N

N

An Alternative Approach to Polynomial Modular
Number System Internal Reduction

Nicolas Méloni

» To cite this version:

Nicolas Méloni. An Alternative Approach to Polynomial Modular Number System Internal Reduction.
IEEE Transactions on Emerging Topics in Computing, 2022, 10.1109/TETC.2022.3190368 . hal-
03635347v2

HAL Id: hal-03635347
https://univ-tln.hal.science/hal-03635347v2

Submitted on 8 Jun 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://univ-tln.hal.science/hal-03635347v2
https://hal.archives-ouvertes.fr

An Alternative Approach to Polynomial Modular
Number System Internal Reduction

Nicolas Méloni
Université de Toulon
Institut de Mathématiques de Toulon
Toulon, France
nicolas.meloni @univ-tln.fr

Abstract—The Polynomial Modular Number System (PMNS)
is an alternative to the binary multi-precision representation
that allows to transport the arithmetic of a finite field to a
polynomial ring. The most important operation in that system is
the internal reduction that follows any arithmetic operation. All
recent works on the subject use the same algorithm derived from
Montgomery’s modular multiplications to perform this internal
reduction. This paper designs and analyzes two alternative
algorithms to perform the internal reduction, both based on
Babai’s Closest Vector algorithms. It allows to significantly reduce
the number of additions needed to perform this operation. A
comprehensive experimental analysis shows that one of those
algorithms is also faster in practice. For that matter, a C
code generation tool has been developed in order to produce
implementations for any prime field.

Index Terms—TFinite field arithmetic, Polynomial Modular
Number System, Integer Lattice.

I. INTRODUCTION

Field arithmetic is a key component of modern cryp-
tography. The implementation of prime field, in particular,
has received a lot of attention for the past decades. The
most common way to represent a field element is to use a
2%-ary representation. In such a positional number system,
given a prime p, an element a of Z/pZ is represented as a
n = [log(p)] + 1 array (ao,...,a,—1) corresponding to the
integer

n—1
a= E a;2""
i=0

721071 2w71

with 0 < a; < 2% or < a; < . All
arithmetic operations are then performed modulo p. Among
those operations modular multiplication has become the main
focus of investigation as most cryptosystems heavily rely on
it. It is usually performed as a standard integer multiplication
followed by a modular reduction. Many approaches have been
proposed to speed up modular reduction modulo a prime
number. Two main cases are usually considered, depending
on whether the prime can be freely chosen or not. A typical
example of the former case is that of a Mersenne prime,
that is a prime number of the form 2¥ — 1. In that case
a modular reduction can be easily computed as a shift-
and-add operation. Generalizations of Mersenne primes have
been proposed ([7], [16]) in order to extend the range of
possible candidates. Those methods usually provide extremely

fast modular reductions but are limited to a small number
of primes. In the latter case, when the cryptosystem does
not allow enough freedom to chose a generalized Mersenne
number, more generic algorithms must be used [5], [14].

The Polynomial Modular Number System (PMNS) is an
alternative to the standard radix 2* multi-precision represen-
tation. It was introduced by Bajard, Imbert and Plantard [2] in
order to speed up modular arithmetic when special primes are
not available. A field element is represented as a polynomial
of bounded degree and field arithmetic is performed using
polynomial arithmetic. An element a of Z/pZ is represented
as a polynomial

n—1
AX) =) a; X' mod E(X)
=0

where E is a degree n polynomial and |a;| < p for some
p- One key point is that, even if p has no special form, the
polynomial E can in general be chosen so that polynomial
reduction modulo F is fast (for instance if £ = X" — 1).
In that case, the modular reduction that occurs in positional
number system is replaced by a fast polynomial reduction
(usually called external reduction) followed by a coefficient
reduction (called internal reduction). The latter operation is the
critical point. Two approaches have been proposed to perform
it based either on Barrett modular reduction algorithm [3]
or Montgomery’s one [15]. During the past few years im-
provements have been made on the implementation [10], [13],
generation [4], [8], randomization [9] and generalization [6],
[11] of PMNS in various contexts. One interesting common
feature between all those works is that they all perform the
internal reduction step using the Montgomery-like approach.

In this paper we propose two different approaches to per-
form the internal reduction based on two algorithms initially
proposed by Babai to solve the Closest Vector Problem for
integer lattices [1]. Those two algorithms have been mentioned
before in the literature in order to obtain theoretical bounds on
the size of the coefficients [4] but discarded as practical tools
due their high computational complexity [9]. We show that
it is actually possible to design competitive algorithms based
on Babai’s ideas achieving faster internal reduction in many
cases.

The rest of the paper is structured as follows. Section II is
a review of the necessary mathematical tools used throughout
the paper, in particular vector spaces, the PMNS and Babai’s
Closest Vector algorithms. In Section III we propose and
study two new internal reduction algorithms and two optimized
versions of those. In Section IV we give implementation
details about our code generation tool targeting 64-bit archi-
tectures and we illustrate the efficiency of our approach with
experimental results and comparisons with a similar tool based
on Montgomery reduction [10].

II. MATHEMATICAL BACKGROUND
A. Floor and rounding functions

The floor function maps a real number x to the greatest
integer less than or equal to x, denoted | z]. Every real number
x can be uniquely written as = |z] + ¢ with 0 <& < 1.

The rounding function maps a real number z to its nearest
integer (rounding up for half-integers), denoted |x]. It can
also be defined as [z] = [z + 3|. Every real number z can
be uniquely written as z = [z] 4+ ¢ with —% <e < 1.

B. Vector spaces

Consider R" as a R-vector space of dimension n. Let S be
a set of vectors. The linear span of S, denoted span(S5), is
the set of all linear combinations of elements of S. If S =
{So, Ceey Sk} then

k
span(S) = {Z AiSi, i € R})
i=0

The dot product of two vectors a = (ag,...,a,—1) and
b= (bg,...,bp—1), denoted < a,b >, is defined by

n—1
< a,b >= Z a;b;.
=0

Two vectors are orthogonal if their dot product is zero. A
vector a is orthogonal to a subspace S if it is orthogonal to
every vectors in S, in which case we write a LS. By definition

alS<eVse S <a,s>=0.

Vector and matrix norms

Let V = (vg,...,vn—1) a vector in R™. The vector norm
[I]lz or I-norm, is defined by

o V] = jJnax |v;| for I = oo

1
n— T
.« VIl = (Zi:ol |vi|l) for I € {1,2,...}.
For | € {00,1,2} the following chain of inequations holds

Vi < IVIz <[V < VallV]z < nf|[V]|s.

Let M = (m;;) € R™*" a matrix with m rows and n
columns. The matrix norm induced by the vector norm ||.|; is
defined by

M}y = sup |[[Mz]];.

llzll:=1

Such norm satisfies

Vo e R", [|[Mz| < [M][]|z])-

Those norms are also sub-multiplicative, that is, given two
matrixes M7 € R™*™2 and My € R"2*™3 we have

[[My Mal|p < | My [[of| Mzl

In the case of [= oo, the induced matrix norm can be
computed as the maximum absolute row sum of the matrix

m—1

Moo = max > |my].
nggn—l‘o
j=

In the case of [= 1, the induced matrix norm can be
computed as the maximum absolute column sum of the matrix

n—1
Mo = max > |myl.
0<j<m—-1 pat

C. Lattices

A lattice is a sub-group of R™. Given a set of linearly inde-
pendent vectors, a lattice is the set of all linear combinations
with integer coefficients of those vectors. Typically, a lattice
can be seen as the set

k—1
A= {Zalbz | a; € Z}
=0

where (bg,...,bg_1) is a set of linearly independent vec-
tors of R™.

Volume of a lattice.: Any two basis of a lattice A can be
obtained from one another using a integral change-of-basis
matrix of determinant £1. Thus the absolute value of the
determinant of any basis only depends on A. That determinant

is called the volume of the lattice and is noted det(A).

Gram-Schmidt orthogonalization.: Let B =
(bg,b1,...,bp_1) a _ basis. Its Gram-Schmidt
orthogonalization (GSO) B = (bg,by,...,b,_1) is the

orthogonal family obtained using the recursive process:

1) by =bg ‘ _
2) Vi > 1,b; =b; — 31— iy
where f1;; = (b:Bi) [er A be the lattice spanned by B, a

. N .
classical result is that it satisfies

n—1

det(A) = [IBillz-
=0

LLL algorithm.: The LLL algorithm [12] is a lattice basis
reduction process that computes an LLL-reduced basis in
polynomial time. For a given basis B and a real number
% < 6 < 1, B is LLL-reduced if

.f0r0§j§i<n—1~:|,uij\§0.§ _

o for 1 <i<n—1:0|bia|3 < [bill3 + pii-1lbi-all3.

In practice it means that the basis has short vectors and that
they are nearly orthogonal.

D. PMNS

Let p be a prime number, £ a polynomial of degree
n and 7y a root of £ modulo p. The general idea is to
represent integers as elements of the polynomial quotient ring
Z[X]/(E). Any arithmetic operation can then be performed
using standard arithmetic over the polynomials followed by a
euclidean division by E.

Definition 1: A Polynomial Modular Number System
(PMNS) B is defined by a tuple (p,n, v, p, E, 1) € Z*xZ[X] x
Z U {oo}, such that E(y) =0 mod p and for every integer
0 <z < p, there exists a polynomial V' (X) in Z[X]/(E) (or
equivalently a vector V' = (vg, ..., v,—1) € Z™) such that:

n—1
Viy) = va’” =2z mod pand |[V||; < p.
i=0

Such a polynomial (or vector) is said to be a representative
of x and we notate V =g x. There might be several
representatives for a given x. If V' is another polynomial such
that V/ =5 = we say that V' and V' are equivalent an notate
1% =B V/.

Remark 1: In all previous work, the only norm considered
was the infinity norm. In other words the parameter [was fixed
to co. However in this paper the 1 and 2-norm will also be
considered.

Remark 2: In [2] and [3], a naming distinction is made based
on the shape of the polynomial E. The name PMNS is reserved
to the case where F(X) = X™ — aX — A. When a = 0 the
system is called Adapted Modular Number System (AMNS)
and simply MNS otherwise. We make no such distinction in
this paper and only use the concept of PMNS.

Example 1: Let p = 1048573,n = 5,7 = 238019,p =
36, E = X° — 2 then B = (p,n,7, p, E,00) is a PMNS. Let
us consider two polynomials A = —9X*+13X3 -35X2 25
and B = 24X* — 32X3 4+ 21X2 — 2X — 16, their modular
multiplication in PMNS is performed in 3 steps:

1) a standard polynomial multiplication
AB = —216X% + 600X7 — 1445X° + 1411X°
—1217X* 4+ 662X3 + 35X2 4+ 50X + 400

2) a degree reduction (external reduction)

C =AB mod F
= —1217X* + 230X 3 + 1235X2 — 2840X + 3222

3) a coefficient reduction (internal reduction) to ensure the
coefficients (c}) of the results satisfy the bound |c}| < p

C=pC'=3X*4+2X34+8X2-X—1.

One can verify that A(y)B(y) = C(v) = C'(y) mod p.
The first two steps are usually performed using standard
algorithms and often merge as one operation. The third step
is the most difficult from a computational point of view.
The general method is to find a polynomial R, close to C
(depending on the chosen norm), such that R(y) =0 mod p,
in which case ¢’ = C — R =5 C and ||C’|| is supposed to
be small. This problem can be interpreted as finding a close
vector to the vector C' in some integer lattice as shown next.

Definition 2: Let B = (p,n,~,p, E,l) be a PMNS. The
lattice £(B) associated to B is the set

n—1
L(B) = {(xo, ceyTp_1) EZ": mei =0 mod p} .
i=0
L(B) can also be seen as the set of all polynomials V' €
Z[X] of degree less than n such that V() =0 mod p. This
set is introduced in [2] and it is proven that it is a lattice of
dimension n, generated by the row of the matrix

P 0 0 ... 0

-y 1 0 ... 0

-2 0 1 ... 0

G= :
-2 0 1 0

o 0 1

In other terms, the set

{(p,0,...,0),(=,1,0,...,0),...,(=y""10,...,0,1)}
)

is a basis of £L(B) and for any y € L(B) there exist x € Z"
such that y = zG.

Let (bg,...,b,_1) be any basis of £(B) and C =
(coy.--,¢en—1) € Z™. The coefficient reduction problem con-
sists in finding a close vector to C' that is a linear combination
of the b;’s. We define the PMNS reduction problem as follow.

Definition 3: PMNS reduction problem

Given a PMNS B = (p,n,~, p, F,1) and a vector v € Z",
find s in £(B) such that

lo sl < p.

This is obviously linked to the Closest Vector Problem
(CVP) that is known to be NP-hard for the oo-norm [18].
Thankfully we have to deal with a much weaker version of
that problem: n is small in practice and we only look for a
close enough vector to v.

E. Montgomery PMNS Reduction

The most efficient method to solve the PMNS reduction
problem is a Montgomery-like algorithm proposed by Negre
and Plantard [15]. It actually solves a slightly different version
of the problem and requires the existence of a polynomial
M with certain properties as studied in [10]. The method is
summarized by Algorithm 1.

Algorithm 1: RedCoeff ([15])

Data: B = (p,n,’y,p,E,oo),V € Zn[X]aM € B such
that, M(y) =0 mod p, » € N— {0} and
M'=—-M~! mod (E, ¢).

Result: S(v) = V(y)¢~! mod p

Q<+ V xM mod (E,9);

T+ QxM mod E;

S (V+T)/¢;

return S;

F. Babai’s Nearest Plane algorithm
Let B = (bg,...,b,_1) a lattice basis and B its GSO.

Recall that B satisfies

b; L span(bg,...,b;_1)

and

span(f)o, ... ,f)i) = span(by, ..., b;)

Babai’s nearest hyperplane algorithm [1] can be seen as a
way to reduce each coordinate of v in the Gram-Schmidt basis
one by one, starting from coefficient n — 1 to 0.

Suppose we have a semi-reduced vector v' whose coefficient
i+1to n—1 are reduced in the Gram-Schmidt basis. Reducing
coefficient ¢ is done by computing the integer c; such that
v’ —c;b; has the smallest i-th coefficient possible in the Gram-
Schmidt basis. In other terms ¢; must minimize

< ’Ul7bi > —c < b“b, >

\‘< U/,f)i >“
CZ - ~72 .
[bsll3

Babai’s Nearest Plane algorithm is then straightforward as
shown by Algorithm 2.

which leads to

Algorithm 2: Babai’s Nearest Plane algorithm ([1])
Data: £ a lattice, v € Z", B = (bo,y ...,

b,_1) a basis

and B = (Bo, by,...,b,_1) its Gram-Schmidt
orthogonalization
Result: s € Z" such that v =v — s € £ and v’ is
close to v
§ + v;

fori=n—-—1...0do

<s,b;>
¢ { 5,b; W
L o:ll3 |”

s+ s—cXb;

return s;

The output vector s satisfies

n—1
s= Y sib; with [s;] < 1/2
1=0

from which we can deduce that

n—1

> lIbill3.
=0

That last inequality gives, for a given PMNS, a maximum
bound for p that depends on the basis of £(B). In particular,
the smaller 3" || b;||3 is , the better. As det(L£) = []||b;|| =
p is a constant of the lattice, a good basis should be one whose
vectors satisfies ||b;|| ~ p'/". This is typically the kind of
basis that the LLL algorithm provides when the dimension n
is small.

1
l[s]l2 < 3

G. Babai’s Rounding algorithm

Let B = (bg,...,b,_1) a lattice basis and v a vector.
Babai’s Rounding algorithm [1] consists of computing the
rational coordinates of v in B, so that v = gobg + -+ +
gn—1bpn_1, and choose ¢ = [qo]bo + - + [gn—1]bn_1 as a
close vector. The rational coordinates can be obtained by pre-
computing the inverse matrix B~! = (b’q,...,b’,,_1) so that
¢ = vB~!. The whole procedure can be reduced to a simple
equation:

s=v— LvB_lw B.

Babai’s Rounding algorithm is described in Algorithm 3.

Algorithm 3: Babai’s Rounding algorithm ([1])
Data: £ a lattice, v € Z", B = (by,...,b,,_1) a basis
and B~1 = (b/g,b’y,...,b’,,_1) its inverse
Result: s € Z" such that v/ = v — s € £ and v’ is
close to v
$ < v;
fori=0...n—1do
T |<v, b >T;
L 5 < s —rby;

return s;

The output vector s =
lgn—1])bn_1 satisfies

(o — [go)bo + -+ + (gn-1 —

n—1
s = sib; with [s;] <1/2
1=0

from which we can deduce that

n—1
1
sl < 5 > bl
i=0

The last inequality gives, for a given PMNS, a maximum
bound for p that depends on the basis of £(B). In particular,
the smaller 57~ '||b,||; is , the better.

ITI. BABATI PMNS REDUCTION ALGORITHMS

Babai’s CVP algorithms can not be used as such to perform
the internal reduction of a modular reduction because of the
size of their operands. The coefficients of the GSO and the
inverse matrix are fractional numbers whose numerators and
denominators can be as large as the prime number p. This
section describes two algorithms based on Babai’s Closet
Vector algorithms adapted to the PMNS reduction problem.

A. Nearest Plane PMNS internal reduction algorithm

At its core, Algorithm 2 consists of computing a good inte-
ger approximation of <”%b”§> . Our goal is to compute a good
enough approximation of these quantities using coefficients
that fit in the registers of a target processor.

We first remark that

b;
b3

o]
I

= [}z

2

If the basis B is LL L-reduced, it is expected that, for all 4,

[bs]]2 ~ pt/m™. This justifies that there should be an integer
h1 so that h)[;b”ij

Let us suppose that there are two integers h; and ho such
that fnbb\\l?]—‘ and bth are w-bit integers for all 7 and j. In
that case

fit in a w-bit register of all ¢, 7.

b; bi j

< Sy, —=——— > = =
15:]12 Z 1]

i,j

1 Sj
— X —=
2h1—hs ; 2hs [|6:]2

S thi)v’v
% L3t) x| |

2h1 —ho

thg. .

In other words, given h; and he, it is possible to ap-
proximate the coefficients in Babai’s Nearest Plane algorithm
through register-size integer arithmetic. Algorithm 4 describe
a complete reduction procedure.

The output s = (sg,...,Sn—1) satisfies

|
—_

n

s = Sibi
=0

with each s; satisfying |s;| < e; for some e; depending on
the approximation error made during the computation of c.
| does
not depend on the input vector v and thus can be pre-computed
for all 4,j. Let add,, and mult,, represent the cost a one
addition and one multiplication of two w-bit integers and shft
that of a shift. For each iteration of the main loop, the inner
loop computes n shft, nmult,, and (n — 1) addy,, = (2n —
2)add,,. It is followed by a addition shft and n mult,, and

nadds,,. The total computational cost is

Complexity analysis: One can remark that {

Algorithm 4: Nearest Plane Reduction Algorithm

Data: L a lattice defined by a basis (bg,...,b,_1),
~ ~ hit
(Bo, . Bu-1) its GSO, Gyy = | 2Pt | for
0<i,j<n, '

Input: v € Z™

Result: s equivalent to v with ”small” coefficients

54 v;

fori=n—-1...

c <+ 0;

for j=0...n—1do
T < 5; > h2;

L cé—c+r x Gy

ha);

0 do

r+c> (hy —
§4s—r xbs;

return s;

2n? mult,, +(4n? — 2n) add,, +(n? + n) shft.

It is possible to save a few additions from the observation
that the last vector subtraction of the last iteration (s < s —
r X bg) produces a small vector, that is one with coefficients
fitting in one register. It means that the upper part of each
subtraction can be discarded, saving n add,,. The complexity
of Algorithm 4 thus becomes

2n” mult,, +(4n? — 3n) add,, +(n? + n) shft.

Coefficient reduction: We need to prove that Algorithm 4
efficiently solves the PMNS reduction problem. To do so, we
must evaluate the error made during the various approxima-
tions.

Lemma 1: Let s(*~1) be the initial value of variable s and
s("=k=1) jts value at the beginning of the k-th iteration of
Algorithm 4. Let S = 37" S;b; be the output of Algorithm
4. Then for all ¢ there exists a constant K; that does not depend
on the input v such that

(eI
2h1+1

Proof: First, we know that b;L span(bg,...,b;_1). It
means that, the instruction s <— s — 7 X b; does not modify
the value of Sy, for any k£ > 4. In other terms, S; only depends
on the value of the vector s(¥).

Set
2 s « 2"1b;
g | 2" [E

2h1 —ho

R; =

Let e; be the approximation error:

l*Z(’L)bZJ —Ryl.
[[bi]|>

We have
(7) he i
1 Sj 2 1bij ’
= g <2h2__6j> (e) TE
J 1
1 S§-i) 2’“6@'
N G
1 QhIBij
T 9hi—ha Z <5j x e >

J
J

Q)
1 , Sj
T 9hi—hs Z (53' x 2h2>

J

1 /
+m Z€j€j+8
J
with 0 <¢,e; <1 and —1/2 <&} < 1/2. Remark that

(@) @
Z(E;X?Zw) g Z]l] |

2h2+1
J
(e
— 2h2+1
and
, n
LIS
J
we obtain
[s@]), | 2t - n
s ¢ e[S i+
J
. h ~ .
Setting K; = H%iTP Zj bm-‘ + srroreyr + 1 gives the

expected result.
|
Despite the fact that the output vector has a small 2-norm,
nothing guaranties that the intermediate values of s do not
grow. It would be the case if the basis B was orthogonal as
the norm of the vector s would get lower after each iteration.
In our context, the basis is LLL-reduced which means that it
is close to being orthogonal and the norm of s is expected not
to grow too much. Yet obtaining an effective bound remains
an open problem.
For the rest of our analysis we simply remark that, once
p and B are fixed there exists an absolute constant « such
that max (||s”]]1) < aljv||;. All our experiments tend to
0<i<n—1

show that, in our context, & < 2, however we could not give
a formal proof of this result.

Proposition 1: Let puy = +/>||b;||2. There exist two

constants o and K such that

HS”Q S <O[||U|1 +K> Lo

Qhi+1

Proof: We have seen that there exists « such that
max;(||s®]|1) < a|[v]|1. Then for all i

alfvfly

i< Ghgr T K

where K = max K;. As the output satisfies S =

_ 0<i<n—1
Z?:_ol s;b; with |s;] < e; we get that

allv
2
|
Corollary 1: Let (p,n,v,p, E,2) be a PMNS, « and K be
given by Proposition 1. If v satisfies

2h1+1
ol < (p—K)
« 125

then Algorithm 4 solves the PMNS reduction problem.
Proof: Algorithm 4 solves the PMNS reduction problem
if the output S satisfies ||S|l2 < p. Combining that condition
with Proposition 1 gives the expected result. []

n—1
allv]x x
Isll < |3 (Gt 1) B

=0

B. Rounding PMNS reduction algorithm

Our approach is quite similar to that of the previous
algorithm. Babai’s Rounding method consists of computing
an integer approximation of vB~!. The main idea is to
approximate the rational coordinates of v in B using register-
size approximations of the coefficients of the inverse matrix
B! = (b{,...,b!, ;). We introduce the same set of param-

eters, hy and hy, so that |2"1b/'; ;] and | 374 | are register-size
integers. It is then possible to compute a short vector s based

on the following equation

S_U{MAW®TWB

9h1—h2

Algorithm 5 describes the complete procedure.

Algorithm 5: Rounding Reduction Algorithm

Data: L a lattice, B a basis saw as a row matrix,
B! its inverse and for 0 < 4,j < n,
Bl = [2b]
Input: v € Z™
Result: s equivalent to v with “small” coefficients
18< v
2 v (Uo > hoyov, Upoq > hg);
3fori=0...n—1do
4 r <+ 0;
5 for)=0...n—1do
6 | re 7+ x B
7 T‘<—7’>>(h1—h2);
8 s+ s—r X by

9 return s;

Complexity analysis: The algorithm performs a succession
of dot products. A similar analysis to that of Algorithm 4
shows that the computational cost is

2n? mult,, +(4n? — 2n) add,, +2n shft .

It is possible to save many additions from the observation
that the coefficients of the final result are supposed to fit in a
single register. The instruction s <— s —r x b; can be replaced
by s + (s—7xb;) mod 2" saving n additions per iteration.
Algorithm 5 can thus be performed in

2n? mult,, +(3n? — 2n) add,, +2n shft .

Lemma 2: Let S =) 1" ' S;b; be the output of Algorithm
5 then for all 0 < 7 < n — 1 there exists a constant /; that
does not depend on the input v such that

o]l
2h1+1

1S;] < + K;.

Proof: The output S satisfies

2MB-
g U_VQ,@;LIM 1JB
v 2h1B—1
_ omp. V?’%Lhz WJB

= (UB_l — {%J) B

On top of that, for a given ¢, consider the i-th coordinate
L 2 JphlB]
R; of the vector {“J

2h1—ha

()

_ r 5] . (2" bf] J

2h1 —ho

F}” 375 Phlb’zﬂJ

th ho
1 n—1
= g 2 i 2] -
1 = Uj h1y/ /
= WZ<2727€1') (2" —¢€j) —e
n—1 ’ n—1
- Zujb' y th Zajz’mb’ i
J J

2h1 hQZsjg -¢€

with 0 <¢,e; <1and —1/2 <&’ < 1/2. We deduce that

|S;]

S o - r [35). 2] >J
J

2h1—h2
n—1 ‘1} | n—1 n
J h N T
< Z 2h1+1 +27 zb v + 9h1—ha+1 +1
J J
[0]lx
< 2h1+1 + K

|
Proposition 2: Let iy = >, ||b;||1. There is a constant K
such that

ISl < (et + Ky

Proof:

From the previous lemma we have that S =). S;b; with
1S;| < 2‘1”1”@ +K;. Set K = max K; we obtain that desired
result. - [

Corollary 2: Let (p,n,v,p,E,1) be a PMNS and K be

given by Proposition 2. If v satisfies

ol < 2+ ("’ - K)
M1

then Algorithm 5 solves the PMNS reduction problem.

C. Error/Speed trade-off

It is possible to speed-up both reduction algorithms at the
cost of an increase of the error. In some situations, the error
remains small enough so that the algorithms still solve the
PMNS problem. It is based on the observation that, generally

speaking,
e 262 -2

The first approximation is more accurate but the second one
perform additions on smaller integers at the cost of additional
shifts. However if A can be chosen to be equal to w, the register
size of the target architecture, those shifts can be considered
as virtually free. Algorithms 6 and 7 describe two optimized
versions of algorithms 4 and 5. In both cases n? — n adda,,
are replaced by n? — n add,, at the cost of n? — n (virtually
free) shft. The shft,, notation is added to represent such w-bit
right shifts. The respective complexities of Algorithm 6 and 7
are

2n? mult,, +(3n? — 2n) add,, +n? shft +-n? shft,,

and

2n? mult,, +(2n* — n) add,, +n shft +n? shft,,

On the other hand for both algorithms the value of K; from
lemma 1 and 2 is modified to K; +n — 1.

Algorithm 6: Optimized Nearest P.

S v
fori=n—1...0do
c+0;

for j=0...n—1do

T4 55 > h2;

¢ c+ ((r x Gij) > (h1 — h2))
s+ s—r X by

return s;

Algorithm 7: Optimized Rounding

5 v;
v (vg > hay ..., Up—1 > ha);
fori=0...n—1do
r <+ 0;
for j=0...n—1do
| 1+ ((0) x B;) > (b1 — ha))
s+ s—1 X by

return s;

Table I summarizes the complexities of the different internal
reduction algorithms. The optimized version of the Rounding
method appears to be more efficient that all other methods and
performs 33% less additions than Montgomery’s algorithm.
Even the standard version should perform slightly faster. The
efficiency of the Nearest Plane method is more dependent on
the target architecture and the relative cost between additions
and shifts.

IV. IMPLEMENTATION

This section is dedicated to implementing the previous
algorithms on a 64-bit architecture in C. A code generation
tool has been developed along with a parameter search tool in
order to simplify any implementation of our algorithms on a
given field. The software was build using SageMath [17] and
available in a Git repository'.

A. Choice of the the polynomial FE

The effectiveness of the different methods studied here
depends on the value of the 1-norm of the input vector V'
as shown in Corollaries 1 and 2. Given two polynomials A

'https://plmlab.math.cnrs.fr/melon359/pmns

Alg. mult,, add,, shft | shft,,
Montgomery [10] 2n? 3n? —n 0 n
Nearest P. 2n2 4n? —3n | n? n
Nearest P. (opt) 2n? 3n% — 2n n? n?
Rounding 2n? 3nZ —2n | n n
Rounding (opt) 2n? 2n? —n n n?
TABLE T

THEORETICAL COMPLEXITIES OF THE INTERNAL REDUCTION
ALGORITHMS

and B such that V = AB mod E, ||V||; highly depends on
the choice of the polynomial E. Indeed, the column vector V'
can be expressed as a matrix-vector product

Vo bO bO
= (In Enfl) (AC) = 7?/A,E'

Un—1 bn—l bn—l

where I, is the n X n identity matrix , E,_; is the n x
(n—1) matrix whose column i corresponds to the vector X ™"
mod E(X) in the base (1, X, ..., X" 1) and AC is the (2n—
1) x n matrix whose column 4 correspond to the vector a; X"
in the base (1,X,..., X2"72),

From V = R gB, based on the matrix norm properties
from Section II, we obtain the following inequations

VI < [[RaellBl: (D
< NI B)1 I(A) |1 11B]I1 (2)
< |[Bn-al1|All111Bllx 3)
< nx |Epallil|All2]|B]f2- 4)

Example 2: Consider A = ag + a1 X + a2X?, B =
bo + b1 X +b:X2 and E = X3 — X\. Then X* mod E = \

and X° mod FE = \X. Considg\redO s column vector in base

0 X
0 0
Let V = AB mod E we have

(1, X, X?) we get that Fy =

aon 0 0
Vo 1 0 0 A O ayp Qo 0 bo
(%1 = 01 0 0 X as a1 Qo bl
(%) 0 01 0 O 0 az aj bz
0 O an
aq /\CLQ /\0,1 bo
= ay Qg)\0,2 b1
a9 aq ap b2

and ||V [y < [\l Bl

Inequality (1) usually provides tighter bounds than (3) but
is also harder to evaluate. In both cases I should be chosen
so that the associated matrix F,,_; has the smallest norm. The
rest of this work focuses on polynomials of the form X" — A
with |\| as small as possible in order to compare the algorithms
presented here to that used in [9]. In that case the following
theorem holds.

Theorem 1: Let (p,n,~y,p, X™ — A\, 1) be a PMNS. Let A,
B and V be three degree n — 1 polynomial and V = AB
mod F with ||A]|; < p and ||B]; < p.

1) If Il =1, let K be given by Proposition 2. If

AKpf < 2mt

then Algorithm 5 solves the PMNS reduction problem.
2) If I =2, let @ and K be given by Proposition 1. If

na| A Kp2 < 2h-1

then Algorithm 4 solves the PMNS reduction problem.
Proof: As E = X" —)\, we have

A0 0
0 A
_ I _
En—1=Ax (0 0) = 0
0 ... 0 A
0 ... 0

so that | E,—1]j1 = ||
e If I = 1, combining Corollary 2 with the inequality 3
gives that Algorithm 5 solves the PMNS problem if

RYZ!
<2h1+1 PP —p+Ku <0

is satisfied. The real function z + ax? — x4+ c reaches its
minimum when = 1/2a. We deduce that the previous
inequality is satisfied as soon as

2
\)\|M1 2}11 2h1

— Ku, <0
(2’““ |Alp N) TR =

that is

INKp2 <2hi-1,

e If | = 2, combining Corollary 1 with the inequality 4
gives that Algorithm 4 solves the PMNS problem if

(”04|>\|M2

s)ﬂQ—P+Ku1S0

which is satisfied as soon as

no|\|Ku3 < 2=t

B. Parameter generation

Let p be a prime number. Generating the parameters for p
is done in the following sequence:

1) chose n the degree of the reduction polynomial FE.
Targeting a 64-bit architecture, n must satisfy 64 x n >
[log, (p)1:

2) find A such that £ = X™ 4 X has a root 7y in Fp;

3) compute the lattice associated to the polynomial £/ and
a LLL-reduced basis~B; _

4) compute the GSO (bg,...,b,_1) and inverse matrix
B~! = (bj,...,bl, ;) of B;

5) for each algorithm (Nearest plane and Rounding) find a
pair of integer (hq, hy) such that

« for all 4,7 | 2202] or [2Mb] fit in a 64-bit
register;

« every coordinates of |v/2"2] fit in a 64-bit register
for any valid input vector v;
« there exists a p satisfying Theorem 1;

6) If no parameters can be found, go to step 2 and change
A or to step 1 and increase n.

Remark 3: The search for hy and hy is performed through
exhaustive search with some conditions to speed up the pro-

max —/—|and My = max \b;j|,
0<i,5<n—1 ||b74||2 0<i,j<n—1
then h; must satisfy 2"1M, < 293 — 1/2 which gives a
maximum bound for h;.

Similarly, | ||v]|oo/2" | must fit in a 64-bit register and we
know from the inequality that ||v|oc < ||v]|1 < |AJA|l1]|1 Bl
which gives a minimum bound on hs.

Remark 4: When verifying that Theorem 1 holds it is
possible to compute the exact values of the K; from Lemmas 1
and 2 thus obtaining tighter bounds on the norm of the output
vector.

cess. Set M7 =

C. Comparisons

In [10] the authors have provided numerous C implemen-
tations of Montgomery PMNS reduction algorithms for many
key size relevant for elliptic curve cryptography (i.e., 192, 224,
256, 384 and 521 bits). The same prime numbers have been
used to generate parameters for our reduction algorithms. For
each prime p, we have generated 10000 pairs of elements of
7./pZ, converted then into the relevant PMNS representation
and performed a polynomial multiplication followed by an
external reduction. Then, for each algorithm, we have mea-
sured the number of clock cycles required to perform the
internal reduction as well as the total number of instructions
performed by the CPU. The experiment was performed on
a Linux system powered by an Intel(R) Core(TM) i5-10500
CPU @ 3.]0GHz and the code was compiled with gcc 9.3.0
using the -O3 option. The benchmark test results are shown
in Table II and III.

First let us say that CPU clock cycle measurements should
be taken with caution especially when numbers are that small.
However, the measurements shown in II are very consistent
from one execution to another with a standard deviation of
less than one cycle.

Generally speaking, the results are consistent with the
theoretical complexities from Table I. The Rounding and
Optimized Rounding algorithms are faster than Montgomery
reduction in most cases. On top of that the optimized version
of the Rounding method executes 10 to 20% less instructions
than any other approaches. The Nearest Plane algorithms how-
ever do not appear to be that competitive at the moment. These
algorithms are significantly slower as shown in both tables and
it clearly highlights that the numerous shifts, whose cost is
often overlooked, have a great impact on the performances of
core operations such as modular multiplications.

Another phenomenon is surprising: as the size of p in-
creases, so does the degree of the polynomial E and the differ-
ence between the Rounding algorithm and the Montgomery-

[p size [192 [224 [25%] 38 | 512 |
[degree n [4 T4 5[5 7 [8 J107T11]
Montgomery [10] | 60 | 63 | 86 83 155 | 206 | 300 | 357

Nearest P. 83 83 | 143 | 133 | 265 | 331 | 494 | 606

Nearest P. (opt) 70 70 | 108 | 117 | 196 | 248 | 405 | 494

Rounding 50 52 76 74 155 | 205 | 321 | 362

Rounding (opt) 45 | 45| o4 70 148 | 199 | 291 | 344
ABLE

NUMBER OF CPU CLOCK CYCLES TO PERFORM AN INTERNAL REDUCTION
USING A POLYNOMIAL OF THE FORM X" — A

| p size [192 [224 [256] 384 | 512 |

| degree n [4 T 45 5[7 [8 10] 11 |
Montgomery [10] 191 188 | 255 | 254 | 496 649 966 1122
Nearest P. 228 | 214 | 388 | 357 | 793 | 1021 1624 | 2014
Nearest P. (opt) 194 | 199 | 298 | 304 | 538 743 1218 1486
Rounding 181 178 | 261 | 253 | 468 644 987 1021
Rounding (opt) 159 | 156 | 221 | 220 | 381 493 735 879

ABLE TIT

NUMBER OF CPU INSTRUCTIONS TO PERFORM AN INTERNAL REDUCTION
USING A POLYNOMIAL OF THE FORM X" — A

like algorithm tends to decrease. For large primes, Mont-
gomery reduction becomes even faster than the standard
Rounding method. The analysis of the instruction count is
interesting for that matter. For instance, with n 11,
Table III confirms that the Rounding method executes less
operations but Montgomery reduction ends up being faster.
One explanation is that the super-scalar nature of modern
processors combine with instruction pipelining and compiler
optimizations can introduce a significant level of variability
between theoretical analysis and practical results on a given
platform. This is confirmed by the fact that compiling the same
code without any optimization (-O0 option of gcc) reverses
the results with the Rounding algorithm being faster than
Montgomery’s.

Even more surprising is the fact that, for n 10,
the Rounding algorithm executes more instructions than the
Montgomery-like counter-part. An analysis of the assembly
code shows that the number of additions or multiplications
are consistent with the theory but a large number of move
instructions slows down the Rounding method. It appears
that, in some cases, the compiler has a hard time optimizing
memory allocation thus impacting the instruction count and
execution speed.

V. CONCLUSIONS

The Polynomial Modular Number System have received
a lot of interest recently. Various approaches and sets of
parameters have been studied but the internal reduction step
of all these works remains the same and is always based on
a Montgomery-like algorithm originally proposed in [15]. In
this work we have proposed two completely different internal
reduction algorithms based Babai’s Closest Vector algorithms
for integer lattices. Our algorithms are both provided in two
versions: one standard that aim at minimizing the size of the
output vector and one optimized version where an error/speed
trade-off is made.

Both algorithms are competitive with the previous works. In
particular, algorithms based on Babai’s rounding method are
theoretically faster, the optimized version performing 33% less
additions than Montgomery’s. Experimental results comparing
our implementations to those in [10] confirms the efficiency
of our approach.

All our work has been carried in the most general case
possible, with a prime p with no particular shape. Adapting
our algorithms to special primes is one potential field for
future studies. On top of that, our C code generation tool
could be optimized depending on the targeted platform. Fi-
nally, approaches combining the PMNS with other number
systems, such as that proposed in [13] where the coefficients
of the polynomials are represented using the Residue Number
System, could benefit from using our Babai-like reduction
algorithms instead of Montgomery’s.

REFERENCES
[1] L. Babai. On lovdsz’ lattice reduction and the nearest lattice point
problem (shortened version). Combinatorica, 1986.
Jean-Claude Bajard, Laurent Imbert, and Thomas Plantard. Arithmetic
Operations in the Polynomial Modular Number System. In ARITH’05:
17th IEEE Symposium on Computer Arithmetic, pages 206-213, USA,
2005. IEEE computer society.
Jean-Claude Bajard, Laurent Imbert, and Thomas Plantard. Modular
Number Systems: Beyond the Mersenne Family. In SAC’04: 1ith
International Workshop on Selected Areas in Cryptography, number
3357 in Lecture Notes in Computer Science, pages 159—169, University
of Waterloo, Ontario (Canada), August 2005. Springer Verlag.
Jean-Claude Bajard, Jérémy Marrez, Thomas Plantard, and Pascal
Véron. On Polynomial Modular Number Systems over Z/pZ. working
paper or preprint, June 2020.
Paul Barrett. Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor. In Advances
in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings, volume 263 of Lecture Notes in Computer Science, pages
311-323. Springer, 1986.
Cyril Bouvier and Laurent Imbert. An Alternative Approach for SIDH
Arithmetic. working paper or preprint, April 2021.
Jaewook Chung and Anwar Hasan. More generalized mersenne num-
bers. In Mitsuru Matsui and Robert J. Zuccherato, editors, Selected Areas
in Cryptography, pages 335-347, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.
Titouan Coladon, Philippe Elbaz-Vincent, and Cyril Hugounengq.
MPHELL: A fast and robust library with unified and versatile arithmetics
for elliptic curves cryptography (extended version). In ARITH 2021,
Transactions on Emerging Topics in Computing, Torino, Italy, June
2021.
Laurent-Stéphane Didier, Fangan-Yssouf Dosso, Nadia El Mrabet,
Jérémy Marrez, and Pascal Véron. Randomization of Arithmetic over
Polynomial Modular Number System. In 26th IEEE International
Symposium on Computer Arithmetic, volume 1 of Proceedings of the
2019 IEEE 26th Symposium on Computer Arithmetic, pages 199-206,
Kyoto, Japan, June 2019. IEEE Computer Society.
Laurent-Stéphane Didier, Fangan-Yssouf Dosso, and Pascal Véron.
Efficient modular operations using the adapted modular number system.
Journal of Cryptographic Engineering, January 2020.
Nadia El Mrabet and Nicolas Gama. Efficient Multiplication over
Extension Fields. In WAIFI 2012, Ghent, Belgium, July 2012.
H.W. jr. Lenstra, A.K. Lenstra, and L. Lovédsz. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:515-534, 1982.
Paulo Martins, Jérémy Marrez, Jean-Claude Bajard, and Leonel Sousa.
HyPoRes: An Hybrid Representation System for ECC. In 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH), pages 207-214,
Kyoto, Japan, June 2019. IEEE.
Peter L. Montgomery. Modular multiplication without trial division.
Mathematics of Computation, 44(170):519-521, 1985.

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

Christophe Negre and Thomas Plantard. Efficient modular arithmetic
in adapted modular number system using lagrange representation. In
Yi Mu, Willy Susilo, and Jennifer Seberry, editors, Information Security
and Privacy, pages 463-477, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

J.A. Solinas. Generalized Mersenne Number. Technical report, Center
for Applied Cryptographic Research, University of Waterloo, ON, 1999.
The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.3), 2021. https://www.sagemath.org.

Peter van Emde Boas. Another np-complete problem and the complexity
of computing short vectors in a lattice. Technical report, University of
Amsterdam, Department of Mathematics,Netherlands, 1981.

Nicolas Méloni Nicolas Méloni received the MS
degree in mathematics in 2004 and the PhD degree
in computer science in 2007 from the Université
Montpellier 2, France. He did postdoctoral work
with the Centre for Applied Cryptographic Research
at the University of Waterloo, Canada from 2008
to 2010. Since September 2010, he is an assis-
tant professor at Université de Toulon, France. His
research interests are in computer arithmetic and

cryptography.

