

F (t) :=

ˆ
{|x|≤t}

f(dx), t ∈ [0, R]. (4.7)

Then, working in polar coordinates (r, θ), it is easy to find a solution (ū, w̄), (λ̄, σ̄) to (4.3) in the form of

radial functions:

ū(x) = u(r), w̄(x) = w(r) er, λ = α(r) z(r) er µ, σ = α(r) er ⊗ er µ, µ = L2 Ω (4.8)

for suitable u,w ∈ Lip
(
(0, R)

)
and z, α in L1

loc

(
(0, R)

)
. In fact, as noticed in Remark 4.2, we may assume

that z = u′ on the subset {α 6= 0}. Thus (4.3) has a solution of the form (4.8) if and only if:
(i′) u(R) = 0, w(0) = w(R) = 0, α ≥ 0 a.e. in (0, R),

(ii′) −div
(
α(r)u′(r) er

)
= f, Div

(
α(r) er ⊗ er

)
= 0 in D′(Ω),

(iii′) 1
2 |u
′|2 + w′ ≤ 1, w

r ≤ 1 a.e. in (0, R),

(iv′) 1
2 |u
′|2 + w′ = 1 a.e. in {α > 0},

(4.9)

where in (i′) we use (i) and express that w̄ = w(|x|) er is continuous at x = 0 and in addition that σ ≥ 0.

The conditions (iii′), (iv′) are equivalent to (iii), (iv) since

1

2
∇ū⊗∇ū+ e(w̄) =

(1

2

∣∣u′∣∣2 + w′
)
er ⊗ er +

w

r
eθ ⊗ eθ, TrS = α(r).

It turns out that (4.9) admits a unique solution. Indeed, solving the equations (ii′) leads to

α(r) =
D

r
, u′(r) = z(r) = −F (r)

2πD
.

for a suitable positive constant D. This can be checked by noticing that α needs to satisfy α′ + α/r = 0 in

(0, R) and that conversely the distributional divergence of 1
r er ⊗ er vanishes on the whole ball Ω (including

the origin). On the other hand, the expression for u′(r) is deduced by integrating the first equation of (ii′)

on the subset {|x| < r} and by using Green’s formula and (4.7). Accordingly, in order to match with (i′)

and with the equality constraint in (iv′), we deduce that:

u(r) =
1

2πD

ˆ R

r
F (t) dt, w(r) = r − 1

8π2D2

ˆ r

0
F 2(t) dt (4.10)

where the constant D is determined by the condition w(R) = 0, i.e.

D =
1

2π

(
1

2R

ˆ R

0
F 2(t) dt

) 1
2

. (4.11)

Note that u and w are both Lipschitz (since |F (t)| ≤
´
|f |) and that the first inequality in (iii′) is an equality

while the second one (i.e. w ≤ r ) follows directly from (4.10). Therefore all the required conditions in (4.9)

are satisfied.

Remark 4.5. We observe that w can never be identically zero except in the case where F (t) is constant,

that is when f is a Dirac mass at the origin. In this special case, we have inf (FMD) = inf (OM) which, upon

recalling Corollary 2.5, relates to the fact that the high ridge of Ω given by (2.14) satisfies M(Ω) = {0}.
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Remark 4.6. If we confine ourselves to loads f furnishing a strictly increasing function F (a basic example

of such load is a uniform density), then the solution to (P∗) given by (4.10) provides a strictly concave u.

In particular, for any pair (x, y) ∈ Ω× Ω\∆ the function ū is not affine on [x, y]. Thus, owing to Lemma

3.5, the equality condition (v) in (4.6) required for solving P cannot be satisfied whatever we take (π,Π)

as an admissible pair in A . That way we get a counter-example to the existence of a truss solution for the

optimal membrane problem.

Remark 4.7. In general the solution to the primal problem (P) is not unique. For instance let us consider

a radial load f which does not charge the open subset {|x| < r0} for some r0 ∈ (0, R). Then, besides the

optimal stress solution σ̄ = D
R er ⊗ er with D given in (4.11), we may also take another solution mixing a

distributed stress tensor and a concentrated one, as for instance

σ = D

(
er ⊗ er
r

L2 {r > r0}+ eθ ⊗ eθ H1 {|x| = r0}
)
,

which clearly satisfies Div σ = 0 in D′(Ω). One checks easily the optimality conditions (4.3) for u,w defined

by (4.10) while taking µ = µa + µs where µa = L2 {r > r0} and µs = H1 {|x| = r0}. The µ tangential

projector Pµ is then the identity µa-a.e. while Pµ = eθ ⊗ eθ holds µs-a.e. Noticing that F defined in (4.7)

vanishes on [0, r0), we have u(r) = u(r0) and w(r) = r for all r ∈ [0, r0]. Then, writing σ = Sµ, we get

S =

{
D
r er ⊗ er µa-a.e.,

Deθ ⊗ eθ µs-a.e.,

(
∇µū, eµ(w̄)

)
=

{(
u′(r) er, w

′(r) er ⊗ er + w(r)
r eθ ⊗ eθ

)
µa-a.e.,(

0, 1
r0
eθ ⊗ eθ

)
µs-a.e.

By taking q = ∇µū we see that all the conditions (4.3) are satisfied.

4.4. Optimal configurations for a one-force load.

Case of a disk. Let Ω ⊂ R2 be a disk of radius R0 centered at the origin. We consider a load f = δx0 with

x0 ∈ Ω and any Dirichlet zone Σ0 ⊂ ∂Ω such that x0 ∈ co(Σ0). It is convenient to introduce the geometric

parameter d0 :=
√
R2

0 − |x0|2. Let p ∈ P(Σ0) be any probability measure satisfying the barycenter condition

x0 =

ˆ
Σ0

x p(dx). (4.12)

Then we consider the pair (π,Π) = (αΠ,Π) ∈
(
M+(Ω× Ω)

)2
defined by

π = p(dx)⊗ δx0(dy), Π =
|x0 − x|√

2 d0

p(dx)⊗ δx0(dy), α(x, x0) =

√
2 d0

|x− x0|
for x ∈ Σ0. (4.13)

We claim that such a pair solves the problem (P), thus providing a truss solution (λπ, σΠ) to (P) in virtue

of Theorem 3.18. Clearly (π,Π) is an admissible competitor. Indeed Π ≥ 0 and condition (i) of in (4.6) is

fulfilled since p(Σ0) = 1 while condition (ii) follows from (4.12). In view of Proposition 4.3, it remains to

find an admissible pair (ū, w̄) ∈ C0(Ω;Rd+1) satisfying the conditions (iii), (iv), (v) in (4.6). To that aim,

we proceed in polar coordinates (r, θ) with respect to x0 so that the domain Ω is parametrized as

Ω :=
{
x0 + r er(θ) : θ ∈ [0, 2π), 0 ≤ r < ρ(θ)

}
,

where er(θ) := (cos θ, sin θ) and ρ(θ) : [0, 2π) → [d0, 2R0 − d0] a Lipschitz function. Then we propose the

following ū, w̄ constructed from the function h whose graph coincides with the conical surface in R3 with

(x0, 1) as its vertex and containing ∂Ω× {0}, namely:

(ū, w̄) =
(√

2 d0, 2x0

)
h where h(x0 + r er) := 1− r

ρ(θ)
. (4.14)
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Since (ū, w̄) vanishes on the whole boundary ∂Ω and (ū, w̄)(x0) = (
√

2 d0, 2x0), the equalities in (iv) and

(v) in (4.6) become, respectively

α(x, x0) =
ū(x0)

|x− x0|
=

√
2 d0

|x− x0|
, d2

0 + 〈2x0, x0 − x〉 = |x0 − x|2.

The first equality then follows from the explicit form of α(x, x0) in (4.13) while the second equality equivalent

to d2
0 + |x0|2 = |x|2 holds at every x ∈ ∂Ω where |x| = R0, hence p-a.e. Eventually it remains to check the

two-point condition (iii) which is the tricky part. As (ū, w̄) is Lipschitz, we may check the equivalent

condition (3.4b) (see Lemma 3.5), namely that at every point of differentiability x ∈ Ω the eigenvalues of

the symmetric tensor A(x) := 1
2 ∇ū(x) ⊗ ∇ū(x) + e(w̄)(x) do not exceed 1. We compute using the frame

(er, eθ) (where eθ(θ) = (− sin θ, cos θ)). In view of (4.14) we have for x = x0 + r er:

∇ū =
√

2 d0∇h =
√

2 d0 (a er + a′eθ), e(w̄) = x0 ⊗∇h+∇h⊗ x0 where a(θ) := − 1

ρ(θ)
.

We obtain the decomposition A(x) = A1,1 er ⊗ er +A1,2 (er ⊗ eθ + eθ ⊗ er) +A2,2 eθ ⊗ eθ in which

A1,1 = d2
0 a

2 + 2〈x0, er〉 a, A1,2 = d2
0 aa

′ + 〈x0, er〉 a′ + 〈x0, eθ〉 a, A2,2 = d2
0 (a′)2 + 2〈x0, eθ〉 a′. (4.15)

Fortunately the later expressions simplify. Indeed, since |x0 + ρ er|2 = R2
0 , we have ρ2 + 2ρ〈x0, er〉 =

R2
0 − |x0|2 = d2

0 and therefore:

d2
0 a

2 = 1− 2〈x0, er〉 a, d2
0 aa

′ = −〈x0, er〉 a′ − 〈x0, eθ〉 a,

where the second equality is obtained by differentiating the first one with respect to θ. Thus A1,1 = 1 and

A1,2 = 0. Next we prove that A2,2 ≤ 0. To that aim we exploit the fact that ū = 0 on ∂Ω so that ∇ū is

parallel to x0 + ρ er. This implies more relations:

(〈x0, er〉+ ρ) a′ = 〈x0, eθ〉 a, d2
0 (a′)2 =

〈x0, eθ〉2

(〈x0, er〉+ ρ)2

(
1− 2〈x0, er〉 a

)
.

Substituting in the expression of A2,2 in (4.15), we get:

A2,2 =
〈x0, eθ〉2

(〈x0, er〉+ ρ)2

(
1− 2〈x0, er〉 a+ 2(〈x0, er〉+ ρ) a

)
= − 〈x0, eθ〉2

(〈x0, er〉+ ρ)2
.

Summarizing we have proved that A(x) is a diagonal tensor with eigenvalues not larger that 1. This implies

the admissibility condition (iii) and the optimality of (ū, w̄) for the dual problem while (π,Π) given by

(4.13) is optimal for (P). Moreover the minimal energy is given by min(P) = min(P) = max(P∗) =
√

2 d0.

Case of a general convex domain. The construction used above for the disk paves a way for finding a solution

for other shapes of design domains. More precisely let Ω ⊂ R2 be a general bounded convex domain, x0 ∈ Ω

and Σ0 ⊂ ∂Ω a closed Dirichlet region. We reinforce the condition x0 ∈ co(Σ0) as follows:

∃y0 ∈ Ω : x0 ∈ co
(
Σ0(y0)

)
where Σ0(y0) := Σ0 ∩ p∂Ω(y0) (4.16)

where p∂Ω(y0) is the minimal set of d(y0, ·) on ∂Ω, see (1.8). Then we define

d0(y0) :=

√(
d(y0,Σ0)

)2 − |x0 − y0|2.

Proposition 4.8. Assume that (4.16) is satisfied for a suitable y0 ∈ Ω and let ρ be any probability supported

on Σ0(y0) such that x0 =
´
x ρ(dx). Then the pair (π,Π) given by

π = ρ⊗ δx0 , Π =
|x0 − x|√
2 d0(y0)

ρ(dx)⊗ δx0(dy) (4.17)
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solves the problem (P) for f = δx0 and we have min(P) = min(P) =
√

2 d0(y0).

Proof. In the same way as for the disk, the equalities ρ(Σ0) = 1 and x0 =
´
x ρ(dx) imply that (π,Π)

given in (4.17) is an admissible pair for (P). Next we observe that (4.16) implies that x0 ∈ B(y0, R0) where

R0 = d(y0, ∂Ω). Without loss of generality we may assume that y0 is the origin so that d0(y0) =
√
R2

0 − |x0|2.

Therefore (π,Π) given in (4.17) coincides with the optimal pair we found for the disk B(0, R0) (see (4.13)).

Let us consider the zero extension to Ω of the pair (ū, w̄) given by (4.14) in the disk B(0, R0). Clearly it

is Lipschitz continuous, vanishes on all ∂Ω and satisfies the pointwise gradient constraint (3.4b) on all Ω.

Therefore the condition (iii) of Proposition 4.3 is fulfilled on Ω × Ω. On the other hand, the conditions

(iv) and (v) are obviously satisfied in the same way as for the disk. That way we recover the optimality of

(π,Π) for the problem (P) set on the domain Ω. The corresponding minimal energy is given by min(P) =√
2
√
R2

0 − |x0|2 =
√

2 d0(y0).

�

Remark 4.9. Assume for simplicity that Σ0 = ∂Ω. Due to the condition (4.16) which is crucial in our

previous construction, we can only handle single loads f = δx0 when x0 belongs to the compact subset

K0 :=
⋃{

co
(
p∂Ω(y0)

)
: y0 ∈ Ω

}
which is determined by those points y0 for which p∂Ω(y0) has more than

one element (i.e. y0 belongs to the skeleton of Ω). In contrast with the square for which K0 = Ω, it happens

that K0 is a strict subset of Ω for an ellipse of large excentricity.

As an illustration of Proposition 4.8 we can solve the one-force problem for a rectangular design domain

Ω of sides 2R and 2R + L where L > 0 as presented in Fig. 2 where also locations of strategic points

a1, . . . , a6 are specified. We choose Σ0 = ∂Ω and f = δx0 for x0 ∈ Ω. The dashed lines in Fig 2 partition the

(a) (b) (c)

Figure 2. y0 and σ̄ for three locations of x0

domain into seven regions. For the position x0 lying inside each of those regions, the solution (λ, σ) given

by (4.17) differs. By symmetry it is not restrictive to assume that x0 belongs to the south-east part of Ω so

that we are reduced to three cases. For each of them we precise the selected y0 and the probability ρ. The

corresponding optimal σ̄ is depicted in Fig 2.

Case (a): x0 belongs to the interior of co{a2, a3, a5, a6}. By b1 and b2 we denote the orthogonal projections

of x0 onto the longer sides of the domain, see Fig. 2(a). The unique y0 satisfying (4.16) is given by y0 =

(b1 + b2)/2 (thus Σ0(y0) = {b1, b2}). The unique element ρ of P(Σ0(y0)) such that x0 =
´
x ρ(dx) is
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given by ρ = |x0−b2|
|b1−b2| δb1 + |x0−b1|

|b1−b2| δb2 . After some simplifications, we arrive at a minimal energy given by

min(P) =
√

2 |x0 − b1||x0 − b2|. The optimal pair (λ, σ) represented in Fig. 2(a) corresponds to a one-

dimensional string [b1, b2].

Case (b): x0 belongs to the closure of co{a1, a2, a3}. The unique y0 satisfying (4.16) is given by y0 =

(a2 + a3)/2. Then Σ0(y0) = {a1, a2, a3} and ρ is the unique probability ρ =
∑3

i=1 αi δai with αi ≥ 0 such

that x0 =
´
x ρ(dx) =

∑3
i=1 αi ai. The optimal membrane σ consists of three strings tied at x0 as depicted

in Fig. 2(b).

Case (c): x0 lies in co{a1, a2, a7} . The unique possible y0 is determined by its projections b1, b2 on the

boundary where b1 ∈ [a1, a7] and b2 ∈ [a2, a7] are chosen so that the segment [b1, b2] contains x0 and is

parallel to [a1, a2] (see Fig. 2(c)). Then Σ0(y0) = {b1, b2} and ρ = |x0−b2|
|b1−b2| δb1 + |x0−b1|

|b1−b2| δb2 . Similarly to the

Case (a), the optimal membrane is a one dimensional string [b1, b2].

In addition we can handle the case of a square where L = 0, a3 = a5 and a2 = a6. For x0 lying in

the triangle a1a2a7, the construction of y0 and ρ are the same as in the Case (c) above rendering the one

dimensional string [b1, b2] the unique solution. In contrast, if x0 lies in the interior of the rotated square

co{a1, a2, a3, a4}, the unique possible y0 is the center of the square while Σ0(y0) = {a1, a2, a3, a4}. Then there

are infinitely many probability measures ρ =
∑4

i=1 αi δai that give x0 =
∑4

i=1 αi ai. Among the corresponding

solutions, we recover in particular the four-string structure that was advertised in the introduction, see Fig.

1(b).

5. Kantorovich-Rubinstein duality for optimal metrics.

In this section our aim is to attack the dual problem (P∗) from a different viewpoint which relies on the

observation that, for every Lipschitz admissible pair (u,w) ∈ K, the function v := id− w satisfies e(v) ≥ 0

and therefore is a monotone map from Ω to Rd. Then the two-point condition (3.6) rewritten as

u(x)− u(y) ≤ `v(x, y), where `v(x, y) :=
√

2〈v(y)− v(x), y − x〉,

can be extended to a suitable class of functions which allows to characterize K. Moreover, by considering a

regularization of the function `v (see Subsection 5.1), we attach to every v a sub-additive transport cost cv
so that (P∗) can be rewritten in the form:

sup
v

{
sup
u

{
〈f, u〉 : u(x)− u(y) ≤ cv(x, y) ∀ (x, y) ∈ Ω× Ω

}}
,

where the second supremum falls into the classical Kantorovich-Rubinstein duality framework (see for in-

stance [37] for more details).

5.1. Pseudo-metrics associated with monotone maps. Given a multifunction v : Rd → Rd (being a

map from Rd to subsets of Rd) we denote by Gv its graph that is Gv =
{

(x, v) ∈ Rd×Rd : v ∈ v(x)
}

. Recall

that v is called monotone whenever〈
x′1 − x′2, x1 − x2

〉
≥ 0 ∀ (x1, x

′
1), (x2, x

′
2) ∈ Gv.

Moreover we say that v is maximal monotone if for any monotone ṽ such that Gv ⊂ Gṽ there holds

ṽ = v. This implies in particular that Gv is a closed subset of Rd × Rd (or equivalently that v is upper

semicontinuous as a multifunction).

Given a bounded convex domain Ω ⊂ Rd, we will consider the class of maps

MΩ :=
{

v : Rd → Rd : v maximal monotone, v = id in Rd \ Ω
}
,
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and in parallel the following subset of BVloc(Rd) ∩ L∞(Rd):

BΩ :=
{
v ∈ BVloc(Rd;Rd) : e(v) ≥ 0, v = id a.e. in Rd \ Ω

}
.

It is important to notice that MΩ and BΩ are convex sets. For every v ∈MΩ and a, b ∈ Rd, we define:

`v(a, b) := min
{√

2〈b′ − a′, b− a〉 : a′ ∈ v(a), b′ ∈ v(b)
}

(5.1)

and the scalar monotone function:

va,b(t) :=
〈
v
(
(1− t) a+ t b

)
, b− a

〉
, t ∈ R. (5.2)

Note that `v(a, b) =
√

2|b− a| if a, b ∈ Rd \ Ω. It turns out that the function `v is lower semicontinous but

the continuity may fail out of the diagonal.

Lemma 5.1. Let R denote the diameter of Ω and let v be an element of MΩ. Then:

(i) For every x ∈ Rd, v(x) is a non-empty compact convex subset of BR(x) and there holds v(x) ⊃ {x} for

every x ∈ ∂Ω. Moreover, the subset {x ∈ Rd : v(x) is not a singleton} is contained in a d−1 rectifiable

subset of Ω.

(ii) The function `v is lower semicontinuous on Rd × Rd and the minimum in (5.1) is attained.

(iii) Let a, b ∈ Rd and va,b as defined in (5.2). Then va,b is a maximal monotone map from R to R and

`v(a, b) =
√

2 (va,b(1−)− va,b(0+))
1
2 .

Moreover we have the following upper bounds

`v(a, b) ≤
√

2 |b− a|1/2(R+ |b− a|)1/2, `v(a, b) ≤
√

2R |b− a|1/2 if (a, b) ∈ Ω
2
. (5.3)

Proof. The first property in assertion (i) follows from [1, Prop.1.2] and from assertion (i) of Lemma 3.16.

Since v(x) = {x} holds for every x ∈ Rd \ Ω, the closed graph of v contains {(x, x) : x ∈ ∂Ω} hence

v(x) ⊃ {x} for all x ∈ ∂Ω. The second property in assertion (i) is a direct consequence of [1, Thm 2.2

]. The lower semicontinuity property stated in (ii) is straightforward once we know that for any sequence

(an, bn) → (a, b) the elements a′n ∈ v(an), b′n ∈ v(an) which realize the minimum in (5.1) remain in a

compact subset of Rd, thus (possibly after extraction of a subsequence) converge respectively to a′ ∈ v(a)

and b′ ∈ v(b). It is in fact the case since, by the assertion (i), one has |a′n − an| + |b′n − bn| ≤ 2R and also

due to closedness of the graph v. The equality in assertion (iii) is trivial since `v(a, b) = `va,b(0, 1) while one

has va,b(t) = [va,b(t−),va,b(t+)] for every t ∈ R. On the other hand, if a, b ∈ Ω × Ω the intersection of the

line
{

(1− t)a+ tb : t ∈ R
}

with ∂Ω gives two values ta, tb such that ta < 0 < 1 < tb and (tb− ta)|b− a| ≤ R.

Therefore, since v agrees with the identity in Rd \ Ω, we get

va,b(1−)− va,b(0+) ≤ va,b(tb − 0)− va,b(ta + 0) ≤ R |b− a| (5.4)

hence we obtain the inequality `v(a, b) ≤
√

2R|b − a|1/2 for all (a, b) ∈ Ω × Ω which can be extended to

Ω×Ω by using the lower semicontinuity of `v obtained in assertion (ii). Thus the second inequality in (5.3)

is proved. The first one follows if (a, b) ∈ Ω × Ω whereas it obviously holds true also for (a, b) ∈ (Rd \ Ω)2.

Eventually it is enough to check the case where a ∈ Ω while b /∈ Ω. This is done by considering the unique

b′ ∈ ∂Ω ∩ [a, b] which is associated with a value tb′ < 1. Then

va,b(1−)− va,b(0+) ≤
(
va,b(tb′ − 0)− va,b(ta + 0)

)
+
(
va,b(1−)− va,b(tb′ + 0)

)
≤ R|b− a|+ |b− a|2.

The proof of Lemma 5.1 is complete �

The main properties of MΩ and its relation with BΩ are summarized in the next two lemmas.
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Lemma 5.2. For every v ∈ MΩ there exists a unique v ∈ BΩ such that v(x) = {v(x)} for a.e. x ∈ Ω.

Moreover, for R being the diameter of Ω, one has:
ˆ

Ω
|Dv| ≤ 2CdR

d and 〈v(y)− v(x), y − x〉 ≤ R |x− y| a.e. in Ω× Ω. (5.5)

Conversely, for every v ∈ BΩ there exists a unique v ∈MΩ such that v(x) = {v(x)} for a.e. x ∈ Ω. Moreover

v(x) is a one dimensional segment [v−(x), v+(x)] for Hd−1 a.e. x in the jump set of v.

Proof. The second inequality in (5.5) can be deduced from (5.4). The other statements are consequences of

[1, Thm 5.3 and Corollary 1.5].

�

By the assertion (i) of Lemma 5.1 the Hausdorff distance DH in Rd×Rd between the graphs of two elements

v1,v2 ∈ MΩ is finite and induces a metric h(v1,v2) := DH(Gv1 , Gv2). Similarly, we may embed BΩ with

the L1-distance d(v1, v2) :=
´

Ω |v1− v2|dx (recall that v1 = v2 = id a.e in Rd \Ω). In view of Lemma 5.2, we

may consider the one to one map between metric spaces

i : v ∈ (MΩ,h) 7→ v ∈ (BΩ, d).

Lemma 5.3. The set MΩ is a compact metric space and i is a homeomorphism between MΩ and BΩ.

Furthermore, let (vn) be a sequence MΩ such that vn → v. Then `vn → `v in the sense of Γ-convergence

that is  lim inf
n

`vn(an, bn) ≥ `v(a, b) whenever (an, bn)→ (a, b) in Rd × Rd, (5.6a)

∀(a, b) ∃ (an, bn)→ (a, b) : lim sup
n

`vn(an, bn) ≤ `v(a, b). (5.6b)

Proof. We observe that, thanks to the assertion (i) of Lemma 5.1, we have the estimate h(v, id) ≤ R for

every v ∈MΩ (this prevents the graph of v to converge to an empty set). The compactness of (MΩ,h) is

then a consequence of [1, Proposition 1.7]. Let us prove that the one-to-one map i is continuous. Assume

that vn → v in MΩ and consider a Lebesgue negligible Borel subset N such that vn(x) = {vn(x)} and

v(x) = {v(x)} for all x /∈ N and for every n ∈ N. Then, for such an x, the Hausdorff convergence of the

graphs Gvn implies that v(x) is the unique possible cluster of the sequence
(
vn(x)

)
. Since this sequence

is bounded we infer that vn → v a.e. on Ω and, by the dominated convergence theorem, the convergence

d(vn, v) =
´

Ω |vn − v| dx → 0 follows.

It remains to show the Γ-convergence property (5.6). For proving (5.6a) we write `vn(an, bn) =√
2〈b′n − a′n, bn − an〉 for suitable a′n ∈ v(an) , b′n ∈ v(bn) (which is plausible owing to assertion (ii) of

Lemma 5.1). As a′n, b
′
n remain bounded (by assertion (i) of Lemma 5.1) we may assume that, up to ex-

traction of a subsequence, it holds that a′n → a′, b′n → b′. Then the graph convergence of vn implies

that a′ ∈ v(a), b′ ∈ v(b), hence lim infn `vn(an, bn) =
√

2〈b′ − a′, b− a〉 ≥ `v(a, b). On the other hand,

for given a, b we can choose a′ ∈ v(a) , b′ ∈ v(b) so that `v(a, b) =
√

2〈b′ − a′, b− a〉. Then there exists

(an, a
′
n) → (a, a′) and (bn, b

′
n) → (b, b′) such that a′n ∈ v(an), b′n ∈ v(bn). Then the property (5.6b) follows

since

lim sup
n

`vn(an, bn) ≤ lim sup
n

√
2〈b′n − a′n, bn − an〉 =

√
2〈b′ − a′, b− a〉 = `v(a, b).

�
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Next we associate to every v ∈MΩ a cost function cv : Rd × Rd → R+ defined as follows:

cv(a, b) := inf

{
N−1∑
i=1

`v(xi, xi+1) : x1 = a, xN = b, N ≥ 2

}
(5.7)

where `v is defined by (5.1). Note that the infimum in (5.7) is not reached in general since the number N

of intermediate points is not upper bounded. Let us also remark that, by using the homeomorphism i, we

may associate the same cost to any v ∈ BΩ so that the notation cv could be used as well.

Theorem 5.4. Let v be an element of MΩ. Then:

(i) cv is continuous sub-additive and satisfies

√
2 |d(a,Ω)− d(b,Ω)| ≤ cv(a, b) ≤ `v(a, b) ≤

√
2 |b− a|1/2(R+ |b− a|)1/2 ∀(a, b) ∈ Rd × Rd; (5.8)

(ii) the following dual representation of the pseudo-metric cv holds true

cv(a, b) = max
{
u(b)− u(a) : u ∈ C0(Rd), u(x)− u(y) ≤ `v(x, y) ∀(x, y)

}
; (5.9)

(iii) for every (a, b) ∈ Rd × Rd the evaluation function v ∈ (MΩ,h) 7→ cv(a, b) is concave and upper

semicontinuous.

Remark 5.5. The evaluation map in assertion (iii) above is not continuous in general. Indeed, consider

for instance the case where Ω = (0, 1) and vn is the monotone map associated with the step function vn on

[0, 1] such that vn(0) = 0, vn(1) = 1 and v′n = 1
n−1

∑n−1
i=1 δ i

n
. Then, by taking intermediate points in (5.7)

very close to each i/n from the left and from the right, it is easy to check that cvn(0, 1) = 0. Clearly vn → v

for v being the identity. Hence 0 = limn cvn(0, 1) < cv(0, 1) = 1.

Proof. The sub-additivity of cv is straightforward from the definition (5.7); the second inequality in (5.8) is

obtained by taking N = 2 and (x1, x2) = (a, b) while the third one (already in (5.3)) implies that is cv is

continuous on the diagonal hence everywhere by exploiting the sub-additivity property. The first inequality

in (5.8) will be obtained by applying (5.9) to the function u(x) =
√

2 d(x,Ω) once we can check that

u(x)− u(y) ≤ `v(x, y) for all (x, y). This is trivially the case if (x, y) ∈ Ω
2 ∪ (Rd \ Ω)2 whereas for x ∈ Ω

and y /∈ Ω it follows from inequalities `v(x, y) ≥ `v(z, y) =
√

2(vz,y(1+) − vz,y(0−))
1
2 =
√

2 |y − z| ≥ u(y)

(note that u(x) = 0) where z = [x, y] ∩ ∂Ω.

Let us prove (ii). By the very definition (5.7), for every u ∈ C0(Rd), we have the equivalence

u(x)− u(y) ≤ `v(x, y) ∀(x, y) ⇐⇒ u(x)− u(y) ≤ cv(x, y) ∀(x, y).

This clearly implies that cv(a, b) is not larger than the right hand side of (5.9). The converse inequality is

obtained by considering the function u(x) = cv(a, x) which satisfies u(x)−u(y) ≤ cv(x, y) by sub-additivity

and symmetry of cv. In addition, this function u is Hölder continuous by the assertion (i) and (5.3). This

proves the equality in (5.9). Moreover, since the Hölder coefficient is uniformly bounded for all admissible

u, the supremum is actually a maximum.

It remains to prove assertion (iii). Let us check first that that the map v 7→ cv(a, b) is upper semicontin-

uous. Let vn → v in MΩ and let us show that lim supn cvn(a, b) ≤ cv(a, b) for fixed (a, b) ∈ (Rd)2. Given a

finite set {xi, 1 ≤ i ≤ N} such that x1 = a , xN = b, we can choose, for each i, an approximating sequence

xi,n → xi such that `vn(xi,n, xi+1,n) → `v(x, y). This is indeed a consequence of the Γ-convergence of `vn
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to `v proved in Lemma 5.3. In accordance with (5.7), for each n we may estimate cvn(a, b) from above by

using the finite sequence of N + 2 points {a, x1,n, . . . , xN,n, b} and we are led to

lim sup
n

cvn(a, b) ≤ lim sup
n

{
`vn(a, x1,n) +

N−1∑
i=1

`vn(xi,n, xi+1,n) + `vn(xN,n, b)

}
=

N−1∑
i=1

`v(xi, xi+1),

where to obtain the latter equality we additionally notice that limn `vn(a, x1,n) = limn `vn(xN,n, b) = 0 as

a consequence of the estimates (5.3). By minimizing the right hand sum with respect to xi’s we obtain the

claimed upper semicontinuity inequality.

Let us prove now the concavity property. It is enough to check the middle point property that is, for

given v1,v2 ∈MΩ and setting v = 1
2(v1 + v2):

cv(a, b) ≥ 1

2

(
cv1(a, b) + cv2(a, b)

)
. (5.10)

In view of assertion (ii), there exist two elements u1, u2 ∈ C0(Rd) such that for i ∈ {1, 2}

cvi
(a, b) = ui(b)− ui(a) and ui(x)− ui(y) ≤ `vi(x, y) ∀ (x, y).

Then (5.10) follows once we can show that u = 1
2(u1 + u2) satisfies the constraint u(x) − u(y) ≤ `v(x, y)

for every (x, y) ∈ (Rd)2 as well. This is a consequence of the following concavity property of the map

v 7→ `2v(x, y):

`2v1+v2
2

(x, y) ≥ 1

2

(
`2v1

(x, y) + `2v2
(x, y)

)
. (5.11)

Indeed, since |ui(x)− ui(y)| ≤ `vi
(x, y), by straightforward computations we will get

|u(x)− u(y)|2 ≤ 1

4

(
`v1(x, y) + `v2(x, y)

)2 ≤ 1

2

(
`v1(x, y)2 + `v2(x, y)2

)
≤ `2v1+v2

2

(x, y) = `v(x, y)2.

Let us proof the claim (5.11). Let x̂ ∈ 1
2(v1+v2)(x) and ŷ ∈ 1

2(v1+v2)(y). Then we have x̂ = 1
2(x̂1+x̂2), ŷ =

1
2(ŷ1 + ŷ2) for suitable x̂i, ŷi in Rd. Therefore, by the definition of `vi

(x, y), we infer that

2 〈ŷ − x̂, y − x〉 = 〈ŷ1 − x̂1, y − x〉+ 〈ŷ2 − x̂2, y − x〉 ≥
1

2

(
`2v1

(x, y) + `2v2
(x, y)

)
,

hence the claim by choosing (x̂, ŷ) optimal for `v1+v2
2

(x, y). The proof of Theorem 5.4 is now complete. �

The construction of cv described above in fact provides the largest sub-additive function below `v. It

induces a pseudo-distance in Rd, i.e. the value cv(a, b) for two distinct points can be zero. In particular this

happens if v is tangentially flat on [a, b]. In order to obtain a metric we need to consider the quotient space

Xv of Rd with respect to the relation x ∼ y iff cv(x, y) = 0 and to extend the definition of cv accordingly.

Note that, owing to assertion (i) of Theorem 5.4, the class ẋ of an element x is a closed subset of Rd and that

ẋ = {x} for x ∈ Rd \ Ω. A natural local pseudo-metric associated with v will be given by the Finsler-type

function

ϕv(x, z) = lim sup
h→0+

1

h
cv
(
x, x+ hz

)
(5.12)

It is a Borel integrand from Rd ×Rd to [0,+∞] which is convex l.s.c. and positively one homogeneous in z.

We shall consider continuous parametrized curves in the metric space Xv. Such a curve can be represented

by a continuous function γ : [0, 1]→ Rd where Rd is equipped with the pseudo-distance cv. We will abbreviate
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by saying that γ is cv-continuous (note that γ may jump from x to y if cv(x, y) = 0 !). To such a curve we

associate its length defined by

Lv(γ) = sup

{
n−1∑
i=0

cv(γ(ti+1), γ(ti)) : 0 ≤ t0 < t1 < · · · < tn ≤ 1

}
. (5.13)

A curve γ of finite length is called rectifiable.

The geodesic (or inner) distance cgv(a, b) between two points a, b is given by

cgv(a, b) := inf
{
Lv(γ) : γ cv-continuous , γ(0) = a, γ(1) = b

}
.

If a minimizer γ exists, the image of γ will be called a geodesic curve for cv joining a to b. In general one

has cv ≤ cgv possibly with a strict inequality. Fortunately, in our case, the equality holds true.

Proposition 5.6. Let v be an element of MΩ and a, b ∈ Rd. Then:

(i) Let γ(t) = (1− t) a+ t b for t ∈ [0, 1]. Then it holds that cgv(a, b) ≤ Lv(γ) ≤ `v(a, b). As a result we have

cgv(a, b) = cv(a, b). Moreover, the equality cv(a, b) = `v(a, b) is true if and only if the scalar monotone

function va,b has a constant slope.

(ii) Assume that the infimum in (5.7) is attained for suitable points x1, x2, . . . , xN ∈ Rd. Then the polygonal

curve C = ∪N−1
i=1 [xi, xi+1] is a geodesic joining a to b while for each i the scalar function vxi,xi+1 is

affine on (0, 1) .

(iii) Assume that v(x) = {v(x)} where v is a Lipschitz map and let ϕv be given by (5.12). Then it holds

that

Lv(γ) =

ˆ 1

0
ϕv

(
γ(t), γ′(t)

)
dt for every γ ∈ Lip([0, 1];Rd). (5.14)

Remark 5.7. The extension of the integral representation (5.14) to general v ∈MΩ is a delicate issue. It

turns out that, for a Lipschitz v, the Finsler pseudo-metric ϕv satisfies

ϕv(x, z) = lim sup
h→0+

1

h
`v
(
x, x+ hz

)
=
√

2
(
〈e(v)(x), z ⊗ z〉

)1/2
,

at every point x where v is differentiable. A natural guess would be that the formula (5.14) is still valid for

a general v if we take ϕv(x, z) = lim suph→0+
1
h`v(x, x+ hz) allowing infinite values.

The main point of the proof of the assertion (i) relies on the following one dimensional lemma:

Lemma 5.8. Let f : [0, 1] → R be a bounded non-decreasing function and denote by f ′(x) the a.e. defined

derivative of f . Then the function

mf (s, t) := inf
{s=t0<t1<···<tN=t}

N−1∑
i=0

√(
ti+1 − ti

)(
f(ti+1 − 0)− f(ti + 0)

)
is such that for every 0 ≤ s < t ≤ 1:

mf (s, t) ≤
ˆ t

s

√
f ′(x) dx ≤

√
f(1−)− f(0+). (5.15)

Moreover, if (s, t) = (0, 1), the inequalities above are equalities if and only if f is affine in (0, 1).

Proof. Without loss of generality we may assume that f is left continuous, in particular that f(1−) = f(1).

Let df = f ′(x) dx+f ′s denote the decomposition of the Lebesgue-Stieltjes measure df (where f ′s is the singular

part of df). Let {ti, 0 ≤ i ≤ N} be a subdivision of [s, t] and θ : [0, 1]→ R+ a continuous function. Let θi =
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θ
( ti+ti+1

2

)
. Then, from inequality 2

√
(ti+1 − ti)(f(ti+1)− f(ti + 0)) ≤ θi ·

(
f(ti+1)− f(ti + 0)

)
+ 1

θi
(ti+1− ti)

we infer that

mf (s, t) ≤
N∑
i=0

1

2
θi ·
(
f(ti+1)− f(ti + 0)

)
+

1

2θi
(ti+1 − ti),

where in the right hand side we recognize a Darboux sum related to the integral
´

]s,t]
θ
2 df +

´
]s,t]

1
2θ dx. Thus

taking the limit as the size of subdivisions tends to zero and by density of continuous functions in L1
µ

(
[0, 1]

)
,

for µ = L1 [0, 1] + f ′s, we derive that

mf (s, t) ≤
ˆ t

s

1

2

(
θ(x)f ′(x) +

1

θ(x)

)
dx+

ˆ
[s,t]

θ(x)

2
f ′s(dx)

for every positive Borel function θ. Let ε > 0 and let B be a Borel subset of full Lebesgue measure in [0, 1]

such that f ′s(B) = 0. Then, by taking θε(x) = (f ′(x) ∨ ε)−1/2 if x ∈ B while θε(x) = 0 otherwise and by

applying the dominated convergence theorem, we infer that:

mf (s, t) ≤ lim sup
ε→0

ˆ t

s

1

2

(
θε(x)f ′(x) +

1

θε(x)

)
dx =

ˆ t

s

√
f ′(x) dx.

Furthermore we notice that f(1) − f(0+) =
´ 1

0 f
′(x) dx +

´
(0,1] f

′
s. Thus, as a consequence of Schwarz’s

inequality, we have ˆ 1

0

√
f ′(x) dx ≤

(ˆ 1

0
f ′(x) dx

)1/2
≤
√
f(1)− f(0+),

with equalities if and only if f ′s = 0 on (0, 1] and f ′ = f(1)− f(0+) a.e. �

Proof of Proposition 5.6. Let γ(t) = (1− t) a+ t b for t ∈ [0, 1] and f(t) = 2 va,b(t). We claim that for every

0 ≤ s < t ≤ 1 it holds that cv
(
γ(s), γ(t)

)
≤
´ t
s

√
f ′(x) dx. Indeed by definition (5.7), we have

cv(γ(s), γ(t)) ≤ inf
{s=t0<t1<···<tN=t}

N−1∑
i=0

`v
(
γ(ti), γ(ti+1)

)
= mf (s, t).

where in the last equality we used the fact that `v
(
γ(ti), γ(ti+1)

)
=
√

(ti+1 − ti)(f(ti+1 − 0)− f(ti + 0))

and the definition of mf (s, t) introduced in Lemma 5.8. The claim then follows directly from (5.15). Next

we can easily deduce an upper bound for the length Lv(γ):

Lv(γ) := sup

{
N∑
i=0

cv
(
γ(ti+1), γ(ti)

)
: t0 = 0 < t1 < · · · < tN = 1

}
≤
ˆ 1

0

√
f ′(x) dx.

Since
´ 1

0

√
f ′(x) dx ≤

√
f(1−)− f(0+) = `v(a, b), we infer that cgv(a, b) ≤ Lv(γ) ≤ `v(a, b). As it is true for

any (a, b) ∈ (Rd)2, the geodesic pseudo-distance cgv is a sub-additive minorant of `v. Therefore it cannot be

larger that cv and the equality cgv = cv follows.

Eventually, we observe that the equality cv(a, b) = `v(a, b) is equivalent to equalities Lv(γ) = mf (0, 1) =

(f(1−) − f(0+))1/2 which by Lemma 5.8 amounts to saying that f is affine. The assertion (i) is proved.

The assertion (ii) is a straightforward consequence of the former equivalence. Indeed, assume that there

exits x1, x2, . . . , xN ∈ Rd such that cv(a, b) =
∑N−1

i=1 `v(xi, xi+1). Then, by the sub-additivity of cv, we

infer that
∑N−1

i=1

(
`v(xi, xi+1)− cv(xi, xi+1)

)
= 0, from which follows equalities `v(xi, xi+1) = cv(xi, xi+1) =

Lv

(
[xi, xi+1]

)
for every i. Accordingly, the scalar functions vxi,xi+1 are affine on (0, 1) and the length of the

polygonal curve C consisting of the union of the segments [xi, xi+1] satisfies Lv(C) =
∑N−1

i=1 Lv([xi, xi+1]) =∑N−1
i=1 `v(xi, xi+1) = cv(a, b). The assertion (iii) is a consequence of [36, Thm 1.2]) where it is proved that
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the integral length representation (5.14) holds with ϕv defined by (5.12) as well as with its lower version

where the upper limit as h→ 0+ in (5.12) is replaced by the lower limit. �

Corollary 5.9. Let v be an element of MΩ. Then the quotient space (Xv, cv) is a geodesic locally compact

metric space. For every a, b ∈ Rd, one has cv(a, b) = min
{
Lv(γ) : γ(0) = a , γ(1) = b

}
, where the

minimum is reached over parametrized curves γ : [0, 1] → Rd such that cv
(
γ(s), γ(t)

)
= cv(a, b) |s − t| for

all s, t ∈ [0, 1].

Remark. The existence of a geodesic curve γ : [0, 1] → Rd with a finite Euclidean length is not known

unless v is assumed to be strongly monotone.

Proof. Xv is a metric space when it is equipped with the distance dv(ẋ, ẏ) := cv(x, y) (definition independent

of the choice of the representative in each class). To show that it is locally compact, it is enough to check

that any bounded sequence (ẋn) admits at least one cluster point. It turns out that (xn) is bounded in Rd

(for the Euclidean norm) as a consequence of the following equality:

∀a ∈ Rd lim
|x|→∞

cv(a, x)

|x|
=
√

2. (5.16)

Therefore |xnk − x| → 0 for a suitable subsequence (xnk) and x ∈ Rd. Since by (5.4) and assertion (i)

of Theorem 5.4 we have cv(xnk , x) ≤ `v(xnk , x) ≤
√

2 |xnk − x|1/2(R + |xnk − x|)1/2 , we conclude that

dv(ẋnk , ẋ) = cv(xnk , x) → 0. Summarizing, we have shown that Xv is a locally compact metric space.

Moreover the length of a curve u : [0, 1] → Xv can be recast from the length Lv(γ) defined in (5.13) by

taking any γ such that γ(t) ∈ u(t) (note that γ can be discontinuous if we consider Rd with the Euclidean

norm). Then, by assertion (i) of Proposition 5.6, we have the equality

dv(ȧ, ḃ) = inf
{
Lv(u) : u ∈ C0

(
[0, 1];Xv

)
, γ(0) = ȧ, γ(1) = ḃ

}
,

from wich follows that (Xv, dv) is a length space. The existence of an optimal curve u is then a consequence

of Hopf-Rinow theorem for which we refer to the book [30] (Theorem 2.4.6 in particular). Moreover, u can be

constructed so that it is injective with a constant speed i.e. dv
(
u(s), u(t)

)
= dv(a, b) |s−t| for all s, t ∈ [0, 1].

This is precisely the statement of our corollary.

Eventually, it remains to show the claim (5.16). The inequality lim sup|x|→∞
cv(a,x)
|x| ≤

√
2 follows directly

from (5.3). To obtain the converse inequality, we consider a positive real L large enough that Ω ⊂ {|x| < L}.
Since v = id on the complement of Ω, the tangential component of v is affine on the segment [z, x] where

z = L x
|x| when x ∈ Rd \ Ω. Therefore, by Proposition 5.6, we have cv(x, z) =

√
2 |x − z| =

√
2 (|x| − L).

By exploiting the sub-additivity of cv, we end up with cv(a, x) ≥
√

2(|x| − L) −ML(a) where ML(a) =

sup{cv(a, z) : |z| ≤ L} < +∞. It follows that lim inf |x|→∞
cv(a,x)
|x| ≥

√
2. �

5.2. Dual achievement through maximal monotones maps. We are now in position to revisit the

dual problem (P∗) introduced in Subsection 3.2 that we are going to recast in the following geometric form:

I0(f,Σ0) = sup
(u,v)∈CΣ0

(Ω)×MΩ

{
〈f, u〉 : u(x1)− u(x2) ≤ cv(x1, x2) ∀ (x1, x2) ∈ Ω× Ω

}
(P∗geo)

Theorem 5.10. Assume that Σ0 is non empty. Then the supremum in (P∗geo) is a maximum and we have

the equality max(P∗) = max(P∗geo). Moreover, a pair (u,v) ∈ CΣ0(Ω) ×MΩ solves (P∗geo) if and only if

(u,w) is optimal for (P∗), where w = id− i(v).
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Proof. The existence of an optimal pair (u,v) for (P∗geo) is straightforward. Indeed if (un,vn) is a maximizing

sequence, then {un} is equicontinuous as a consequence of the uniform upper bound estimate in (5.8) hence

relatively compact in CΣ0(Ω) (by Ascoli’s theorem) while we recall that MΩ is a compact metric space (see

Lemma 5.3). By exploiting the upper semicontinuity property of the map v ∈ MΩ 7→ cv(x1, x2) holding

for all x1, x2 (see assertion (iii) in Theorem 5.4), we see that any cluster point (u,v) satisfies the inequality

constraint u(x1) − u(x2) ≤ cv(x1, x2) and therefore is a solution of (P∗geo). The equivalence between the

formulations (P∗) and (P∗geo) of the dual problem is a straightforward consequence of the forthcoming

Proposition 5.11.

�

Recall that the set of competitors for (P∗) is the closure in C0(Rd)×L1(Rd;Rd) of the subset K defined

in (3.4). By Lemma 3.16, we already know that K is a bounded convex subset of
(
C0, 1

2 ∩W 1,2(Ω)
)
×
(
(BV ∩

L∞)(Ω;Rd)
)
. The complete characterization of K given below is crucial:

Proposition 5.11. Let us be given u ∈ C0(Ω), such that u = 0 on Σ0, and w ∈ L1(Ω;Rd). Then, the

following conditions are equivalent:

(i) (u,w) ∈ K;

(ii) there exists an element v ∈MΩ such that v(x) = {x− w(x)} for a.e. x ∈ Ω and

u(x1)− u(x2) ≤ cv(x1, x2) ∀ (x1, x2) ∈ Ω× Ω (5.17)

(or equivalently u(x1)− u(x2) ≤ `v(x1, x2) ∀ (x1, x2) ∈ Ω× Ω);

(iii) u ∈W 1,2(Ω) and there exists v ∈ BΩ such that v = id− w a.e. in Ω and

1

2
∇u⊗∇u Ld Ω ≤ e(v) in M(Rd;Sd×d) (5.18)

where e(v) is the symmetric part of the distributional derivative Dv ∈M(Rd;Rd).

Remark 5.12. In view of Theorem 5.4, the condition (5.17) in (ii) is in fact equivalent to the weaker

condition u(x1) − u(x2) ≤ `v(x1, x2) for all (x1, x2) ∈ Ω × Ω. In addition, if such a function u realizes the

equality u(a)− u(b) = `v(a, b) at some (a, b) ∈ Ω
2
, then u has be affine on [a, b]. Indeed, the equality above

implies that `v(a, b) = cv(a, b) and, by applying assertion (ii) of Proposition 5.6, we know that v · τa,b is

affine on ]a, b[. Then the condition (5.17) holding as an equality for any (x1, x2) ∈ [a, b]2 enforces u to be

affine as well. This observation can be useful when dealing with polygonal geodesic curves corresponding to

some optimal v.

Remark 5.13. If w is Lipschitz as it was assumed in Section 3 it holds that v(x) = {x − w(x)} for all

x ∈ Rd and we recover the two-point condition (3.6) from (5.17) whilst condition (iii) is equivalent to (3.4b).

Proof. First we show that (i)⇒ (ii): let (un, wn) ∈ K be a sequence such that un → u in C0(Ω) and wn → w

in L1(Ω;Rd). Then u = 0 on Σ0 and (un, wn) satisfies the two-point conditions (3.6). Setting vn = id− wn
we easily infer that (un,vn) satisfies (5.17) while vn ∈MΩ. Due to the homeomorphism between MΩ and

BΩ (see Lemma 5.3) we deduce the convergence vn → v and (u,v) satisfies (5.17) thanks to the upper

semicontinuity of the map v 7→ cv(x1, x2) (see the assertion (iii) in Theorem 5.4).

Let us now prove the implication (ii)⇒ (iii). We know that v := i(v) belongs to BV ∩ L∞(Ω;Rd). Let

ω b Ω and fix h ∈ Rd such that |h| < δ := dist(ω, ∂Ω). As the set
{
x ∈ ω : v(x) = {v(x)}, v(x + h) =

{v(x+ h)}
}

is of full Lebesgue measure in ω, the condition (5.17) implies that:

1

2

(
u(x+ h)− u(x)

)2 ≤ 〈v(x+ h)− v(x), h〉 for a.e. x ∈ ω. (5.19)
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By integrating over ω and with the help of Schwarz inequality, we deduce that

1

2

ˆ
ω

(
u(x+ h)− u(x)

)2
dx ≤ |h|2

ˆ
ω

∣∣∣∣v(x+ h)− v(x)

|h|

∣∣∣∣ dx ≤ C |h|2 ,

where the constant C is finite and depends only of
´

Ω |Dv| (the variation of v as an element of BV (Ω;Rd)).
Since ω and h with |h| < δ can be chosen arbitrarily, the latter uniform upper bound entails that u ∈W 1,2(Ω)

(see for instance [17, Proposition 9.3] and subsequent Remark 6). Now we may also multiply (5.19) by a

test function ϕ ∈ D(Ω;R+) and integrate over Ω so that, setting h = ε z with z ∈ Sd−1 and dividing by ε2,

we obtain:
1

2

ˆ
Ω

(
u(x+ εz)− u(x)

ε

)2

ϕ(x) dx ≤
ˆ

Ω

〈
v(x+ εz)− v(x)

ε
, z

〉
ϕ(x) dx . (5.20)

As u ∈ W 1,2(Ω),
(u(x+εz)−u(x)

ε

)
remains bounded in L2(Ω) and converges to 〈∇u, z〉 therein. Besides we

have:

lim
ε→0

ˆ
Ω

〈
v(x+ εz)− v(x)

ε
, z

〉
ϕ(x) dx = lim

ε→0

ˆ
Ω
〈v(x), z〉

(
ϕ(x− εz)− ϕ(x)

ε

)
dx

= −
ˆ

Ω
〈v(x), z〉div(zϕ) dx =

〈
〈Dv z, z〉, ϕ

〉
.

Hence, from (5.20) we infer that 1
2

´
Ω |〈∇u(x), z〉|2 ϕ(x) dx ≤

〈
〈Dv z, z〉, ϕ

〉
=
〈
〈e(v) z, z〉, ϕ

〉
. The inequality

(5.18) follows by the arbitrariness of z ∈ Sd−1 and of ϕ ∈ D(Ω;R+).

Eventually we turn to the implication (iii)⇒ (i). Let w = id− v. Note that, as v ∈ BΩ, w vanishes a.e.

in Rd \ Ω and may have a jump on ∂Ω giving a contribution to the singular part es(w) of the symmetric

tensor measure e(w). We need to construct a sequence of Lipschitz functions (uε, wε) ∈ K converging to

(u,w) in C0(Ω)×L1(Ω;Rd). In fact, we will mostly use the same arguments as in the proof of Lemma 3.14.

First we construct an extension ũ of u using the same method as in the Step 1 of the proof of Lemma 3.14.

This extension belongs to C0 ∩W 1,2
loc (Rd) whilst, due to (5.18) and recalling the dedinition of g in (3.10),

the pair (ũ, w) satisfies the inequality

g
(
∇ũ, {e(w)}

)
≤ 1 a.e. in Rd, es(w) ≤ 0 in M(Rd;Sd×d). (5.21)

where {e(w)} denotes the Lebesgue density of the absolutely continuous part of the measure e(w) (in fact

{e(v)} coincides with the symmetric part of the approximate gradient w which exists a.e., see for instance

[3, Thm 3.84]). Next we associate to the integrand g the convex l.s.c. and one homogeneous integrand

h : Rd × Sd×d × R→ [0,+∞] defined by

h(z,M, t) =


t ρ+

(
z⊗z
2t2

+ M
t

)
if t > 0

ρ+(M) if t = 0 and z = 0

+∞ if t < 0

that is tg(z/t,M/t) for t > 0 and its limit g∞(z,M) := limt→0 tg(z/t,M/t) for t = 0 (recession function of

g). Then we may rewrite (5.21) as an inequality between scalar measures as follows:

h
(
∇ũLd, e(w),Ld

)
≤ Ld in M+(Rd). (5.22)

Indeed this equivalence can be easily checked by noticing that the measure in the left hand side (intended

in the sense of Goffman-Serrin [28]) admits the Lebesgue-Nikodym decomposition

h
(
∇ũLd, e(w),Ld

)
= h

(
∇ũ, {e(w)}, 1

)
Ld + h

(
0, es(w), 0

)
= g
(
∇ũ, {e(w)}

)
Ld + ρ+

(
es(w)

)
.
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Assume for a moment that spt(ũ) b Rd\Σ0 while spt(w) b Ω. Then we consider (uε, wε) := (ũ ∗ θε, w ∗ θε)
for θε(x) = ε−dθ

(
x
ε

)
being a smooth convolution kernel (with θ radial symmetric and

´
θ = 1). Then uε = 0

on Σ0 and (uε, wε)→ (u,w) in C0(Ω)× L1(Ω;Rd) as ε→ 0. Moreover, denoting ξ :=
(
∇ũLd, e(w),Ld

)
, we

have ξ ∗θε = (∇ũε, e(wε), 1)Ld, hence by applying Lemma C.1 and in virtue of (5.22), we infer the following

inequalies in M+(Rd):

g
(
∇uε, e(wε)

)
Ld ≤ g

(
∇ũ, {e(w)}

)
Ld + ρ+

(
es(w)

)
≤ Ld.

In particular we have g
(
∇uε, e(wε)

)
≤ 1 a.e. and by taking the restriction of (uε, wε) to Ω we obtain the

desired sequence in K converging to (u,w). Eventually the restriction on the support of (u,w) can be dropped

by repeating word for word the dilation argument used in the second step of the proof of Lemma 3.14.

�

5.3. Maximal Monge-Kantorovich metrics and saddle point formulation. All along this subsection

we will assume that the load f = f+−f− is a signed measure where f+, f− ∈M+(Ω\Σ0). It will be sometimes

useful to consider alternative decompositions f = µ−ν where µ, ν ∈M+(Ω\Σ0) are not necessarily singular

with respect to each other (in contrast with the case of the usual Jordan decomposition). Up to measures

concentrated on Σ0, such measures µ and ν will act as a source and target measures in the Monge-Kantorovich

transport problem associated with the cv-cost. Let us fix an element v ∈MΩ and define

WΣ0
cv (µ, ν) := inf

{
Wcv(µ+ µ0, ν + ν0) : µ0, ν0 ∈M+(Σ0)

}
(5.23)

where the Monge-Kantorovich cv-distance between two elements ρ1, ρ2 ∈M+(Ω) is defined by

Wcv(ρ1, ρ2) := inf

{ˆ
Ω×Ω

cv(x, y) γ(dxdy) : γ ∈ Γ(ρ1, ρ2)

}
.

Note that Wcv and WΣ0
cv are symetric and that Wcv(ρ1, ρ2) < +∞ if and only if

´
ρ1 =

´
ρ2. By using

the lower semicontinuity of the map (ρ1, ρ2) 7→ Wcv(ρ1, ρ2), one checks easily that the infimum in (5.23) is

actually a minimum.

Remark 5.14. If f is a probability on Ω \ Σ0, it is easy to check that

WΣ0
cv (f, 0) = min

{
Wcv(f, g) : g ∈ P(Σ0)

}
=

ˆ
cv(x,Σ0) f(dx).

Then we recover the Monge-Kantorovich cv-distance between f and Σ0 (i.e. Wcv(f,Σ0)) in a similar way

as in (1.3), (2.5). In this sense (5.23) generalizes the notion of distance to Σ0 for a general signed measure

f = µ− ν.

The next preliminary result is an adaptation of the Kantorovich-Rubinstein duality theorem (see for

instance [37, Thm 1.14]) to our framework:

Lemma 5.15. Let µ, ν ∈M+(Ω \ Σ0) and v ∈MΩ. Then

WΣ0
cv (µ, ν) = max

u∈CΣ0
(Ω)

{
〈µ− ν, u〉 : u(x1)− u(x2) ≤ cv(x1, x2) ∀ (x1, x2) ∈ Ω× Ω

}
. (5.24)

As a consequence WΣ0
cv (µ, ν) = WΣ0

cv (f+, f−) whenever µ − ν = f . Furthermore, the infimum in (5.23) is

attained on the convex weakly* compact subset

M(µ, ν; Σ0) :=

{
(µ0, ν0) ∈

(
M+(Σ0)

)2
:

ˆ
(µ+ µ0) =

ˆ
(ν + ν0),

ˆ
ν0 ≤

ˆ
µ,

ˆ
µ0 ≤

ˆ
ν

}
. (5.25)
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Proof. Let x0 ∈ Σ0. By the uniform Hölder estimate (5.3), (5.8) and Ascoli’s theorem, the set

B :=
{
u ∈ C0(Ω) : u(x0) = 0, u(x1)− u(x2) ≤ cv(x1, x2) ∀ (x1, x2) ∈ Ω× Ω

}
is a convex compact subset of C0(Ω). Since the cost function cv is continuous and sub-additive, we know

from Kantorovich-Rubinstein duality theorem that for every (µ0, ν0) ∈ (M+(Σ0))2, the following equality

holds:

Wcv(µ+ µ0, ν + ν0) = sup
u∈B

{
〈(µ+ µ0)− (ν + ν0), u〉

}
.

By applying Ky-Fan’s result (Theorem A.2) which allows switching the symbols inf and sup, we are led to

WΣ0
cv (µ, ν) = inf

(µ0,ν0)∈(M+(Σ0))2
sup
u∈B
〈(µ+ µ0)− (ν + ν0), u〉

= sup
u∈B

(
〈µ− ν, u〉+ inf

(µ0,ν0)∈(M+(Σ0))2
〈µ0 − ν0, u〉

)
hence (5.24) by noticing that the infimum in the bottom line is finite if and only if u = 0 on Σ0.

As a consequence of (5.24), we have WΣ0
cv (µ, ν) = WΣ0

cv (f+, f−) whenever µ − ν = f+ − f−. It remains

to show the last assertion of Lemma 5.15. As Σ0 is compact, it can be readily checked that M(µ, ν; Σ0) is

a weakly* convex compact subset of (M+(Σ0))2 thus, recalling (5.23), we have:

WΣ0
cv (µ, ν) ≤ min

{
Wcv(µ+ µ0, ν + ν0) : (µ0, ν0) ∈M(µ, ν; Σ0)

}
where the existence of a minimizer in the right side is ensured by the lower semicontinuity of the function

(µ0, ν0) 7→Wcv(µ+µ0, ν+ν0). Consequently, our argument boils down to showing that the inequality above

is in fact an equality. This will be indeed the case if for every (µ0, ν0) we are able to construct measures

(µ̃0, ν̃0) ∈M(µ, ν; Σ0) such that Wcv(µ+µ̃0, ν+ν̃0) ≤Wcv(µ+µ0, ν+ν0). To show this claim, we may assume

that Wcv(µ+µ0, ν+ν0) < +∞. Hence
´

(µ+µ0) =
´

(ν+ν0) and there exists an element γ ∈ Γ(µ+µ0, ν+ν0)

such that Wcv(µ+ µ0, ν + ν0) =
´
cv dγ. Set γ̃ = γ − γ0 where γ0 := γ Σ0 × Σ0. Clearly the marginals of

γ̃, further denoted by µ̃ and ν̃, satisfy µ̃ Ω \Σ0 = µ and ν̃ Ω \Σ0 = ν. Let ν̃0 = ν̃ Σ0 and µ̃0 = µ̃ Σ0.

Then it holds that µ̃ = µ+ µ̃0 and ν̃ = ν+ ν̃0. Furthermore we have
´
µ̃0 = µ̃(Σ0) = γ(Σ0×Σc

0) ≤
´
ν while´

ν̃0 = ν̃(Σ0) = γ(Σc
0 × Σ0) ≤

´
µ. It follows that (µ̃0, ν̃0) belongs to M(µ, ν; Σ0), hence follows our claim

since:

Wcv(µ+ µ̃0, ν + ν̃0) ≤
ˆ
cv dγ̃ ≤

ˆ
cv dγ ≤Wcv(µ+ µ0, ν + ν0).

�

An important consequence of Lemma 5.15 is that solving the dual problem (P∗) amounts to identifying

a maximal monotone map v for which the Monge-Kantorovich distance of f to Σ0 is maximal:

Theorem 5.16. Let Σ0 ⊂ ∂Ω be closed non empty and f ∈M(Ω\Σ0). Then

I0(f,Σ0) = max(P∗) = max
{
WΣ0
cv (f+, f−) : v ∈MΩ

}
. (5.26)

Proof. The equality sup(P∗) = sup
{
WΣ0
cv (f+, f−) : v ∈MΩ

}
follows from the formulation (P∗geo) where,

for every v ∈MΩ, we compute the supremum with respect to u by applying (5.24) for µ = f+ and ν = f−.

Clearly if (ū, v̄) solves (P∗geo), then v̄ satisfies WΣ0
cv̄ (f+, f−) ≥WΣ0

cv (f+, f−) for all v ∈MΩ.

�
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As a corollary we now state a saddle point formulation for an optimal pair (γ,v) ∈ Γ(µ, ν; Σ0) ×MΩ

with respect to the Lagrangian L(v, γ) =
´

Ω×Ω cv dγ where

Γ(µ, ν; Σ0) :=
{
γ ∈M+(Ω× Ω) : ∃(µ0, ν0) ∈M(µ, ν; Σ0), γ ∈ Γ(µ+ µ0, ν + ν0)

}
.

Corollary 5.17. For every µ, ν ∈M+(Ω\Σ0) such that f = µ− ν there exists a pair (γ,v) ∈ Γ(µ, ν; Σ0)×
MΩ solving the saddle point problem:ˆ

Ω×Ω
cv dγ ≤

ˆ
Ω×Ω

cv dγ ≤
ˆ

Ω×Ω
cv dγ ∀ γ ∈ Γ(µ, ν; Σ0), ∀v ∈MΩ. (5.27)

Furthermore, for any such an optimal pair (γ,v), there exists an optimal potential u ∈ CΣ0(Ω) such that

(u,v) solves the dual problem (P∗geo) and satisfies the relations

u(y)− u(x) ≤ cv(x, y) ∀ (x, y) ∈ Ω
2
, u(y)− u(x) = cv(x, y) for γ-a.e. (x, y) ∈ Ω

2
. (5.28)

Remark 5.18. By applying Corollary 5.17 with µ = f+ and ν = f−, we see that a pair (u,v) is a solution

of the dual problem (P∗geo) if and only if there exists a suitable γ such that the triple (γ,v, u) belongs to

Γ(f+, f−; Σ0)×MΩ × CΣ0(Ω) and satisfies the two conditions (5.27) and (5.28).

Proof. As can be readily checked Γ(µ, ν; Σ0) is a convex compact subset of M+(Ω× Ω) endowed with the

weak* topology. Besides, from Lemma 5.3 we know that the convex set MΩ equipped with the distance h

is compact. The existence of a saddle point for (5.27) then follows from the last assertion of Theorem A.2.

Indeed, the Lagrangian L(v, γ) :=
´

Ω×Ω cv dγ is convex lower semicontinuous with respect to γ ∈ Γ(µ, ν; Σ0)

and, as a consequence of combining assertion (iii) of Theorem 5.4 with Fatou’s lemma, it is concave upper

semicontinuous with respect to v ∈MΩ.

Let now (γ,v) satisfy (5.27). Then, the left hand side inequality in (5.27) implies that WΣ0
cv (µ, ν) ≤´

Ω
2 cv dγ while the right hand side implies that

´
Ω

2 cv dγ = WΣ0
cv

(µ, ν). Therefore v is a maximizer in the

right hand side of (5.26) and we obtain the equalities

I0(f,Σ0) = max (P∗geo) = WΣ0
cv

(µ, ν) =

ˆ
Ω

2
cv(x, y) γ(dxdy). (5.29)

Next, by applying Lemma 5.15 with v = v, there exists an optimal potential u for (5.24). Clearly the

equalities in (5.29) imply that (u,v) solves (P∗geo) while we haveˆ
Ω

2
cv(x, y) γ(dxdy) = 〈f, u〉 = 〈µ− ν, u〉 =

ˆ
Ω

2
(u(y)− u(x)) γ(dxdy).

Since u stisfies u(y) − u(x) ≤ cv(x, y) for all (x, y), the equality above is possible if and only if u satisfies

the equality condition in (5.28). The last assertion of Corollary 5.17 follows. �

5.4. Extended characterization of optimal truss solutions. As announced in Section 4, we can now

derive the non-smooth extension of the optimality conditions given in Proposition 4.3. For every v ∈ MΩ

and (a, b) ∈ Rd × Rd, we define

`+v (a, b) := max
{√

2〈b′ − a′, b− a〉 : a′ ∈ v(a), b′ ∈ v(b)
}
. (5.30)

Note that `+v = `v at those points where v is single valued or regular enough. Moreover, for a boundary

point a ∈ ∂Ω, we may assign a′ = a in the maximum (5.30), namely (see the proof of Lemma 5.19 below):

1

2

(
`+v (a, b)

)2
=

{
max

{
〈b′ − a, b− a〉 : b′ ∈ v(b)

}
if (a, b) ∈ ∂Ω× Ω,

|b− a|2 if (a, b) ∈ ∂Ω× ∂Ω.
(5.31)
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The following technical result holds:

Lemma 5.19. Let us be given v ∈ MΩ and Π ∈ M+(Ω × Ω) satisfying condition (ii) in (3.7). Then we

have

1

2

ˆ
Ω×Ω

`2v
|x− y|

Π(dxdy) ≤
ˆ

Ω×Ω
|x− y|Π(dxdy), (5.32)

with an equality if only if `v = `+v Π-a.e.

Proof. If v is smooth and single valued, then there exists w ∈ C0(Ω;Rd) such that v(x) = {x− w(x)} and

the assumption on Π implies thatˆ
Ω×Ω

〈
v(y)− v(x),

y − x
|y − x|

〉
Π(dxdy) =

ˆ
Ω×Ω
|x− y|Π(dxdy), (5.33)

which, in view of (5.1), means that (5.32) holds with an equality. Consider now a general v ∈ MΩ. We

observe that, if we let η be the sum of the marginals of Π, the equality (5.33) can be extended by density to

all element v in the closure of C0(Ω;Rd) in L1
η(Ω;Rd), in particular to any bounded Borel function v : Ω→ Rd

such that v = id η-a.e. in ∂Ω. The idea consists now in choosing for v a suitable η-measurable selection of

the multifunction x 7→ v(x). More precisely, let v0 : Ω→ Rd be defined by:

v0(x) = sd
(
v(x)

)
if x ∈ Ω, v0(x) = x if x ∈ ∂Ω

where, for every convex compact subset A ⊂ Rd, sd(A) stands for the Steiner center given by

sd(A) :=
1

ωd

ˆ
Sd−1

z χ∗A(z)Hd−1(dz).

where ωd denotes the volume of the unit ball Bd. It is well established that the map A 7→ sd(A) is Lipschitz

with respect to the Hausdorff distance. In addition, (see [33, page 50] and [32]) sd(A) belongs to the relative

interior of A (note that this includes the case of a singleton A = {a} where sd(A) = a). It follows that the

function v0 defined above is Borel and satisfies v0(x) = x η-a.e. in ∂Ω and v0(x) ∈ ri(v)(x) η-a.e. in Ω.

Therefore v0 satisfies the equality (5.33) while Π-a.e. 1
2`

2
v(x, y) ≤ 〈v0(y)− v0(x), x− y〉 ≤ 1

2(`+v )2(x, y). By

integrating with respect to Π we are led to

1

2

ˆ
Ω×Ω

`2v
|x− y|

Π(dxdy) ≤
ˆ

Ω×Ω
|x− y|Π(dxdy) ≤ 1

2

ˆ
Ω×Ω

(`+v )2

|x− y|
Π(dxdy).

The inequality (5.32) follows and it becomes an equality provided that `+v = `v holds Π-a.e. Conversely, let

us assume that in (5.32) we have equality. Then, since the equality (5.33) holds for v0, for Π-a.e. (x, y) we

obtain:

〈v0(x)− v0(y), x− y〉 =
1

2
`2v(x, y) = min

{〈
y′ − x′, y − x

〉
: x′ ∈ v(x), y′ ∈ v(y)

}
. (5.34)

This means that the minimum of the linear form (x′, y′) 7→ 〈y′ − x′, y − x〉 on the convex compact subset

v(x)×v(y) is reached at
(
v0(x), v0(y)

)
. In particular, for Π-a.e. (x, y) ∈ Ω2, we will have that

(
v0(x), v0(y)

)
∈

ri(v)(x)×ri(v)(y) and this is not possible unless the linear form remains constant on v(x)×v(y). We thereby

deduce that `+v = `v is satisfied Π-a.e on Ω × Ω. Let us now consider a pair (x, y) ∈ ∂Ω × Ω that satisfies

(5.34). By prescribing x′ = x in the infimum defining `v we get

1

2
`2v(x, y) = 〈x− v0(y), x− y〉 ≥ min

{〈
y′ − x, y − x

〉
: y′ ∈ v(y)

}
≥ 1

2
`2v(x, y),
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which proves that each inequality is an equality and, as a result, the affine function y′ ∈ v(y) 7→
〈y′ − x, y − x〉 is minimal at v0(y) ∈ ri(v)(y) thus it must be constant. It follows that

1

2
(`v)2(x, y) = max

{〈
y′ − x, y − x

〉
: y′ ∈ v(y)

}
=

1

2
(`+v )2(x, y),

where in the second equality we used (5.31). If (x, y) ∈ ∂Ω×∂Ω, (5.31) provides the equality 1
2(`+v )2(x, y) =

|x−y|2 while, owing to the first equality in (5.34) and the fact that v0(x) = x on ∂Ω, we have 1
2(`v)2(x, y) =

|x− y|2.

Eventually we are left to prove (5.31) while showing the inequality ≥ is the trivial part. We recall that

v(x) = {x} if x /∈ Ω while v(x) ⊃ {x} if x ∈ ∂Ω (see (i) in Lemma 5.1). Let (a, b) ∈ ∂Ω× Ω. By convexity

of Ω we have an = a+ 1
n(a− b) /∈ Ω, thus v(an) ⊃ {an} for every n ∈ N∗. By the monotonicity property we

deduce that, for every a′ ∈ v(a), 0 ≤ n〈an − a′, an − a〉 = 1
n |a− b|

2 + 〈a− a′, a− b〉 hence 〈a− a′, b− a〉 ≤ 0

by sending n → ∞. Accordingly we get 〈b′ − a′, b− a〉 ≤ 〈b′ − a, b− a〉 for every a′ ∈ v(a) and b′ ∈ v(b).

If in addition b ∈ ∂Ω, we may chose b′ = b on the right hand side of the latter inequality. This proves the

desired upper bound for `+v (a, b) hence (5.31).

�

Theorem 5.20. Let (π,Π) be an element of M(Ω × Ω;R × R+) given in the form (π,Π) = (αΠ,Π) with

α ∈ L1
Π and let (u,v) ∈ CΣ0(Ω) ×MΩ. Then the pairs (π,Π) and (u,v) are optimal for, respectively, (P)

and (P∗geo) if and only the following conditions are satisfied:

(i) (αΠ,Π) ∈ A ,

(ii) u(y)− u(x) ≤ `v(x, y) ∀(x, y) ∈ Ω× Ω,

(iii) |u(y)− u(x)| = `v(x, y) for Π-a.e. (x, y),

(iv) α(x, y) = u(y)−u(x)
|y−x| for Π-a.e. (x, y),

(v) `v(x, y) = `+v (x, y) for Π-a.e. (x, y).

(5.35)

Proof. Conditions (i) and (ii) are equivalent to the admissibility of (π,Π) and (u,v) for (P) and (P∗geo)

respectively. Therefore they are assumed to hold true along the proof. By using (ii) and Minkowski inequality,

we derive the following inequalities

α(x, y)
(
u(y)− u(x)

)
≤ α(x, y) `v(x, y) ≤ 1

2
|x− y|α2(x, y) +

1

2

`2v(x, y)

|x− y|
, (5.36)

which clearly become equalities if and if the equalities of conditions (iii) and (iv) are satisfied. By integrating

with respect to Π and thanks to (5.32) we infer that

〈f, u〉 =

ˆ
Ω×Ω

α(x, y)
(
u(y)− u(x)

)
Π(dxdy)

≤ 1

2

ˆ
Ω×Ω
|x− y|α2(x, y) Π(dxdy) +

1

2

ˆ
Ω×Ω

`2v(x, y)

|x− y|
Π(dxdy)

≤
ˆ

Ω×Ω
|x− y|

(
1 +

α2

2

)
Π(dxdy) = J (π,Π).

It follows that the extremality condition 〈f, u〉 = J (π,Π) holds true if and only the inequalities above are

equalities. In view of (5.36) and of Lemma 5.19 this is equivalent to the triple of conditions (iii), (iv), (v).

We conclude the proof by recalling that, in virtue of Theorem 3.18, equality 〈f, u〉 = J (π,Π) characterizes

optimal pairs (π,Π) and (u,v) among the admissible ones. �
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Remark 5.21. From conditions (iii), (iv), (v) and Lemma 5.19, we get the equalityˆ
|x− y| dΠ =

ˆ
|x− y| α

2

2
dΠ

(
=
Z0

2

)
(5.37)

which is in fact an alternative form of the energy equi-repartition principle (3.2). Note that (5.37) can be

recovered from the minimality at t = 1 of t 7→ J (αΠ, tΠ) (where (αΠ, tΠ) ∈ A for all t > 0).

Remark 5.22. Recall that condition (ii) can be written equivalently with `v(x, y) replaced by cv(x, y)

while condition (iv) implies that `v(x, y) = cv(x, y) Π-a.e. On the other hand the regularity condition

(v) cannot be dropped. Indeed, let us consider the following one dimensional example where Ω = (−1, 1),

Σ0 = {−1} and f =
√

2 δ0. Then, with Π = δ(−1,0) + δ(0,1) and π =
√

2 δ(−1,0), we obtain an admissible pair

(π,Π) ∈ A . Next we define a maximal monotone map v by setting

v(x) = {x} if −1 ≤ x < 0, v(0) = [0, 1], v(x) = {1} if 0 < x ≤ 1.

and an element of u ∈ CΣ0(Ω) by setting u(x) =
√

2 (1 + x ∧ 0). It can be easily checked that all the

conditions required in Theorem 5.20 are satisfied except (v) since we have `v(−1, 0) = α(−1, 0) =
√

2 and

`v(0, 1) = α(0, 1) = 0 while `+v (−1, 0) = 2 and `+v (0, 1) =
√

2. Then
´

Ω×Ω |x−y| dΠ =
´

Ω×Ω |x−y|α
2 dΠ = 2.

Accordingly we get a a duality gap since 〈f, u〉 = 2 < J (π,Π) = 3. The interested reader can check easily

that I0(f,Σ0) = 2
√

2 and optimality is reached by taking instead Π =
√

2
2

(
δ(−1,0) + δ(0,1)

)
, π =

√
2 δ(−1,0),

while, for x ∈ [−1, 1], u(x) = 2 + 2(x ∧ 0), v(x) = {1 + 2(x ∧ 0)}.

As a consequence of Theorem 5.20, from a solution to (P) we may recover a saddle point solution as

given in Corollary 5.17:

Corollary 5.23. Let (π,Π) and (u,v) be optimal pairs for, respectively (P) and (P∗geo). Then the pair(
v, γ

)
with γ = |π| solves (5.27) with µ and ν being the traces on Ω \Σ0 of the left and right marginal of |π|

respectively.

Proof. We will utilize the optimality conditions (iii), (iv), (v) given in (5.35) (Theorem 5.20). In particular,

we will use the fact that cv(x, y) = `v(x, y) = |α| |x − y| for Π-a.e. (x, y) ∈ Ω × Ω while γ = |π| = |α|Π.

Thus, taking (5.37) into account, we obtainˆ
Ω×Ω

cv dγ =

ˆ
Ω×Ω

`v |α| dΠ =

ˆ
Ω×Ω

α2

|x− y|
dΠ = Z0. (5.38)

On the other hand, by exploiting (5.32) and Minkowski’s inequality, for every v ∈MΩ we have:
ˆ

Ω×Ω
cv dγ ≤

ˆ
Ω×Ω

`v |α| dΠ ≤
ˆ

Ω×Ω

(`v)2

2|x− y|
dΠ +

ˆ
Ω×Ω
|x− y| α

2

2
dΠ ≤ J

(
αΠ,Π

)
= Z0. (5.39)

Eventually, by employing the principle of maximal Monge distance (5.26), we infer that for every γ ∈
Γ(µ, ν; Σ0): ˆ

Ω×Ω
cv dγ ≥ WΣ0

cv (µ, ν) = WΣ0
cv (f+, f−) = Z0 . (5.40)

In view of (5.38), (5.39) and (5.40), we deduce that (v, γ) is a saddle point. �

5.5. Finitely supported loads: a route to existence of truss solutions. Despite the lack of solutions

to problem (P) in general (see Remark 4.6), we strongly believe that such solutions do exist in the case

of a finitely supported load. Our argument rests upon an extension property for cv pseudo-metrics that we

shall propose here as a conjecture.
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Extension property. Let us be given a monotone multi-function v0 whose domain D0 := dom(v0) contains

Rd \ Ω. Then v0 admits at least one maximal monotone extension and any such extension is defined over

whole Rd, see [1]. With v0 we may associate the sub-additive function cv0 : D0 ×D0 → R+ given by

cv0(a, b) := inf

{
N−1∑
i=1

`v0(xi, xi+1) : x1 = a, xN = b, N ≥ 2, {xi} ⊂ D0

}
where `v0 is defined as in (5.1). We will say that the monotone map v0 of domain D0 has the extension

property if there exits a maximal monotone map v of domain Rd such that v ⊃ v0 and cv = cv0 in D0×D0.

Conjecture 5.24. Let S be a finite subset of Ω and D0 = S∪(Rd\Ω). Then any monotone map v0 : D0 → Rd

such that v0 = id in Rd \ Ω has the extension property.

Proposition 5.25. Assume that Σ0 = ∂Ω and that S := spt(f) is a finite subset of Ω. Then, if Conjecture

5.24 holds true, there exists a solution (π,Π) to (P) that satisfies

spt(Π) ⊂ (S × ∂Ω) ∪ (S × S \∆).

Proof. Since S is finite, the set K :=
(
S × ∂Ω

)
∪
(
(S × S) \∆

)
is closed and at a positive distance from the

diagonal ∆. We may then apply the assertion (ii) of Proposition 3.17 obtaining the existence of an optimal

solution for the problem (PK). Clearly we have min(PK) ≥ inf(P). To show the converse inequality, we

use the duality relation

min(PK) = −h∗∗K (0, 0) = −hK(0, 0) = sup
{
〈f, u〉 : (u, v) ∈ BK

}
, (5.41)

where hK is given by (3.27) while, after the change of variable v = id − w, the admissible set associated

with hK(0, 0) becomes

BK :=
{

(u, v) ∈
(
Lip(Ω)

)d+1
: u = 0 on ∂Ω, v = id on ∂Ω, u(x)− u(y) ≤ `v(x, y) ∀(x, y) ∈ K

}
.

Let us set D0 := S ∪ Rd \ Ω and let (u, v) be an element of BK that we implicitly extend by setting

u(x) = 0, v(x) = x for x ∈ Rd \ Ω. Then, denoting by v0 : D0 → Rd the monotone map defined by

v0 = {v(x)}, we obviously obtain u(x) − u(y) ≤ `v0(x, y) for all (x, y) ∈ D0 × D0. Indeed the condition

u(x) − u(y) ≤ `v(x, y) holding for (x, y) ∈ K extends to D0 ×D0 by the symmetry of `v and the fact that

u = 0 on Rd \ Ω. Owing to the definition of cv0 given above (and the fact that `v0 = `v on D0 ×D0), it is

then straightforward that u(x)−u(y) ≤ cv0(x, y) for all (x, y) ∈ D0×D0. Following the conjecture such a v0

enjoys the extension property, thus there exist a maximal monotone extension ṽ ∈MΩ such that cṽ = cv0

in D0 ×D0. Then we define ũ : Ω→ R by

ũ(x) := inf
{
u(y) + cṽ(x, y) : y ∈ D0

}
.

By construction ũ satisfies ũ(x) − ũ(y) ≤ cṽ(x, y) for all (x, y) ∈ Ω × Ω while ũ = u on D0. It follows that

ũ ∈ C0(Ω) and that 〈f, ũ〉 = 〈f, u〉. The new pair (ũ, ṽ) is therefore admissible for the dual problem (P∗geo).

Accordingly, thanks to Theorem 3.18, we infer that

inf(P) = I0(f, ∂Ω) ≥ 〈f, u〉.

The latter inequality being true for all (u, v) ∈ BK , we may pass to the supremum with the help of (5.41)

thus concluding with the desired inequality inf(P) ≥ sup
{
〈f, u〉 : (u, v) ∈ BK

}
= min(PK).

�
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6. Approximation by finite truss structures and numerical simulations

In virtue of Theorem 3.18, we know that solutions (λ, σ) to (P) can be reached as weak* limits of

sequences of the kind (λπn , σΠn) for (πn,Πn) being a minimizing sequence for the problem (P) (recall

that such measures (λπn , σΠn) represent truss-like membrane structures which are composed of families of

straight strings). This legitimates employing a two-point numerical scheme treatment of problem (P) where

we narrow the search down to finite trusses spanned by a fixed finite grid populating Ω. Accordingly, we

will be using the discrete variant of the dual problem (P∗) where the two-point condition (3.6) is set only

for pairs of points in the grid.

For simplicity we will assume from now on that Ω is a square domain in R2, namely we take Ω to be

the unit square Q = (−1/2, 1/2)2. A priori the load will be any signed measure f ∈M(Ω;R). For any mesh

parameter h > 0, we consider a finite grid of regularly spaced nodes:

Xh = Ω ∩
{

(k1h, k2h) : (k1, k2) ∈ Z2
}
.

By a suitable choice of h, we may assume that every vertex of Ω is an element of Xh. In the sequel fh ∈
M(Xh;R) denotes a discrete measure that approximates f in the sense of tight convergence as h → 0. A

natural choice is fh =
∑

x∈Xh
f
(
Qh(x)

)
δx where Qh(x) = x + hQ. Then we set the discretized problem

(Ph) to match with (PK) in Proposition 3.17 while taking K = Kh := Xh × Xh \∆. If we agree that the

set AKh of admissible measures (π,Π) is defined for the discrete load fh in the same way as in (3.7), it is

easy to check that AKh is non-empty whenever Σ0 ∩ Xh 6= ∅. The dual discrete problem (P∗h) is recast as

−hKh(0, 0) according to (3.27). Since Kh ∩ ∆ = ∅, by applying the assertion (ii) of Proposition 3.17 we

obtain the zero-gap equality inf(Ph) = sup(P∗h) and the existence of a solution for problem (Ph). Following

[5], the problems (Ph) and (P∗h) are handled as a pair of conic quadratic programs [4] that we implement

in MATLAB R© with the use of the MOSEK R© toolbox.

Along the forthcoming examples, we will display the numerical solution (π,Π) to (P) for which π ≤ 0

(see Remark 3.4). With regard to the solution (u,w) to (P∗), we will often limit ourselves to display the

scalar function u (interpolated from its values on Xh).

Example 6.1 (Four point forces). For the Dirichlet zone Σ0 = ∂Ω the load f =
∑4

i=1 δxi consists of four

symmetrically spaced point forces: xi = (±α,±α) with α = 0.2 (symbolized by �). In Fig. 3(a,b) we present

measures σΠ, λπ arising from a solution (π,Π) of (Ph), whereas Fig. 3(c) shows an optimal u. Direction of

λπ, being a vector valued measure, is marked by the use of arrows.

Let us now interpret these results. The truss, represented by the prestress σΠ, consists of eight strings

connecting points of load’s application to the boundary and of a large family of thin strings contained in

the central square D = co({xi}); the non-zero transverse force λπ is present only on the eight strings. The

function u admits a plateau in D where u ∼ 0.529, whilst the optimal w numerically matches with the

identity map in this square and appears to be continuous on whole Ω. For each of the eight strings we have:

Π
({

(xi, aij)
})

=
1

2
, π

({
(xi, aij)

})
= − u(xi)

2|xi − aij |
= −

√
0.28

2|xi − aij |
∀ i, j (6.1)

where
√

0.28 (=
√

1/2− α− α2/2 for α = 0.2) is the expected exact plateau value u on D. By slightly

perturbing the algorithm with a penalty on the total number of strings, we converge to the finite truss

solution (π̃, Π̃) supported on K :=
⋃
ij

{
{xi} × {aij}

}
whose miniature is displayed in the top right corner

of Fig. 3(a). Observe that spt (π̃, Π̃) ⊂ (∂Ω ∪ (spt f))2 while λπ̃ = λπ on whole Ω and σΠ̃ = σΠ on Ω \ D
(note that D is closed).
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(a) (b) (c)

Figure 3. Numerical prediction of solution of the four force problem: (a) optimal σΠ (and

an alternative solution in the top right corner); (b) optimal λπ; (c) optimal u.

An interesting issue would be to confirm that this 12-string structure suggested by the numerics (and

encoded by (6.1)) is indeed an optimal one. In view of applying Theorem 5.20, we need to determine a

suitable pair (u,v). One checks easily that if v is an element of MΩ vanishing in D and if u ∈ C0(Ω)

admits D as maximal plateau, then `v(xi, ai,j) = min{`v(xi, y) : y ∈ ∂Ω}. On the other hand, we have

u(x)−u(y) ≤ `v(x, y) ∀(x, y) ∈ spt(f)×∂Ω, with an equality if (x, y) ∈ K. In order to satisfy all optimality

conditions (5.35), it remains to find (u,v) ∈ C0(Rd) ×MΩ matching with the values prescribed above on

∂Ω∪D and satisfying the admissibility condition u(x)−u(y) ≤ `v(x, y) for all (x, y) ∈ Ω
2
. Consequently, we

are done if we can prove conjecture (5.24) or alternatively if the construction of such extension can be done

by hand. We know for instance that u (resp. v) need to be affine (resp. directionally affine) on the eight

straight segments [xi, aij ] which in turn are geodesics for the cv distance. To conclude this example, let us

remark that if (π,Π) given by (6.1) is optimal and if (u,v) can be constructed, then (−π,v) will satisfy the

saddle-point relations (5.28) while taking µ = f and ν = 0. The minimum in (5.23) is obtained for µ0 = 0

and ν0 =
∑4

i=1

∑2
j=1

1
2 δaij .

Example 6.2 (Five point forces). We modify the previous example by adding one point force in the

centre of the square, i.e. f = δx0 +
∑4

i=1 δxi where x0 = (0, 0). Fig. 4 presents numerical solutions σΠ, λπ
and u. We can see that the plateau is no longer present in the graph of u and the 12 strings-structure σΠ

seems stable (with respect to perturbations of the algorithm). In contrast to Example 6.1 here the points

aij where strings connect to the boundary are slightly shifted towards the square’s corners.

The optimal π given by the algorithm (which, up to the change of sign, can be seen also as the optimal

transport plan γ from the Monge-Kantorovich view-point) is given by

γ = −π =

4∑
i=1

1

4
δ(x0,xi) +

4∑
i=1

2∑
j=1

5

8
δ(xi,aij).

It encodes twelve cv-geodesics connecting pairs of points (x0, xi) and (xi, aij) which are straight segments.

It is interesting to notice that the measure λπ can be also reconstructed from the alternative transport plan

γ̃ =
4∑
i=1

2∑
j=1

1

8
δ(x0,aij) +

4∑
i=1

2∑
j=1

1

2
δ(xi,aij).
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(a) (b) (c)

Figure 4. Numerical prediction of solution of the five force problem: (a) optimal σΠ; (b)

optimal λπ; (c) optimal u.

which involves cv-geodesics associated to pairs of points (xi, aij), which remain straight segments, and pairs

(x0, aij) whose cv-geodesics become polygonal chains [x0, xi] ∪ [xi, aij ].

Example 6.3 (Pressure load). We consider now a distributed pressure load, namely. f = L2 Ω. Solutions

σΠ and u are showed in Fig. 5(a) and (b), respectively.

(a) (b) (c)

Figure 5. Numerical prediction of optimal membrane for the uniform pressure load: (a)

optimal σΠ; (b) optimal u; (c) eight equivalent cv-geodesics from the central point x0 to ∂Ω

(computed for the numerical prediction of optimal v).

The prediction σΠ, that approximates an exact solution σ ∈M(Ω;Sd×d+ ), is difficult to analyse. It seems

that spt(σ) = Ω while σ � L2. The exact pre-stress σ is also suspected to be rank-one in a large portion

of the domain except perhaps in the neighbourhood of diagonals, far from the corners, where σ seems to

be of full rank and possibly non-unique (the presumed rank-two region stands out visually in Fig. 5(a)).

Instead of presenting the solution λπ, we investigate the form of geodesics with respect to the estimated

cv-distance. Fig. 5(c) shows a numerical solution of optimal transshipment problem (OTP with constraint

on the difference of marginals, cf. [37]) with respect to the `v-cost. The eight paths numerically obtained
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thus approximate geodesics connecting pairs of points (x0, ai). Based on the simulation it is fair to assume

that these geodesics are curved and piecewise smooth.

Example 6.4 (Diagonal load). While keeping Σ0 = ∂Ω, we continue with a load concentrated along

the square’s diagonals, namely f = H1 [a1, a3] +H1 [a2, a4]. Numerical computations provide σΠ, λπ, u

displayed in Fig. 6 (for the sake of clarity, λπ is displayed with a lower resolution).

(a) (b) (c)

Figure 6. Numerical prediction of optimal membrane for the diagonal load (the discretized

load is denoted by black dots): (a) optimal σΠ (higher resolution); (b) optimal λπ (lower

resolution); (c) optimal u.

Similarly as in previous examples, the support of (π,Π) is contained in (∂Ω∪spt f)2, i.e. no intermediate

points are essential for the optimal transmission of the load. The numerical display strongly indicate that

exact optimal σ splits into an absolutely continuous part with respect to H1 [b1, b3] +H1 [b2, b4] and into

an absolutely continuous part with respect to Lebesgue measure restricted to four quadrilaterals. Based on

Fig. 6(c) we may predict that the restrictions of u|[b1,b3] and u|[b2,b4] are strictly concave hence we expect

that the problem (P) with the initial load f has no solution (see Remark 4.6). However, from the numerical

solution λπ, we can predict the structure of cv-geodesics connecting points in spt f to boundary points. To

this aim it is crucial to observe that λπ charges segments [b1, b3], [b2, b4]. With x0 denoting the centre of the

square we can foresee that for an exact solution v ∈ Lip(Ω;Rd) there holds:

(i) for H1-a.e. x ∈ [x0, ci] the geodesics may be characterized as polygonal chains

[x, z] ∪ [z, ȳ1(z)] or [x, z] ∪ [z, ȳ2(z)] (6.2)

where z is an arbitrary element in [ci, bi] while ȳ1(z), ȳ2(z) ∈ ∂Ω are the boundary points uniquely

determined for each such z and positioned symmetrically with respect to diagonal ending at ai;

(ii) for H1-a.e. x ∈ [ci, bi] the geodesic may be either a single segment or again a polygonal chain:

[x, ȳ1(x)] or [x, ȳ2(x)] or [x, z] ∪ [z, ȳ1(z)] or [x, z] ∪ [z, ȳ2(z)] (6.3)

where z is an arbitrary element in ]x, bi];

(iii) for H1-a.e. x ∈ [bi, ai] the geodesics are segments

[x, ŷ1(x)] or [x, ŷ2(x)] (6.4)
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where ŷ1(x), ŷ2(x) ∈ ∂Ω are projections of x onto the boundary along direction orthogonal to diagonal

ending at ai.

These predictions were confirmed numerically, i.e. by solving a suitable optimal transshipment problem as

we did in Example 6.3. The (presumed) freedom of choosing the geodesics for points in [x0, bi] is remarkable.

Example 6.5 (Signed load). Still taking Σ0 = ∂Ω, we investigate the case of a signed discrete load:

f = δx0 − δx1 + δx2 − δx3 + δx4 , see Fig. 7 where negative point forces are marked by ⊗ and numerical

solutions σΠ, λπ, u are showed.

(a) (b) (c)

Figure 7. Numerical prediction of optimal membrane for the signed load: (a) optimal σΠ

(and an alternative solution); (b) optimal λπ (and alternative solution); (c) optimal u.

We can see that u is affine within two triangles co
(
{x2, x3, x4}

)
and co

(
{x1, x2, x4}

)
while w turns

out to be affine in the whole central square co
(
{x1, x2, x3, x4}

)
where it satisfies 1

2 ∇u ⊗ ∇u + e(w) = Id.

Accordingly, no pointwise constraint is prescribed for σΠ in this square and multiple solutions may appear

as in the Example 6.1. On the top of Fig. 8(a,b), we display miniatures of simplified solutions σΠ̃ and λπ̃
which are obtained by slightly perturbing the algorithm. Again we observe that spt (π̃, Π̃) ⊂ (∂Ω ∪ spt f)2.

Example 6.6 (Eight-point Dirichlet zone). Again we consider a uniform pressure load f = L2 Ω but we

set an eight-point Dirichlet zone Σ0 = {a1, . . . , a8}, see Fig. 8(a). Numerical solutions σΠ, u are presented in

Fig. 8(a,b) respectively while Fig. 8(c) shows the component of w along diagonal [a4, a2], i.e. 〈w, τa4,a2〉. The

high resolution (h = 1
200) allows to predict jump-type discontinuities of exact optimal w ∈ BV (Ω;Rd) along

segments [a5, a6] and [a7, a8], more precisely it is the normal component that is discontinuous (the component

〈w, τa3,a1〉 is discontinuous along [a5, a8] and [a6, a7]). Moreover, although in the numerical program w is

enforced to be zero on ∂Ω∩Xh, from Fig. 8(c) we see that w admits large values at the nodes close to ∂Ω –

this suggests that the multifunction v = i−1(id−w) is multivalued on ∂Ω. Notwithstanding this, the graph

shown in Fig. 8(b) seems to point to Lipschitz continuity for the exact solution u.

Example 6.7 (Miscellaneous). We conclude the presentation with another three solutions for the square

domain Ω and Σ0 = ∂Ω: Fig. 9(a,b) show solutions σΠ for asymmetric positive loads: three point forces

f =
∑3

i=1 δxi in Fig. 9(a) and sum of a point force and load distributed along a line f = δx0 +H1 [a, b]

in Fig. 9(b). Position of the signed load f =
∑2

i=1 δxi −
∑4

i=3 δxi in Fig. 9(c) was strategically picked: the

solution w turns out to be zero implying that obtained σΠ solves the (FMD) problem while γ = −π (Fig. 9(c)

represents both optimal σΠ and λπ, note the arrows) solves the optimal transport problem for the Euclidean
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(a) (b) (c)

Figure 8. Uniform pressure load and eight-points Dirichlet zone (denoted by solid squares):

(a) optimal σΠ ; (b) optimal u; (c) component of w parallel to diagonal [a4, a2].

(a) (b) (c)

Figure 9. (a) optimal σΠ for three asymmetric point forces; (b) optimal σΠ for point force

and force distributed along a line; (c) optimal σΠ and λπ for a signed load.

distance. This implies that Corollary 2.5 cannot be generalized to signed loads f . Solution from Fig. 9(c)

may be proved to be exact by a simple adaptation of the proof of Proposition 4.8: the graph of function

u can be constructed as an extension by zero of four cones of revolution with disks marked in Fig. 9(c) as

bases and vertices
(
xi, sign

(
f(xi)

)√
2/4
)
. The key point is that in-flows and out-flows of λπ are matched at

points where the pairs of disks touch and thus they play the role of additional points in the Dirichlet zone.

To conclude this section, we stress that in all the examples, a numerical solution (π,Π) whose support is

contained in (∂Ω∪spt f)2 was found. In fact, the authors did not find a single counter-example to this rule, in

particular in the case of a discrete load where an exact solution (π,Π) should exist according to Conjecture

5.24. On the other hand, it appears that if Ω is a convex domain and Σ0 is the whole boundary ∂Ω, then

all numerical predictions suggest that the exact optimal pair (u,w) is Lipschitz continuous vanishing on the

boundary. In contrast, if Σ0 is a discrete subset of ∂Ω as it is in Example 6.6, we have a strong indication

that the exact solution w could exhibit discontinuities (that is w ∈ BV \W 1,1).
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Appendix A. Convex analysis

Conjugate and biconjugate. Let X be a Banach space and h : X → R ∪ {+∞} a convex function

with non-empty domain dom(h) =
{
x ∈ X : h(x) < +∞

}
. The conjugates h∗ : X∗ → R ∪ {+∞} and

h∗∗ : X → R ∪ {+∞} are defined respectively by

h∗(x∗) = sup
x∈X

{
〈x, x∗〉 − h(x)

}
, h∗∗(x) = sup

x∗∈X∗

{
〈x, x∗〉 − h∗(x∗)

}
.

Lemma A.1. Let h : X → R ∪ {+∞} be a convex function such that h(0) < +∞ and h is lower

semicontinuous at 0. Then it holds that h(0) = h∗∗(0) = − inf h∗. Assume in addition that h is continuous

at x = 0, then h∗ reaches its minimum on X∗.

Proof. See for instance [7] or [20, Thm I-12]. �

Minimax Theorem.

Theorem A.2. (Ky-Fan) For X,Y being two topological vector spaces, let A ⊂ X, B ⊂ Y be two non-

empty convex subsets and let L : A×B → R be a convex-concave Lagrangian (i.e. u ∈ A 7→ L(u, v) is convex

∀v ∈ B and v ∈ B 7→ L(u, v) is concave ∀u ∈ B). Assume the followings:

(i) A is a compact subset of X,

(ii) for every v ∈ B, the map u ∈ A 7→ L(u, v) is lower semicontinuous.

Then the following equality holds (in R ∪ {+∞}):

min
u∈A

sup
v∈B

L(u, v) = sup
v∈B

min
u∈A

L(u, v).

Assume in addition that B is a convex compact subset of Y . Then L admits a saddle point (ū, v̄) ∈ A × B,

that is:

L(ū, v) ≤ L(ū, v̄) ≤ L(u, v̄) ∀u ∈ A , ∀v ∈ B.

Proof. See for instance [38, Theorem 2.12.2, p.144]. �

Appendix B. Tangential calculus with respect to a measure

For more details on this theory we refer to [11, 14, 13] and to [9] for the specific case of Lipschitz functions.

In what follows Lip(Ω) will be embedded with the weak* topology of W 1,∞(Ω), which amounts to saying

that ϕn
∗
⇀ϕ in Lip(Ω) if and only if ϕn → ϕ uniformly in Ω while {ϕn} is equi-Lipschitz. Let λ ∈M(Ω;Rd)

and consider a decomposition λ = ξ µ with µ ∈M+(Ω) such that µ(Ω) < +∞ and ξ ∈ L1
µ(Ω;Rd). We notice

that if div λ ∈M(Ω) (the distributional divergence is intended in whole Rd), then for any sequence (ϕn) in

C∞(Ω) such that ϕn
∗
⇀ 0 in Lip(Ω) one has 〈−div λ, ϕn〉 = 〈λ,∇ϕn〉 =

´
Ω σ · ∇ϕn dµ → 0. This implies

that
´

Ω 〈ξ, ζ〉 dµ = 0 holds for every ζ in the following set:

N :=

{
ζ ∈ L∞µ (Ω;Rd) : ∃(un)n, un ∈ C∞(Ω), un → 0 uniformly, ∇un

∗
⇀ζ in (L∞µ )d

}
.

The orthogonal complement of N in L1
µ(Ω;Rd) defined by

N⊥ :=

{
η ∈ L1

µ(Ω;Rd) :

ˆ
Ω
〈η, ζ〉 dµ = 0 for all ζ ∈ N

}
is a closed vector subspace of L1

µ(Ω;Rd) which is stable by the multiplication by smooth scalar functions.

Following [14, 9] we define the tangent space Tµ to the measure µ through the following local characterization

of N⊥:
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Proposition B.1. The following statements hold true:

(i) There exists a µ-measurable multifunction Tµ from Ω to the linear subspaces of Rd such that:

η ∈ N⊥ ⇐⇒ η(x) ∈ Tµ(x) for µ-a.e. x ∈ Rd;

(ii) The linear operator u ∈ C1(Ω) 7→ Pµ(x)∇u(x) ∈ L∞µ (Ω;Rd), where Pµ(x) denotes the orthogonal

projector onto Tµ(x), can be uniquely extended to a linear continuous operator

∇µ : u ∈ Lip(Ω) 7→ ∇µu ∈ L∞µ (Ω;Rd),

Lip(Ω) and L∞µ (Ω;Rd) being equipped with their weak* topology;

(iii) The linear operator w ∈ C1(Ω;Rd) 7→ Pµ(x) e(w)Pµ(x) ∈ L∞µ (Ω;Sd×d) extends in a unique way to a

linear continuous operator

eµ : w ∈ Lip(Ω;Rd) 7→ eµ(w) ∈ L∞µ (Ω;Sd×d),

Lip(Ω;Rd) and L∞µ (Ω;Sd×d) being equipped with the weak star topology.

Remark B.2. By virtue of the second assertion in Proposition B.1 any Lipschitz function admits, for every

measure µ, a µ-a.e. defined tangential gradient ∇µu. In the case where µ is the k-dimensional Hausdorff

measure restricted to a smooth k-dimensional manifold in Rd, this tangential gradient coincides with the one

which is obtained by using Rademacher theorem on local charts representing the manifold. If µ is a discrete

measure, then Tµ(x) = {0} and the tangential gradient vanishes. If µ is a multidimensional measure of the

kind µ =
∑

i µi, where the µi’s are mutually singular and µi = Hki Si, Si being a smooth ki-dimensional

manifold in Rd (1 ≤ ki ≤ d), then Tµ(x) = Tµi(x) and ∇µu = ∇µiu µi-a.e. for any u ∈ Lip(Ω).

In view of Proposition B.1 we may define in an intrinsic way the set of tangential vector measures

MT (Ω;Rd) :=
{
λ = ξ µ : µ ∈M+(Ω), ξ(x) ∈ Tµ(x) µ-a.e

}
.

It can be shown that the property λ ∈ MT (Ω;Rd) is independent of the chosen decomposition λ = ξµ (see

for instance [11]).

Remark B.3. If ξ ∈ L1(Ω;Rd), then the measure ξ Ld Ω is an element ofMT (Ω;Rd) since TLd(x) = Rd a.e.

in Ω. On the other hand, if λ ∈ MT (Ω;Rd), the condition dλ
d|λ| ∈ T|λ|(x) implies |λ|-a.e that dim

(
T|λ|(x)

)
≥

1 |λ|-a.e. As a consequence, elements of MT (Ω;Rd) are atomless.

We are now in position to give the desired integration by parts formulae for tangential vector (resp.

symmetric tensor) measures

Proposition B.4. The following statements hold true:

(i) Let λ ∈ M(Ω;Rd) be such that −div λ ∈ M(Ω). Then λ ∈ MT (Ω;Rd) and for any decomposition

λ = ξ µ we have

〈−div λ, u〉 =

ˆ
Ω
〈ξ,∇µu〉 dµ ∀u ∈ Lip(Ω).

(ii) Let σ ∈ M(Ω;Sd×d) be such that −Div σ = 0 in Ω and let σ = Sµ be a decomposition of σ. Then it

holds that Pµ(x)S Pµ(x) = S µ-a.e. and we haveˆ
Ω
〈S, eµ(w)〉 dµ = 0 ∀w ∈ Lip0(Ω;Rd).
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Proof. For the assertion (i) we refer to [9, Prop. 3.5]. To show (ii) we consider a localization function

θδ ∈ D(Ω; [0, 1]) such that θδ = 1 on Ωδ := {x ∈ Ω : d(x, ∂Ω) > δ}. Then, the measure σ̃ := θδσ satisfies

Div σ̃ = S∇θδ µ ∈M(Ω;Rd), hence all its rows or columns are tangential measures. It follows that the rows

and columns of S belong to Tµ(x), hence Pµ(x)S Pµ(x) = S µ-a.e. in Ωδ. Eventually let w ∈ Lip0(Ω;Rd)
and let us prove that

´
Ω 〈S, eµ(w)〉 dµ = 0. As w can be approximated by a sequence (wn) ∈ Lip(Ω;Rd) such

that wn is compactly supported in Ω while wn
∗
⇀w and

´
Ω 〈S, eµ(wn)〉 dµ→

´
Ω 〈S, eµ(w)〉 dµ (see assertion

(iii) in Proposition B.1), it is not restrictive to assume that w is itself compactly supported in Ω, hence in

Ωδ for δ small enough. Then, since σ̃ = σ = S µ and Div σ̃ = 0 in Ωδ, by applying the integration by parts

formula from assertion (i), we infer that 0 = 〈−Div σ̃, w〉 =
´

Ω 〈S, eµ(w)〉 dµ. �

Appendix C. Mollifications of convex functions of measures

Let h : Rm → [0,+∞] be a convex, l.s.c. and positively one homogeneous integrand and let χ ∈
M(Rd;Rm) to which we associate the scalar non-negative Borel measure h(χ) on Rd (see [28]). Let us apply

to χ a smooth convolution kernel θε(x) = ε−dθ
(
x
d

)
where ε > 0 and θ is a radial symmetric element of

D+(Rd) such that
´
θ = 1.

Lemma C.1. We have h(χ ∗ θε) ≤ h(χ) for every ε > 0 and limε→0

´
A h(χ ∗ θε) =

´
A h(χ) (possibly equal

to +∞) for every open subset A ⊂ Rd.

Proof. The integrand h is the support function of a closed convex subset K ⊂ Rm such that 0 ∈ K. Let A

be an open subset of Rd and let ζ ∈ C0(A;Rm) be such that spt(ζ) ⊂ A and ζ(x) ∈ K for all x ∈ A. Then,

for small ε > 0, the convolution ζ ∗ θε satisfies the same properties as listed above for ζ. Hence, since θε is

symmetric and inequality
〈
ζ ∗ θε, dχd|χ|

〉
≤ 1lA h( dχ

d|χ|) holds, we get

〈χ ∗ θε, ζ〉 = 〈χ, ζ ∗ θε〉 ≤
ˆ
A
h(χ).

Passing to the supremum with respect to all ζ, we infer that
´
A h(χ ∗ θε) ≤

´
A h(χ). This is true for every

open subset A and the first claim of Lemma C.1 follows. On the other hand, as it holds that χ ∗ θε
∗
⇀χ in

M(A;Rm), we have the classical lower semicontinuity property lim infε→0

´
A h(χ ∗ θε) ≥

´
A h(χ), from

which we obtain the desired convergence.

�
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