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We address in this paper the problem of observability in target motion analyses (TMA), when the measurements are a sum or a difference of ranges between a target and two motionless observers. Necessary and sufficient conditions of observability are given in time difference of arrival (TDOA) situation and in a bistatic situation.

INTRODUCTION

In any problem of estimation, the first step consists of analyzing observability of the parameter of interest. When the noise-free measurements depend linearly on the parameter (one deal with a linear system), the task is easy: the parameter is observable when the matrix linking the measurement vector to the parameter vector is full-ranked. In a large class of probability laws of additive noise, this is equivalent to the regularity of the Fisher information matrix (FIM) [START_REF] Jauffret | Observability and Fisher Information Matrix in Nonlinear Regression[END_REF]. When the system is nonlinear, the definition of observability must be extended: the parameter can be either locally observable, if it is observable in an open vicinity, or globally observable if this open vicinity is the whole space in which it is defined. Analyzing observability requires more mathematical tools. Systems encountered in target motion analysis (TMA) problems are nonlinear in most cases. The observability is hence a hard task unless the noise-free system can be transformed into an equivalent linear system, as in bearingsonly TMA [START_REF] Jauffret | Observability in Passive Target Motion Analysis[END_REF][START_REF] Fogel | Nth-order Dynamics Target Observability from Angle Measurements[END_REF][START_REF] Nardone | Observability Criteria for Bearings-Only Target Motion Analysis[END_REF][START_REF] Le Cadre | Discrete-Time Observability and Estimability Analysis for Bearings-Only Target Motion Analysis[END_REF]. In the TMA literature, two main ways are used for this purpose: the rank of the FIM can be studied as in [START_REF] Arnold | Target Parameter Estimation Using Measurements Acquired with a Small Number of Sensors[END_REF] [START_REF] Xiao | Observability and Performance Analysis of Bi/Multi-Static Doppler-Only Radar[END_REF], or we can use analytical tools as in [START_REF] Pillon | Observability: Range-Only vs. Bearings-Only Target Motion Analysis for a Leg by Leg Observer's Trajectory[END_REF][START_REF] Pignol | Properties of range-only target motion analysis[END_REF][START_REF] Jauffret | Observability: Range-Only Versus Bearings-Only Target Motion Analysis When the Observer maneuvers Smoothly[END_REF]. When the FIM rank serves as observability criterion, some precaution must be taken: the rank must be constant in an open subspace containing the parameter [START_REF] Rothenberg | Identification in Parametric Models[END_REF]. If not, the conclusion can be wrong. For example, in range-only TMA, the FIM can be singular at an isolated point and still this point is observable. Conversely, the FIM can be full ranked, and the parameter remains unobservable [START_REF] Jauffret | Observability and Fisher Information Matrix in Nonlinear Regression[END_REF]. We claim that using the determinant of the FIM (or its rank) to conclude observability can mislead. In this paper, we intend analyzing observability of the trajectory of a target in constant velocity (CV) motion, in two TMA problems: when the measurement are time differences of arrival (TDAO) and when the measurements are those collected in a bistatic configuration (as claimed in [START_REF] Jauffret | Doppler-Only Target Motion Analysis in a High Duty Cycle Sonar System[END_REF]). Our main tool comes from the polynomial algebra. The analysis will be made in continuous time. In section II, the notations are given.

Section III is devoted to the case of range difference measurements. In this part, we give conclusions about observability in TDOA-TMA. The bistatic configuration is addressed in section IV. A conclusion follows.

II. NOTATIONS AND FUNDAMENTAL LEMMAS

A. Notations

A target (T) and two observers (O1) and (O2) are in the same plane, given a Cartesian system. The target on in CV motion all along the scenario, while the observers are stationary. The scenario starts at time 0  t and finishes at time The position of the target is  

T )] ( ) ( [ t y t x t P T T T  at time t . Its velocity is   T ] [ T T T T y x dt t dP V    
. The ranges relatively to the two observers are

    t P O t r T 1 1  and     t P O t r T 2 2



, respectively. Figure 1 illustrates the used notations. 

    t r t r 2 1 is a constant function or a polynomial a  a S   t r 1   t r 2 O 1 O O 2 function of degree 2 if, and only if       2 2 1 t r t r   with 1    is a polynomial function. Proof:               t r t r t r t r t r t r 2 1 2 2 2 1 2 2 1 2                                t y a t x t y a t x t y a t x a t x T T T T T T T 2 2 2 2 2 2 2 2 2            If       2 2 1 t r t r   is a polynomial function, then               t r t r t r t r t r t r 2 1 2 2 2 1 2 2 1 2      is a polynomial function too. Let us compute its degree: Since                     t y a t x t y a t x t r t r T T T T 2 2 2 2 2 2 2 1      , the highest degree is 4. The coefficient of 4 t is 2 2 T T x y  & & . If 2 2 0 T T x y   & & , then     t r t r 2 2 2 1
is a polynomial function of degree 4 ; therefore the degree of    

t r t r 2 1 is 2. Otherwise, 0 T T xy  && ,     t r t r 2 2 2 1 is a constant function, and     t r t r 2 1
too.

The converse is obvious.

QED

In the coming study, we will distinguish three cases:

    t r t r 2 1 is a constant     t r t r 2 1 is a polynomial function.     t r t r 2 1
is neither a constant, nor a polynomial function.

Lemma 2:

    t r t r 2 1
is a constant function if, and only if the target is stationary.

Proof Suppose that     t r t r 2 1 hence       2 2 1 t r t r is a constant function. Since                       t y a t x t y a t x t r t r T T T T 2 2 2 2 2 2 1     
, all the coefficients of the non-null powers of t are null, in particular the coefficient of 4 t , which is

2 2 T T y x    . Hence the target is fixed.
The converse is obvious.

QED

Remark 1:

In the proofs of the following lemmas and propositions, we will use the following property:

If the target is moving in the (Ox) axis, then

 

  Proof

If     t r t r 2 1
is a polynomial function of degree 2, then, three numbers  ,  ,  exist such that

             t t t r t r 2 1
. The numbers  ,  can be real or not, whereas  is a real number. a) If  and  are two real numbers, then Let us examine two subcases : 

                    2 2 2 2 2 2 2           t t t y a t x t y a t x T T T T Consequently,                 0 2 2 2 2         
If    , then                   4 2 2 2 2 2         t t y a t x t y a t x T T T T . As a consequence                            2 2 2 2 2 1 2 2     t t
       * 2 1       t t t r t r
. We get

                    2 2 2 2 2 2 2 *           t t t y a t x t y a t x T T T T . Necessarily, two real numbers 1  exist 2  such that                                            2 1 2 2 2 1 2 2 * * t t t y a t x t t t y a t x T T T T We have       0 2 2      T T y a x , and       0 2 2      T T y a x . We deduce that         2 2 a x a x T T      , hence that   0 4  a x T  . But   t x T is a polynomial function of degree 0 or 1. We conclude that   0  t x T , . t  The target is moving in the (Oy) axis. Conversely, if the target is moving in the line   2 1 , O O , then                     a t x a t x a t x a t x t r t r T T T T        2 2 2 1 , with 1    . If the target is moving in the perpendicular bisector of the segment   2 1 , O O , then         2 2 2 2 2 1 2 T T r t r t a y t a y t             .

QED III. RANGE DIFFERENCE

A. Analysis

In this section, the available measurement is the difference of ranges between each observer and the target. The observability analysis will be conducted with

      2 2 1 t r t r 
and its sign.

Proposition 1:

The range difference is null if, and only if the target is in the perpendicular bisector of the segment  

2 1 , O O .
In this case, the trajectory of the target is not observable.

Proof

Suppose that the difference of range is null.

        2 2 2 1 2 1 t r t r t r t r    , that is,             t y a t x t y a t x T T T T 2 2 2 2      . We have hence   0  a t x T , that is   0  t x T . The target is in the (0y) axis.
Conversely, if the target is in the (0y) axis, the ranges are equal.

QED Proposition 2:

The range difference is a non-null constant if, and only if the target is motionless out of the perpendicular bisector of the segment   

Proof

If the difference of range is a non-null constant, its square is a non-null constant, as well:

        cste 2 2 1 2 2 2 1    t r t r t r t r . Since     2 2 2 1 t r t r  is a polynomial function,     t r t r 2 1 is a constant or a polynomial of degree 2. From Lemma 2, if     t r t r 2 1
is a constant, then the target is stationary.

From Lemma 3, if     t r t r 2 1
is a polynomial of degree 2, then the target is moving in the axis (Ox) or in the axis (Oy). The last case must be discarded since the range difference is non-null. Hence the target is moving in the axis (Ox). Remark 1 helps us to conclude.

The converse is obvious.

QED Proposition 3:

The range difference is a polynomial function of degree 1 if, and only if the target is moving between the two sensors. In this case, the trajectory of the target is observable: their initial abscissa is its half of the first difference of range, and its velocity is half of the time coefficient.

Proof

If the range difference is a polynomial function of degree 1, then necessarily    

t r t r 2 1
is a polynomial of degree 2. Hence the target is moving in the line   . From Remark 1, the target is moving between the two sensors.

The converse is obvious.

QED Proposition 4:

The square of the range difference is neither a polynomial function nor a constant function if, and only if the target is in CV motion out of the line   Proof:

Let a ghost-target G detected by the same measurements:

          f G G T t t r t r t r t r , 0 , 2 1 2 1                    f G G T t t r t r t r t r , 0 , 2 2 1 2 2 1                       t r t r t r t r t r t r t r t r G G G G 2 1 2 2 2 1 2 1 2 2 2 1 2 2                       t r t r t r t r t r t r t r t r G G G G 2 1 2 1 2 2 2 1 2 2 2 1 2 2       (1) Hence,         t r t r t r t r G G 2 1 2 1  is a polynomial function of degree 2.
But, by assumption,

    t r t r 2 1
is not a polynomial function; hence

    t r t r G G 2 1
as well.

Consequently, it exists two polynomial functions of degree 2, say

  t P 2 and   t Q 2 , and a non-polynomial function   t g such that         t g t P t r t r   2 2 1 , (2) 
        t g t Q t r t r G G   2 2 1
.

(

) Since     t r t r 2 2 2 1 and     t r t r G G 2 2 2 1 3 
are polynomial functions of degree 4, the functions

      t g t g t P 2 2 2  and       t g t g t Q 2 2 2 
are polynomial functions of degree 4.

We deduce that

                    t g t Q t P t Q t P t r t r t r t r G G 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2      .
At this point, we have to discuss about the nature of

    t Q t P 2 2  : 1) If     0 2 2   t Q t P                     t Q t P t Q t P t r t r t r t r t g G G 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2     
is a rational fraction (the ratio of two polynomial functions), say

      t S t R t g 4 4



(irreducible fraction).

Now, eq (1) implies that

                    2 2 1 2 1 2 2 2 2 1 2 2 2 1 4 t r t r t r t r t r t r t r t r G G G G                                  2 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 1 2 1 4 8 t r t r t r t r t r t r t r t r t r t r t r t r G G G G G G        which means that         t r t r t r t r G G 2 1 2 1
is a polynomial function of degree 4.

From ( 2) and (3), the assumption of (4). This case must be discarded.

                      t g t Q t P t g t Q t P t r t r t r t r G G     2 2 2 2 2 1 2 1                         t g t Q P t S t R t Q t P t r t r t r t r G G      2 2 4 4 2 2 2 1 2 1                             t Q t P t R t Q t P t r t r t r t r t S t g t R G G 2 2 4 2 2 2 1 2 1 4 4      . Hence,     t g t R 4 is a polynomial function, which is equal to     t S t R

2) Hence

    0 2 2   t Q t P From (1), we get readily         t r t r t r t r G G 2 2 2 1 2 2 2 1    (5)         t r t r t r t r G G 2 1 2 1 2 2  (6)
Let us develop the left term of (5), then its the right terms :

        t y t x a t r t r T T 2 2 2 2 2 2 1 2 2 2     ,         t y t x a t r t r G G G 2 2 2 2 2 2 1 2 2 2     . Consequently, (5) is equivalent to           f G G T T T t t y t x t y t x , 0 , 2 2 2 2      (7) 
which means that the two targets are in the same circle whose center is the middle point of   

                        t x t y a t y t x t x t y a t y t x G G G G T T T T 2 2 2 2 2 2 2 2 2 2 2 2 2 2        Using (7), we get         t x t y t x t y G G T T 2 2 2 2    (8)
Eq. ( 7) and ( 8 

B. Application: TDOA [6]

In a TDOA, the measurement is the difference of ranges up to a multiplicative constant that is the speed of the wave (in the medium of interest). So, the previous analysis is directly applicable. Proposition 3 and Proposition 5 give us necessary and sufficient conditions of observability. Moreover, if a third observer is added to the scenario, the trajectory of any target in CV motion is observable from TDOA.

IV. RANGE SUM

A. Analysis

Here also, the observability analysis will be based upon

the square of     t r t r 2 1  :               t r t r t r t r t r t r 2 1 2 2 2 1 2 2 1 2     .
Note that the sum is always positive.

We can straightforwardly give the following result:

Proposition 6:

The square of the range sum is a polynomial function of degree 2 if, and only if the target is either in the line   

  0  t y T . Consequently,       t y a t r t r T 2 2 2 1 2   
, and

          t y a t r t r T 2 2 2 2 1 4    .
The identification of the coefficients of the polynomial function 

      2 2 1 t r t r 
If the target is moving in   2 1 ,O O , then     a t r t r t 2 2 1   
. This case must be discarded. 

If the target is moving in the line   2 1 O O , but out of   2 1 ,O O , then       1 2 2 , T r t r t x t t     .
Conversely, if the target is either in the line   The square of the range sum is a polynomial function of degree 2 and the range sum is not a polynomial function of degree 1 if, and only if the target is in the perpendicular bisector of the segment   The proof is the part a) of the proof of Proposition 6.

Proposition 8:

The range sum is a polynomial function of degree 1 if, and only if the target is in the line   

          f G G T t t r t r t r t r , 0 , 2 1 2 1                    f G G T t t r t r t r t r , 0 , 2 2 1 2 2 1                       t r t r t r t r t r t r t r t r G G G G 2 1 2 2 2 1 2 1 2 2 2 1 2 2                       t r t r t r t r t r t r t r t r G G G G 2 1 2 1 2 2 2 1 2 2 2 1 2 2       
Since this last equation is eq. ( 1) up to the sign of the right term, the rest of the proof is the same the proof of Proposition 4: We end up with the two following equalities:

                         t y t x t y t x t y t x t y t x G G T T G G T T 2 2 2 2 2 2 2 2
As a consequence,    

t x t x T G   , and     t y t y T G   . Conversely, if     t x t x T G   , and     t y t y T G   , then           f G G T t t r t r t r t r , 0 , 2 1 2 1      . QED.

Proposition 10:

The range sum is a constant function if, and only if the target is either in the segment   2 1 , O O , or stationary. In this case, the trajectory of the target is not observable. B. Application: the passive bistatic radar [START_REF] Jauffret | Doppler-Only Target Motion Analysis in a High Duty Cycle Sonar System[END_REF] In a bistatic configuration, O1 is the transmitter, and O2 is the receiver. The transmitter sends a signal continuously and the target plays the role of mirror: it reflects the signal emitted by the transmitter toward the receiver. If the signal  

t s E is a single tone, that is         t f a t s E 0 2 sin
, the signal reflected by the target is the received signal with with i=1,2. It follows that the instantaneous frequency at time

t is                 c t r t r f t f 2 1 0 1   for 0, f t T      
The emitted frequency 0 f and the wave speed c are assumed to be known.

We have             t r t P t r t P t r t r 2 2 1 1 2 1      , with         T T T T y t y x a t x t P      1 , and        y t y x a t x t P T T T      2
, that are two polynomial functions of degree 1.

If a ghost-target

G exists, far from the transmitter and receiver 

  t r G1 and   t r G2 respectively, then                c t r t r f t f G G 2 1 0 1   . Note that                                 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1  
                  t r t P t r t P t r t P t r t P t r t P t r t P t r t P t r t P G G G G G G G G                                 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 rational fraction rational fraction 2 2 G G G G G G G G

P t P t P t P t P t P t P t P t r t r t r t r t r t r t r t r t

                                      1 4
If   t f is a constant function, then          t t r t r 2 1 . Hence,       2 2 2 2 2 1 2         t t t r t r . Therefore,     t r t r 2 1
is a constant function or a polynomial function of degree 2.

If     t r t r 2 1
is a constant function, then the target is stationary (see Lemma 2). We have no way to know its location.

If     t r t r 2 1
is a polynomial function of degree 2, then T is moving in the line   The first statement is the converse of Proposition 11. We only have to prove that the trajectory of the target is observable.

Two cases must be distinguished:

1) The target is moving along the perpendicular bisector of the segment   

    t r t r 2 1 is a polynomial function of degree 2. If a ghost- target G exists,     t r t r G G 2 1
is necessarily a polynomial function of degree 2. Therefore, G is moving in the perpendicular bisector of the segment  

2 1 , O O ,       t y a t r t r G G G 2 2 2 1    . Since         t r t r t r t r G G 2 1 2 1        , we have         t y a y t y t y a y t y T T T G G G 2 2 2 2      (9)         t y a t y a y t y y t y G T G G T T 2 2 2 2       .         t y a t y a y t y y t y G T G G T T 2 2 2 2 2                         t y a y t y t y a y t y T G G G T T 2 2 2 2 2 2 2 2                  2 2 2 2 2 2 2 2 2 T G G T G G T T y y t y t y y t y y t y a                    0 2 2 2 2 2 2 2 2 2      G G T T G T G T y t y y t y a y y t y t y     (10) 
This polynomial function of degree 4 is equal to zero. Then all its coefficients are null, in particular the one of 4 t , that is

  0 2 2   G T G T y y y y     . Because 0  T y  and 0  G y  , we have 2 2 T G y y    . Introducing this equality in (14), we get     t y t y T G 2 2  . Eq implies that   T T y t y  et   G G y t y  have the same sign. Hence     t y t y T G   with 1    .
2) The target is moving out of the perpendicular bisector of the segment   

                            1 
G G G G G G G G                                                       2 2 2 1 2 1 2 1 2 12 1 2 1 2 1 2 1 2 rational fraction 4 4 4 G G G G G G G G P P P P P P PP F r r r r r r r r                 1 4 4 4 4 2 4 4 4 43 Consequently, 2 1 2 1 G G r r r r is a polynomial function. Since neither 2 1 r r nor 2 1 G G r r are polynomial functions, a positive real number  exists such that 2 1 2 1 r r r r G G   . Hence, 2 2 2 1 2 2 2 2 1 r r r r G G   . Consequently, either      2 2 2 2 2 1 2 1 r r r r G G   or      2 1 2 2 2 2 2 1 r r r r G G   , with 2 et 0 , 0         . Let us study each case:                                                  t y a t
        1 1 2 2 G G r t r t r t r t          . The equality         t r t r t r t r G G 2 1 2 1        implies that 1   :     t r t r

QED

Remark 3: In [START_REF] Xiao | Observability and Performance Analysis of Bi/Multi-Static Doppler-Only Radar[END_REF], the rank of the FIM was used as observability criterion. The conclusion of the authors of [START_REF] Xiao | Observability and Performance Analysis of Bi/Multi-Static Doppler-Only Radar[END_REF] is that the trajectory is observable if the target does not travel toward the transmitter or toward the receiver. But, the authors did not care if the rank of the FIM was constant in an open vicinity of the parameter of interest. It is not the case. 12 contradicts their conclusion.

V. CONCLUSION

In this paper, we addressed the question about observability of the trajectory of a target in CV motion, when the sum of range (between the target and two stationary observers) or their difference is available. Through an analysis based on the algebraic nature of the noise-free we end up with the following nonambiguous answers:

1) A motionless target is unobservable from the knowlegde of the sum or the difference of ranges.

2) A moving target is observable under the following conditions:  In TDOA (two passive sensors), the trajectory of the target is observable if, and only if the target does not travel in the perpendicular bisector of the segment   

Fig. 1 :

 1 Fig. 1: typical scenario

  the target is in the line spanned by the two sensors, out of the segment   2 1 , O O . In both cases, the trajectory of the target is not observable. Nevertheless, we are able to know if the target is on the left or on the right of the segment  

  3). Since the range difference is non-null, the target is in the line   2 1 , O O

  case, its trajectory is observable up to the axial symmetry around the line  

  roots. This is not

  allows us to recover the initial position and the velocity of the target. b) If the target is in the line   us to finish the proof :

  case, the trajectory of the target is observable up to the symmetry around the center of  

..

  In this case, the trajectory of the target is observable up to the symmetry around the center ofThe proof is the part b) of the proof of Proposition 6 (second indent).Proposition 9:a) The square of the range sum is neither a constant function nor a polynomial function if, and only if the target is in CV motion, out of the line   target is observable up to the axial symmetries around these two lines.ProofThe part a) is a consequence of Proposition 7 and Proposition 8. Only, the part b) has to be proved.Let a ghost-target G detected by the same measurements:

  the proof.

  In a bistatic situation (a transmitter and a receiver), the observability is guaranteed if and only if the target is moving out of the line  

  ) allows us to conclude that
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