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Abstract—The Polynomial Modular Number System (PMNS)
is an alternative to the binary multi-precision representation
that allows to transport the arithmetic of a finite field to a
polynomial ring. The most important operation in that system is
the internal reduction that follows any arithmetic operation. All
recent works on the subject use the same algorithm derived from
Montgomery’s modular multiplications to perform this internal
reduction. This paper designs and analyzes two new algorithms
to perform the internal reduction, both based on Babai’s Closest
Vector algorithms. It allows to significantly reduce the number
of additions needed to perform this operation. A comprehensive
experimental analysis shows that one of those algorithms is also
faster in practice. For that matter, a C code generation tool has
been developed in order to produce implementations for any
prime number field.

Index Terms—Finite field arithmetic, Polynomial Modular
Number System, Integer Lattice.

I. INTRODUCTION

Field arithmetic is a key component of many modern
cryptosystems. The implementation of prime field in particular
has received a lot of attention for the past decades. The
most common way to represent a field element is to use a
2w-ary representation. In such a positional number system,
given a prime p, an element a of Z/pZ is represented as a
n = dlog(p)e + 1 array (a0, . . . , an−1) corresponding to the
integer

a =

n−1∑
i=0

ai2
wi

with 0 ≤ ai ≤ 2w or −2w−1 ≤ ai ≤ 2w−1 − 1. All
arithmetic operations are then performed modulo p. Among
those operations modular multiplication has become the main
focus of investigation as most cryptosystems heavily rely on
it. It is usually performed as a standard integer multiplication
followed by a modular reduction. Many of approaches have
been proposed to speed up modular reduction modulo a prime
number. Two main cases are usually considered, depending
on whether the prime can be freely chosen or not. A typical
example of the former case is that of a Mersenne prime, that
is a prime number of the form 2k − 1. In that case a modular
reduction can be easily computed as a shift-and-add operation.
Generalizations of Mersenne primes have been proposed [7],
[15] in order to extend the range of possible candidates. Those
methods usually provide extremely fast modular reductions

but are limited to a small number of primes. In the latter
case, when the cryptosystem does not allow enough freedom
to chose a generalized Mersenne number, more generic algo-
rithms must be used [5], [13].

The Polynomial Modular Number System (PMNS) is an
alternative to the standard radix 2w multi-precision represen-
tation. It was introduced by Bajard, Imbert and Plantard [2] in
order to speed up modular arithmetic when special primes are
not available. A field element is represented as a polynomial
of bounded degree and field arithmetic is performed using
polynomial arithmetic. An element a of Z/pZ is represented
as a polynomial

A(X) =

n−1∑
i=0

aiX
i mod E(X)

where E is a degree n polynomial and |ai|ρ for some ρ.
One key point is that, even if p has no special form, the
polynomial E can in general be chosen so that polynomial
reduction modulo E is fast (for instance if E = Xn − 1).
In that case, the modular reduction that occurs in positional
number system is replaced by a fast polynomial reduction
(usually called external reduction) followed by a coefficient
reduction (called internal reduction). The latter operation is
the critical point. Two approaches have been proposed to
perform it based either on Barrett modular reduction algorithm
[3] or Montgomery’s one [14]. During the past few years
improvements have been made on the implementation [10],
generation [4], [8], randomization [9] and generalization [6],
[11] of PMNS in various contexts. One interesting common
feature between all those works is that they all perform the
internal reduction step using the Montgomery-like approach.

In this paper we propose two new approaches to perform the
internal reduction based on two algorithms initially proposed
by Babai to solve the Closest Vector Problem for integer
lattices [1]. Those two algorithms have been mentioned before
in the literature in order to obtain theoretical bounds on the
size of the coefficients [4] but discarded as a practical tools
due their high computational complexities [9]. We show that
it is actually possible to design competitive algorithms based
on Babai’s ideas achieving faster internal reduction in many
cases.



The rest of the paper is structured as follows. Section II is
a review of PMNS and Babai’s Closest Vector algorithms. In
Section III we propose and study two new internal reduction
algorithms and two optimized versions of those. In Section IV
we give implementation details about our code generation tool
targeting 64-bit architectures and we illustrate the efficiency of
our approach with experimental results and comparisons with
a similar tool based on Montgomery reduction [10].

II. MATHEMATICAL BACKGROUND

A. Lattices

A lattice is a sub-group of Rn. It can be seen as the set of
all linear combinations with integer coefficients of any set of
linearly independent vectors. Typically, a lattice can be seen
as the set

Λ =

{
n−1∑
i=0

aibi | ai ∈ Z

}
where (b0, . . . ,bn−1) is a basis of Rn.
Volume of a lattice.: Any two basis of a lattice Λ can be

obtained from one another using a integral change-of-basis
matrix of determinant ±1. Thus the absolute value of the
determinant of any basis only depends on Λ. That determinant
is called the volume of the lattice and is noted det(Λ).

Gram-Schmidt orthogonalization.: Let B =
(b0,b1, . . . ,bn−1) a basis. Its Gram-Schmidt
orthogonalization (GSO) B̃ = (b̃0, b̃1, . . . , b̃n−1) is the
orthogonal family obtained using the recursive process:

1) b̃0 = b0

2) ∀i ≥ 1, b̃i = bi −
∑i−1

j=0 µijb̃j

where µij =
〈bi,b̃j〉
‖b̃j‖22

. Let Λ be the lattice spanned by B, a
classical result is that it satisfies

det(Λ) =

n−1∏
i=0

‖b̃i‖2.

LLL algorithm.: The LLL algorithm [12] is a lattice basis
reduction process that computes an LLL-reduced basis in
polynomial time. For a given basis B and a real number
1
4 < δ < 1, B is LLL-reduced if
• for 0 ≤ j ≤ i ≤ n− 1 : |µij | ≤ 0.5
• for 1 ≤ i ≤ n− 1 : δ‖b̃i−1‖22 ≤ ‖b̃i‖22 + µi,i−1‖b̃i−1‖22.
In practice it means that the basis has short vectors and that

they are nearly orthogonal.

B. PMNS

Let p be a prime number, E a polynomial of degree
n and γ a root of E modulo p. The general idea is to
represent integers as elements of the polynomial quotient ring
Z[X]/(E). Any arithmetic operation can then be performed
using standard arithmetic over the polynomials followed by a
euclidean division by E.

Definition 1: A Polynomial Modular Number System
(PMNS) B is defined by a tuple (p, n, γ, ρ, E, l) ∈ Z4×Z[X]×

Z ∪ {∞}, such that E(γ) ≡ 0 mod p and for every integer
0 ≤ x < p, there exists a polynomial V (X) in Z[X]/(E) (or
equivalently a vector V = (v0, ..., vn−1) ∈ Zn) such that:

V (γ) ≡
n−1∑
i=0

viγ
i ≡ x mod p and ‖V ‖l < ρ,

where ‖.‖l is the l-norm of Rn.
Such a polynomial (or vector) is said to be a representative

of x and we notate V ≡B x. Their might be several rep-
resentatives for a given x. If V ′ is another polynomial such
that V ′ ≡B x we say that V and V ′ are equivalent an notate
V ≡B V ′.

Remark 1: In all previous work, the only norm considered
was the infinity norm. In other words the parameter l was fixed
to ∞ so that ‖V ‖l = ‖V ‖∞ = max(|vi|). However in this
paper the 1 and 2-norm will also be considered.

Remark 2: In [2] and [3], a naming distinction is made based
on the shape of the polynomial E. The name PMNS is reserved
to the case where E(X) = Xn − αX − λ. When α = 0 the
system is called Adapted Modular Number System (AMNS)
and simply MNS otherwise. We make no such distinction in
this paper and only use the concept of PMNS.

Example 1: Let p = 1048573, n = 5, γ = 238019, ρ =
36, E = X5 − 2 then B = (p, n, γ, ρ, E,∞) is a PMNS. Let
us consider two polynomials A = −9X4+13X3−35X2−25
and B = 24X4 − 32X3 + 21X2 − 2X − 16, their modular
multiplication in PMNS is performed in 3 steps:

1) a standard polynomial multiplication

AB =− 216X8 + 600X7 − 1445X6 + 1411X5

− 1217X4 + 662X3 + 35X2 + 50X + 400

2) a degree reduction (external reduction)

C =AB mod E

=− 1217X4 + 230X3 + 1235X2 − 2840X + 3222

3) a coefficient reduction (internal reduction) to ensure the
coefficients (c′i) of the results satisfy the bound |c′i| < ρ

C ≡B C ′ = 3X4 + 2X3 + 8X2 −X − 1.

One can verify that A(γ)B(γ) ≡ C(γ) ≡ C ′(γ) mod p.
The first two steps are usually performed using standard
algorithms and often merge as one operation. The third step
is the most difficult from a computational point of view.
The general method is to find a polynomial R, close to C
(depending on the chosen norm), such that R(γ) ≡ 0 mod p,
in which case C ′ = C −R ≡B C is and ‖C ′‖ is supposed to
be small. This problem can be interpreted as finding a close
vector to the vector C in some integer lattice as shown next.

Definition 2: Let B = (p, n, γ, ρ, E, l) be a PMNS. The
lattice L(B) associated to B is the set

L(B) =

{
(v0, . . . , vn−1) ∈ Zn :

n−1∑
i=0

viγ
i ≡ 0 mod p

}
.



L(B) can also be seen as the set of all polynomials V ∈
Z[X] of degree less than n such that V (γ) ≡ 0 mod p. This
set is introduced in [2] and it is proven that it is a lattice of
dimension n, generated by the row of the matrix

G =



p 0 0 . . . 0
−γ 1 0 . . . 0
−γ2 0 1 . . . 0

...
. . .

...
−γn−2 0 . . . 1 0
−γn−1 0 . . . 0 1


.

Let (b0, . . . ,bn−1) be any basis of L(B) and C =
(c0, . . . , cn−1) ∈ Zn. The coefficient reduction problem con-
sists in finding a close vector to C that is a linear combination
of the bi’s. We define the PMNS reduction problem as follow.

Definition 3: PMNS reduction problem
Given a PMNS B = (p, n, γ, ρ, E, l) and a vector v ∈ Zn,

find s in L(B) such that

‖v − s‖l < ρ.

This is obviously linked to the Closest Vector Problem
(CVP) that is known to be NP-hard for the ∞-norm [17].
Thankfully we have to deal with a much weaker version of
that problem: n is small in practice and we only look for a
close enough vector to v.

C. Montgomery PMNS Reduction

The most efficient method to solve the PMNS reduction
problem is a Montgomery-like algorithm proposed by Nègre
and Plantard [14]. It actually solves a slightly different version
of the problem and requires the existence of a polynomial
M with certain properties as studied in [10]. The method is
summarized by Algorithm 1.

Algorithm 1: RedCoeff ( [14])
Data: B = (p, n, γ, ρ, E,∞), V ∈ Zn[X],M ∈ B such

that, M(γ) ≡ 0 mod p, φ ∈ N− {0} and
M ′ = −M−1 mod (E, φ).

Result: S(γ) = V (γ)φ−1 mod p
Q← V ×M ′ mod (E, φ);
T ← Q×M mod E;
S ← (V + T )/φ;
return S;

D. Babai’s Nearest Plane algorithm

Let B = (b0, . . . ,bn−1) a lattice basis and B̃ its GSO.
Recall that B̃ satisfies

b̃i⊥ span(b0, . . . ,bi−1)

and
span(b̃0, . . . , b̃i) = span(b0, . . . ,bi)

Babai’s nearest hyperplane algorithm [1] can be seen as a
way to reduce each coordinate of v in the Gram-Schmidt basis
one by one, starting from coefficient n− 1 to 0.

Suppose we have a semi-reduced vector v′ whose coefficient
i+1 to n−1 are reduced in the Gram-Schmidt basis. Reducing
coefficient i is done by computing the integer ci such that
v′−cibi has the smallest i-th coefficient possible in the Gram-
Schmidt basis. In other terms ci must minimize

< v′, b̃i > −ci < bi, b̃i >

which leads to

ci =

⌊
< v′, b̃i >

‖b̃i‖22

⌉
.

Babai’s Nearest Plane algorithm is then straightforward as
shown by Algorithm 2.

Algorithm 2: Babai’s Nearest Plane algorithm
Data: L a lattice, v ∈ Zn, B = (b0, . . . ,bn−1) a basis

and B̃ = (b̃0, b̃1, . . . , b̃n−1) its Gram-Schmidt
orthogonalization

Result: s ∈ Zn such that v′ = v − s ∈ L and v′ is
close to v

s← v;
for i = n− 1 . . . 0 do

c←
⌊
<s,b̃i>

‖b̃i‖22

⌉
;

s← s− c× bi

return s;

The output vector s satisfies

s =

n−1∑
i=0

sib̃i with |si| ≤ 1/2

from which we can deduce that

‖s‖2 ≤
1

2

√√√√n−1∑
i=0

‖b̃i‖22.

That last inequality gives, for a given PMNS, a maximum
bound for ρ that depends on the basis of L(B). In particular,
the smaller

∑n−1
i=0 ‖b̃i‖22 is , the better. As det(L) =

∏
‖b̃i‖ =

p is a constant of the lattice, a good basis should be one whose
vectors satisfies ‖bi‖ ' p1/n. This is typically the kind of
basis that the LLL algorithm provides when the dimension n
is small.

E. Babai’s Rounding algorithm

Let B = (b0, . . . ,bn−1) a lattice basis and v a vector.
Babai’s Rounding algorithm [1] consists of computing the
rational coordinates of v in B, so that v = q0b0 + · · · +
qn−1bn−1, and choose c = bq0eb0 + · · ·+ bqn−1ebn−1 as a
close vector. The rational coordinates can be obtained by pre-
computing the inverse matrix B−1 = (b′0, . . . ,b

′
n−1) so that



c = vB−1. The whole procedure can be reduced to a simple
equation:

s = v −
⌊
vB−1

⌉
B.

Babai’s Rounding algorithm is described in Algorithm 3.

Algorithm 3: Babai’s Rounding algorithm
Data: L a lattice, v ∈ Zn, B = (b0, . . . ,bn−1) a basis

and B−1 = (b′0,b
′
1, . . . ,b

′
n−1) its inverse

Result: s ∈ Zn such that v′ = v − s ∈ L and v′ is
close to v

s← v;
for i = 0 . . . n− 1 do

r ← b< v,b′i >e;
s← s− rbi;

return s;

The output vector s = (q0 − bq0e)b0 + · · · + (qn−1 −
bqn−1e)bn−1 satisfies

s =

n−1∑
i=0

sibi with |si| ≤ 1/2

from which we can deduce that

‖s‖1 ≤
1

2

n−1∑
i=0

‖bi‖1.

The last inequality gives, for a given PMNS, a maximum
bound for ρ that depends on the basis of L(B). In particular,
the smaller

∑n−1
i=0 ‖bi‖1 is , the better.

III. BABAI PMNS REDUCTION ALGORITHMS

Babai’s CVP algorithms can not be used as such to perform
the internal reduction of a modular reduction because of the
size of their operands. The coefficients of the GSO and the
inverse matrix are fractional numbers whose numerators and
denominators can be as large as the prime number p. This
section describes two algorithms based on Babai’s Closet
Vector algorithms adapted to the PMNS reduction problem.

A. Nearest Plane PMNS internal reduction algorithm

At its core, Algorithm 2 consists of computing a good inte-
ger approximation of <s,b̃i>

‖b̃i‖22
. Our goal is to compute a good

enough approximation of these quantities using coefficients
that fit in the registers of a target processor.

We first remark that
∥∥∥ b̃i

‖b̃i‖22

∥∥∥
2

= ‖b̃i‖−12 . If the basis B is

LLL-reduced, it is expected that, for all i, ‖b̃i‖2 ' p1/n. This
justifies that there should be an integer h1 so that

⌊
2h1 b̃i,j

‖b̃i‖2

⌉
fit in a w-bit register of all i, j.

Let us suppose that there are two integers h1 and h2 such
that

⌊
2h1 b̃i,j

‖b̃i‖2

⌉
and

⌊ sj
2h2

⌋
are w-bit integers for all i and j. In

that case

< s,
b̃i

‖b̃i‖2
> =

∑
j

sj
b̃i,j

‖b̃i‖2

=
1

2h1−h2

∑
j

sj
2h2
× 2h1 b̃i,j

‖b̃i‖2

'

∑j

⌊ sj
2h2

⌋
×
⌊
2h1 b̃i,j
‖b̃i‖2

⌉
2h1−h2


In other words, given h1 and h2, it is possible to ap-

proximate the coefficients in Babai’s Nearest Plane algorithm
through register-size integer arithmetic. Algorithm 4 describe
a complete reduction procedure.

Algorithm 4: Nearest Plane Reduction Algorithm
Data: L a lattice defined by a basis (b0, . . . ,bn−1),

(b̃0, . . . , b̃n−1) its GSO, Gi,j =
⌊
2h1 b̃i,j

‖b̃i‖2

⌉
for

0 ≤ i, j < n,
Input: v ∈ Zn

Result: s equivalent to v with ”small” coefficients
s← v;
for i = n− 1 . . . 0 do

c← 0;
for j = 0 . . . n− 1 do

r ← sj � h2;
c← c+ r ×Gij

r ← c� (h1 − h2);
s← s− r × bi;

return s;

The output s = (s0, . . . , sn−1) satisfies

s =

n−1∑
i=0

sib̃i

with each si satisfying |si| ≤ ei for some ei depending on
the approximation error made during the computation of c.

Complexity analysis: One can remark that
⌊
2h1 b̃i,j

‖b̃i‖2

⌉
does

not depend on the input vector v and thus can be pre-computed
for all i, j. Let addw and multw represent the cost a one
addition and one multiplication of two w-bit integers and shft
that of a shift. For each iteration of the main loop, the inner
loop computes n shft, nmultw and (n − 1) add2w = (2n −
2) addw. It is followed by a addition shft and nmultw and
n add2w. The total computational cost is

2n2 multw +(4n2 − 2n) addw +(n2 + n) shft .

It is possible to save a few additions from the observation
that the last vector subtraction of the last iteration (s ← s −
r × b0) produces a small vector, that is one with coefficients
fitting in one register. It means that the upper part of each
subtraction can be discarded, saving n addw. The complexity
of Algorithm 4 thus becomes



2n2 multw +(4n2 − 3n) addw +(n2 + n) shft .

Coefficient reduction: We need to prove that Algorithm 4
efficiently solves the PMNS reduction problem. To do so, we
must evaluate the error made during the various approxima-
tions.

Lemma 1: Let s(n−1) be the initial value of variable s and
s(n−k−1) its value at the beginning of the k-th iteration of
Algorithm 4. Let S =

∑n−1
i=0 Sib̃i be the output of Algorithm

4. Then for all i there exists a constant Ki that does not depend
on the input v such that

|Si| ≤ ei =
‖s(i)‖1
2h1+1

+Ki.

Proof: First, we know that b̃i⊥ span(b0, . . . ,bi−1). It
means that, instruction the s← s− r× bi do not modify the
value of Sk for any k > i. In other terms, Si only depends on
the value of the vector s(i).

Set

Ri =


∑

j

⌊
s
(i)
j

2h2

⌋
×
⌊
2h1 b̃ij

‖b̃i‖2

⌉
2h1−h2

 .
Let ei be the approximation error:

ei =

∣∣∣∣∣∣
∑
j

s
(i)
j

b̃i,j

‖b̃i‖2
−Ri

∣∣∣∣∣∣ .
We have

Ri =
1

2h1−h2

∑
j

(
s
(i)
j

2h2
− εj

)(
2h1 b̃ij

‖b̃i‖2
− ε′j

)
+ ε

=
1

2h1−h2

∑
j

(
s
(i)
j

2h2
× 2h1 b̃ij

‖b̃i‖2

)

− 1

2h1−h2

∑
j

(
εj ×

2h1 b̃ij

‖b̃i‖2

)

− 1

2h1−h2

∑
j

(
ε′j ×

s
(i)
j

2h2

)

+
1

2h1−h2

∑
j

εjε
′
j + ε

with 0 ≤ ε, εj < 1 and −1/2 ≤ ε′j < 1/2. Remark that

∣∣∣∣∣∣
∑
j

(
ε′j ×

s
(i)
j

2h2

)∣∣∣∣∣∣ ≤
∑

j |s
(i)
j |

2h2+1

≤ ‖s(i)‖1
2h2+1

and ∣∣∣∣∣∣
∑
j

εjε
′
j

∣∣∣∣∣∣ ≤ n

2

we obtain

ei ≤
‖s(i)‖1
2h1+1

+
2h2

‖b̃i‖2

∣∣∣∣∣∣
∑
j

b̃i,j

∣∣∣∣∣∣+
n

2h1−h2+1
+ 1.

Setting Ki = 2h2

‖b̃i‖2

∣∣∣∑j b̃i,j

∣∣∣ + n
2h1−h2+1 + 1 gives the

expected result.

Despite the fact that the output vector has a small 2-norm,
nothing guaranties that the intermediate values of s do not
grow. It would be the case if the basis B was orthogonal as
the norm of the vector s would get lower after each iteration.

In our context, the basis is LLL-reduced which means that it
is close to being orthogonal and the norm of s is expected not
to grow too much. Yet obtaining an effective bound remains
an open problem.

For the rest of our analysis we simply remark that, once ρ
and B are fixed there exists an absolute constant α such that
maxi(‖s(i)‖1) ≤ α‖v‖1. All our experiments tend to show
that, in our context, α ≤ 2, however we could not give a
formal proof of this result.

Proposition 1: Let µ2 =
√∑

‖b̃i‖22. There exist two
constants α and K such that

‖S‖2 ≤
(
α‖v‖1
2h1+1

+K

)
µ2.

Proof: We have seen that there exists α such that
maxi(‖s(i)‖1) ≤ α‖v‖1. Then for all i

ei ≤
α‖v‖1
2h1+1

+K.

where K = maxKi. As the output satisfies S =
∑n−1

i=0 sib̃i

with |si| ≤ ei we get that

‖S‖2 ≤

∥∥∥∥∥
n−1∑
i=0

(
α‖v‖1
2h1+1

+K

)
b̃i

∥∥∥∥∥
2

≤
(
α‖v‖1
2h1+1

+K

)
µ2.

Corollary 1: Let (p, n, γ, ρ, E, 2) be a PMNS, α and K be
given by Proposition 1. If v satisfies

‖v‖1 ≤
2h1+1

α

(
ρ

µ2
−K

)
then Algorithm 4 solves the PMNS reduction problem.

Proof: Algorithm 4 solves the PMNS reduction problem
if the output S satisfies ‖S‖2 ≤ ρ. Combining that condition
with Proposition 1 gives the expected result.



B. Rounding PMNS reduction algorithm

Our approach is quite similar to that of the previous
algorithm. Babai’s Rounding method consists of computing
an integer approximation of vB−1. The main idea is to
approximate the rational coordinates of v in B using register-
size approximations of the coefficients of the inverse matrix
B−1 = (b′0, . . . ,b

′
n−1). We introduce the same set of param-

eters, h1 and h2, so that
⌊
2h1b′i,j

⌉
and

⌊ vj
2h2

⌋
are register-size

integers. It is then possible to compute a short vector s based
on the following equation

s = v −

⌊⌊
v

2h2

⌋ ⌊
2h1B−1

⌉
2h1−h2

⌋
B.

Algorithm 5 describes the complete procedure.

Algorithm 5: Rounding Reduction Algorithm
Data: L a lattice, B a basis saw as a row matrix,

B−1 its inverse and for 0 ≤ i, j < n,
B′ij =

⌊
2h1b′ij

⌉
Input: v ∈ Zn

Result: s equivalent to v with ”small” coefficients
1 s← v;
2 v′ ← (v0 � h2, . . . , vn−1 � h2);
3 for i = 0 . . . n− 1 do
4 r ← 0;
5 for j = 0 . . . n− 1 do
6 r ← r + v′j ×B′i,j
7 r ← r � (h1 − h2);
8 s← s− r × bi;

9 return s;

Complexity analysis: The algorithm performs a succession
of dot products. A similar analysis to that of Algorithm 4
shows that the computational cost is

2n2 multw +(4n2 − 2n) addw +2n shft .

It is possible to save many additions from the observation
the coefficients of final result are supposed to fit in a single
register. The instruction s ← s − r × bi can be replaced by
s ← (s − r × bi) mod 2w saving n additions per iteration.
Algorithm 5 can thus be performed in

2n2 multw +(3n2 − 2n) addw +2n shft .

Lemma 2: Let S =
∑n−1

i=0 Sibi be the output of Algorithm
5 then for all 0 ≤ i ≤ n − 1 there exists a constant Ki that
does not depend on the input v such that

|Si| ≤
‖v‖1
2h1+1

+Ki.

Proof: The output S satisfies

S = v −

⌊⌊
v

2h2

⌋ ⌊
2h1B−1

⌉
2h1−h2

⌋
B

= vB−1B−

⌊⌊
v

2h2

⌋ ⌊
2h1B−1

⌉
2h1−h2

⌋
B

=

(
vB−1 −

⌊⌊
v

2h2

⌋ ⌊
2h1B−1

⌉
2h1−h2

⌋)
B

On top of that, for a given i, consider the i-th coordinate

Ri of the vector
⌊⌊

v

2h2

⌋
b2h1B−1e

2h1−h2

⌋

Ri =

(⌊⌊
v

2h2

⌋ ⌊
2h1B−1

⌉
2h1−h2

⌋)
i

=

⌊
<
⌊

v
2h2

⌋
,
⌊
2h1b′i

⌉
>

2h1−h2

⌋

=

⌊∑n−1
j

⌊ vj
2h2

⌋ ⌊
2h1b′i,j

⌉
2h1−h2

⌋

=
1

2h1−h2

n−1∑
j

⌊ vj
2h2

⌋ ⌊
2h1b′i,j

⌉
− ε

=
1

2h1−h2

n−1∑
j

( vj
2h2
− εi

) (
2h1b′i,j − ε′j

)
− ε

=

n−1∑
j

vjb
′
i,j −

n−1∑
j

ε′j
vj
2h1
−

n−1∑
j

εj2
h2b′i,j

+
1

2h1−h2

n−1∑
j=0

εjε
′
j − ε

with 0 ≤ ε, εj < 1 and −1/2 ≤ ε′j < 1/2. We deduce that

|Si| =

∣∣∣∣∣∣
n−1∑
j

vjb
′
i,j −

⌊
<
⌊

v
2h2

⌋
,
⌊
2h1b′i

⌉
>

2h1−h2

⌋∣∣∣∣∣∣
≤

n−1∑
j

|vj |
2h1+1

+ 2h2

∣∣∣∣∣∣
n−1∑
j

b′i,j

∣∣∣∣∣∣+
n

2h1−h2+1
+ 1

≤ ‖v‖1
2h1+1

+Ki

Proposition 2: Let µ1 =
∑

i‖bi‖1. There is a constant K
such that

‖S‖1 ≤ (
‖v‖1
2h1+1

+K)µ1.

Proof:
From the previous lemma we have that S =

∑
i Sibi with

|Si| ≤ ‖v‖1
2h1+1 +Ki. Set K = maxi(Ki) we obtain that desired

result.
Corollary 2: Let (p, n, γ, ρ, E, 1) be a PMNS and K be

given by Proposition 2. If v satisfies



‖v‖1 ≤ 2h1+1

(
ρ

µ1
−K

)
then Algorithm 5 solves the PMNS reduction problem.

C. Error/Speed trade-off

It is possible to speed-up both reduction algorithms at the
cost of an increase of the error. In some situations, the error
remains small enough so that the algorithms still solve the
PMNS problem. It is based on the observation that, generally
speaking,

∑
i

ai '
⌊∑

ibai2hc
2h

⌋
'
∑
i

⌊
bai2hc

2h

⌋
.

The first approximation is more accurate but the second one
perform additions on smaller integers at the cost of additional
shifts. However if h can be chosen to be equal to w, the register
size of the target architecture, those shifts can be considered
as virtually free. Algorithms 6 and 7 describe two optimized
versions of algorithms 4 and 5. In both cases n2 − n add2w

are replaced by n2 − n addw at the cost of n2 − n (virtually
free) shft. The shftw notation is added to represent such w-bit
right shifts. The respective complexities of Algorithm 6 and 7
are

2n2 multw +(3n2 − 2n) addw +n2 shft +n2 shftw

and

2n2 multw +(2n2 − n) addw +n shft +n2 shftw .

On the other hand for both algorithms the value of Ki from
lemma 1 and 2 is modified to Ki + n− 1.

Algorithm 6: Optimized Nearest P.

s← v;
for i = n− 1 . . . 0 do

c← 0;
for j = 0 . . . n− 1 do

r ← sj � h2;
c← c+ ((r ×Gij)� (h1 − h2))

s← s− r × bi;

return s;

Table I summarizes the complexities of the different internal
reduction algorithms. The optimized version of the Rounding
method appears to be more efficient that all other methods and
performs 33% less additions than Montgomery’s algorithm.
Even the standard version should perform slightly faster. The
efficiency of the Nearest Plane method is more dependent on
the target architecture and the relative cost between additions
and shifts.

Algorithm 7: Optimized Rounding

s← v;
v′ ← (v0 � h2, . . . , vn−1 � h2);
for i = 0 . . . n− 1 do

r ← 0;
for j = 0 . . . n− 1 do

r ← r + ((v′j ×B′ij)� (h1 − h2))

s← s− r × bi;

return s;

Alg. multw addw shft shftw
Montgomery [10] 2n2 3n2 − n 0 n

Nearest P. 2n2 4n2 − 3n n2 n
Nearest P. (opt) 2n2 3n2 − 2n n2 n2

Rounding 2n2 3n2 − 2n n n
Rounding (opt) 2n2 2n2 − n n n2

TABLE I
THEORETICAL COMPLEXITIES OF THE INTERNAL REDUCTION

ALGORITHMS

IV. IMPLEMENTATION

This section is dedicated to implementing the previous
algorithms on a 64-bit architecture in C. A code generation
tool has been developed along with a parameter search tool
in order to simplify any implementation of our algorithms on
a given field. The software was build using SageMath [16]
and available in the following Git repository
https://plmlab.math.cnrs.fr/melon359/pmns

A. Choice of the the polynomial E

The effectiveness of the different methods studied here
depends on the value of the 1-norm of the input vector V
as shown in Corollaries 1 and 2. Given two polynomials A
and B such that V = AB mod E, ‖V ‖1 highly depends on
the choice of the polynomial E. Indeed, the column vector V
can be expressed as a matrix-vector product

 v0
...

vn−1

 =
(
In En−1

)
(AC)

 b0
...

bn−1

 = RA,E

 b0
...

bn−1


where In is the n × n identity matrix , En−1 is the n ×

(n−1) matrix whose column i corresponds to the vector Xn+i

mod E(X) in the base (1, X, . . . ,Xn−1) and AC is the (2n−
1)× n matrix whose column i correspond to the vector aiXi

in the base (1, X, . . . ,X2n−2).
For a matrix M , let

‖M‖l = sup
‖x‖l=1

‖Mx‖l

be the matrix norm induced by the vector norm ‖.‖l. Such
norm satisfies ∀x ∈ Rn, ‖Mx‖l ≤ ‖M‖l‖x‖l. For instance,
the 1-matrix norm is the maximum absolute column sum of
the matrix, so that ‖(InEn−1)‖1 = max(‖In‖1, ‖En−1‖1) =
‖En−1‖1. In our case we obtain the following inequalities



‖V ‖1 ≤ ‖RA,E‖1‖B‖1 (1)
≤ ‖(InEn−1)‖1‖(AC)‖1‖B‖1 (2)
≤ ‖En−1‖1‖A‖1‖B‖1 (3)
≤ n× ‖En−1‖1‖A‖2‖B‖2. (4)

Example 2: Consider A = a0 + a1X + a2X
2, B =

b0 + b1X + b2X
2 and E = X3 − λ. Then X4 mod E = λ

and X5 mod E = λX . Considered as column vector in base

(1, X,X2) we get that E2 =

λ 0
0 λ
0 0


Let V = AB mod E we have

v0v1
v2

 =

1 0 0 λ 0
0 1 0 0 λ
0 0 1 0 0



a0 0 0
a1 a0 0
a2 a1 a0
0 a2 a1
0 0 a2


b0b1
b2



=

a0 λa2 λa1
a1 a0 λa2
a2 a1 a0

b0b1
b2


and ‖V ‖1 ≤ |λ|‖A‖1‖B‖1.
Inequality (1) usually provides tighter bounds than (3) but

is also harder to evaluate. In both cases E should be chosen
so that the associated matrix En−1 has the smallest norm. The
rest of this work focuses on polynomials of the form Xn − λ
with |λ| as small as possible in order to compare the algorithms
presented here to that used in [9]. In that case the following
theorem holds.

Theorem 1: Let (p, n, γ, ρ,Xn − λ, l) be a PMNS. Let A,
B and V be three degree n − 1 polynomial and V = AB
mod E with ‖A‖l ≤ ρ and ‖B‖l ≤ ρ.

1) If l = 1, let K be given by Proposition 2. If

|λ|Kµ2
1 ≤ 2h1−1

then Algorithm 5 solves the PMNS reduction problem.
2) If l = 2, let α and K be given by Proposition 1. If

nα|λ|Kµ2
2 ≤ 2h1−1

then Algorithm 4 solves the PMNS reduction problem.
Proof: As E = Xn − λ, we have

En−1 = λ×
(

In−1
0 . . . 0

)
=


λ 0 . . . 0

0 λ
. . .

...
...

. . . . . . 0
0 . . . 0 λ
0 . . . . . . 0


so that ‖En−1‖1 = |λ|.
• If l = 1, combining Corollary 2 with the inequality 3

gives that Algorithm 5 solves the PMNS problem if

(
|λ|µ1

2h1+1

)
ρ2 − ρ+Kµ1 ≤ 0

is satisfied. The real function x 7→ ax2−x+c reaches its
minimum when x = 1/2a. We deduce that the previous
inequality is satisfied as soon as(

|λ|µ1

2h1+1

)(
2h1

|λ|µ1

)2

−
(

2h1

|λ|µ1

)
+Kµ1 ≤ 0

that is

|λ|Kµ2
1 ≤ 2h1−1.

• If l = 2, combining Corollary 1 with the inequality 4
gives that Algorithm 4 solves the PMNS problem if(

nα|λ|µ2

2h1+1

)
ρ2 − ρ+Kµ1 ≤ 0

which is satisfied as soon as

nα|λ|Kµ2
2 ≤ 2h1−1

B. Parameter generation
Let p be a prime number. Generating the parameters for p

is done in the following sequence:
1) chose n the degree of the reduction polynomial E.

Targeting a 64-bit architecture, n must satisfy 64×n ≥
dlog2(p)e;

2) find λ such that E = Xn ± λ has a root γ in Fp;
3) compute the lattice associated to the polynomial E and

a LLL-reduced basis B;
4) compute the GSO (b̃0, . . . , b̃n−1) and inverse matrix

B−1 = (b′0, . . . ,b
′
n−1) of B;

5) for each algorithm (Nearest plane and Rounding) find a
pair of integer (h1, h2) such that

• for all i, j
⌊
2h1 b̃ij

‖b̃i‖2

⌉
or
⌊
2h1b′ij

⌉
fit in a 64-bit

register;
• every coordinates of bv/2h2c fit in a 64-bit register

for any valid input vector v;
• there exists a ρ satisfying Theorem 1;

6) If no parameters can be found, go to step 2 and change
λ or to step 1 and increase n.

Remark 3: The search for h1 and h2 is performed through
exhaustive search with some conditions to speed up the
process. Set M1 = maxi,j

∣∣∣ b̃ij

‖b̃i‖2

∣∣∣ and M2 = maxi,j |b
′

ij |,
then h1 must satisfy 2h1Mk < 263 − 1/2 which gives a
maximum bound for h1.

Similarly, b‖v‖∞/2h2c must fit in a 64-bit register and we
know from the inequality that ‖v‖∞ ≤ ‖v‖1 ≤ |λ|‖A‖1‖B‖1
which gives a minimum bound on h2.

Remark 4: When verifying that Theorem 1 holds it is
possible to compute the exact values of the Ki from Lemmas 1
and 2 thus obtaining tighter bounds on the norm of the output
vector.



C. Comparisons

In [10] the authors have provided numerous C implemen-
tations of Montgomery PMNS reduction algorithms for many
key size relevant for elliptic curve cryptography (i.e., 192, 224,
256, 384 and 521 bits). The same prime numbers have been
used to generate parameters for our reduction algorithms. For
each prime p, we have generated 10000 pairs of elements of
Z/pZ, converted then into the relevant PMNS representation
and performed a polynomial multiplication followed by an
external reduction. Then, for each algorithm, we have mea-
sured the number of clock cycles required to perform the
internal reduction as well as the total number of instructions
performed by the CPU. The experiment was performed on
a Linux system powered by an Intel(R) Core(TM) i5-10500
CPU @ 3.10GHz and the code was compiled with gcc 9.3.0
using the -O3 option. The benchmark test results are shown
in Table II and III.

First let us say that CPU clock cycle measurements should
be taken with caution especially when numbers are that small.
However, the measurements shown in II are very consistent
from one execution to another with a standard deviation of
less than one cycle.

Generally speaking, the results are consistent with the
theoretical complexities from Table I. The Rounding and
Optimized Rounding algorithms are faster than Montgomery
reduction in most cases. On top of that the optimized version
of the Rounding method executes 10 to 20% less instructions
than any other approaches. The Nearest Plane algorithms how-
ever do not appear to be that competitive at the moment. These
algorithms are significantly slower as shown in both tables and
it clearly highlights that the numerous shifts, whose cost is
often overlooked, have a great impact on the performances of
core operations such as modular multiplications.

Another phenomenon is surprising: as the size of p in-
creases, so does the degree of the polynomial E and the differ-
ence between the Rounding algorithm and the Montgomery-
like algorithm tends to decrease. For large primes, Mont-
gomery reduction becomes even faster than the standard
Rounding method. The analysis of the instruction count is
interesting for that matter. For instance, with n = 11,
Table III confirms that the Rounding method executes less
operations but Montgomery reduction ends up being faster.
One explanation is that the super-scalar nature of modern
processors combine with instruction pipelining and compiler
optimizations can introduce a significant level of variability
between theoretical analysis and practical results on a given
platform. This is confirmed by the fact that compiling the same
code without any optimization (-O0 option of gcc) reverses
the results with the Rounding algorithm being faster than
Montgomery’s.

Even more surprising is the fact that, for n = 10,
the Rounding algorithm executes more instructions than the
Montgomery-like counter-part. An analysis of the assembly
code shows that the number of additions or multiplications
are consistent with the theory but a large number of move

p size 192 224 256 384 512
degree n 4 4 5 5 7 8 10 11

Montgomery [10] 60 63 86 83 155 206 300 357
Nearest P. 83 83 143 133 265 331 494 606

Nearest P. (opt) 70 70 108 117 196 248 405 494
Rounding 50 52 76 74 155 205 321 362

Rounding (opt) 45 45 64 70 148 199 291 344
TABLE II

NUMBER OF CPU CLOCK CYCLES TO PERFORM AN INTERNAL REDUCTION
USING A POLYNOMIAL OF THE FORM Xn − λ

p size 192 224 256 384 512
degree n 4 4 5 5 7 8 10 11

Montgomery [10] 191 188 255 254 496 649 966 1122
Nearest P. 228 214 388 357 793 1021 1624 2014

Nearest P. (opt) 194 199 298 304 538 743 1218 1486
Rounding 181 178 261 253 468 644 987 1021

Rounding (opt) 159 156 221 220 381 493 735 879
TABLE III

NUMBER OF CPU INSTRUCTIONS TO PERFORM AN INTERNAL REDUCTION
USING A POLYNOMIAL OF THE FORM Xn − λ

instructions slows down the Rounding method. It appears
that, in some cases, the compiler has a hard time optimizing
memory allocation thus impacting the instruction count and
execution speed.

V. CONCLUSIONS

The Polynomial Modular Number System have received
a lot of interest recently. Various approaches and sets of
parameters have been studied but the internal reduction step
of all these works remains the same and is always based on
a Montgomery-like algorithm originally proposed in [14]. In
this work we have proposed two completely different internal
reduction algorithms based Babai’s Closest Vector algorithms
for integer lattices. Our algorithms are both provided in two
versions: one standard that aim at minimizing the size of the
output vector and one optimized version where an error/speed
trade-off is made.

Both algorithms are competitive with the previous works. In
particular, algorithms based on Babai’s rounding method are
theoretically faster, the optimized version performing 33% less
additions than Montgomery’s. Experimental results comparing
our implementations to those in [10] confirms the efficiency
of our approach.

All our work has been carried in the most general case
possible, with a prime p with no particular shape. Adapting
our algorithms to special primes is one potential field for future
studies. On top of that, our C code generation tool could be
optimized depending on the targeted platform.
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Jérémy Marrez, and Pascal Véron. Randomization of Arithmetic over
Polynomial Modular Number System. In 26th IEEE International
Symposium on Computer Arithmetic, volume 1 of Proceedings of the
2019 IEEE 26th Symposium on Computer Arithmetic, pages 199–206,
Kyoto, Japan, June 2019. IEEE Computer Society.
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