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Abstract— We address in this paper the problem of 

observability in target motion analyses (TMA), when the 

measurements are a sum or a difference of ranges between a 

target and two motionless observers. Necessary and sufficient 

conditions of observability are given in time difference of 

arrival (TDOA) situation and in a bistatic situation. 
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I. INTRODUCTION 

In any problem of estimation, the first step consists of 

analyzing observability of the parameter of interest.  When 

the noise-free measurements depend linearly on the 

parameter (one deal with a linear system), the task is easy: 

the parameter is observable when the matrix linking the 

measurement vector to the parameter vector is full-ranked. 

In a large class of probability laws of additive noise, this is 

equivalent to the regularity of the Fisher information matrix 

(FIM) [1]. When the system is nonlinear, the definition of 

observability must be extended: the parameter can be either 

locally observable, if it is observable in an open vicinity, or 

globally observable if this open vicinity is the whole space 

in which it is defined. Analyzing observability requires 

more mathematical tools. 

Systems encountered in target motion analysis (TMA) 

problems are nonlinear in most cases. The observability is 

hence a hard task unless the noise-free system can be 

transformed into an equivalent linear system, as in bearings-

only TMA [2, 3, 4, 5]. In the TMA literature, two main 

ways are used for this purpose: the rank of the FIM can be 

studied as in [6] [7], or we can use analytical tools as in [8, 

9, 10]. When the FIM rank serves as observability criterion, 

some precaution must be taken: the rank must be constant in 

an open subspace containing the parameter [11]. If not, the 

conclusion can be wrong. For example, in range-only TMA, 

the FIM can be singular at an isolated point and still this 

point is observable. Conversely, the FIM can be full ranked, 

and the parameter remains unobservable [1]. 

We claim that using the determinant of the FIM (or its rank) 

to conclude observability can mislead. 

In this paper, we intend analyzing observability of the 

trajectory of a target in constant velocity (CV) motion, in 

two TMA problems: when the measurement are time 

differences of arrival (TDAO) and when the measurements 

are those collected in a bistatic configuration (as claimed in 

[12]). Our main tool comes from the polynomial algebra. 

The analysis will be made in continuous time. 

In section II, the notations are given. 

Section III is devoted to the case of range difference 

measurements. In this part, we give conclusions about 

observability in TDOA-TMA. 

The bistatic configuration is addressed in section IV. 

A conclusion follows. 

 

II. NOTATIONS  AND FUNDAMENTAL LEMMAS 

A. Notations 

A target (T) and two observers (O1) and (O2) are in the 

same plane, given a Cartesian system. The target on in CV 

motion all along the scenario, while the observers are 

stationary. The scenario starts at time 0t  and finishes at 

time 
fTt  .  

The observers are located at  T01 aO   and  T02 aO   

respectively. 

The position of the target is   T)]()([ tytxtP TTT   at time t . Its 

velocity is 
  T][ TT

T

T yx
dt

tdP
V  . The ranges relatively 

to the two observers are    tPOtr T11   and 

   tPOtr T22  , respectively. Figure 1 illustrates the used 

notations. 

 

 

Fig. 1: typical scenario 

 

B. Lemmas 

Lemma 1: 
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If     2

21 trtr   is a polynomial function, then 

            trtrtrtrtrtr 21

2
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2
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2

21 2   is a 

polynomial function too. Let us compute its degree:  

Since 

               tyatxtyatxtrtr TTTT

22222

2

2

1  , the 

highest degree is 4. The coefficient of 
4t  is 2 2

T Tx y& & . If 

2 2 0T Tx y & & , then    trtr 2

2

2

1
is a polynomial function of 

degree 4 ; therefore the degree of    trtr 21
 is 2. Otherwise, 

0T Tx y & & ,    trtr 2

2

2

1
is a constant function, and    trtr 21

 

too. 

The converse is obvious. 

QED 

 

In the coming study, we will distinguish three cases:  

   trtr 21
 is a constant 

   trtr 21
 is a polynomial function. 

   trtr 21
 is neither a constant, nor a polynomial 

function. 

 

Lemma 2: 

   trtr 21
 is a constant function if, and only if the target 

is stationary. 

Proof 

Suppose that    trtr 21
 hence     2

21 trtr is a constant 

function. Since 

                tyatxtyatxtrtr TTTT

22222

21  , 

all the coefficients of the non-null powers of t  are null, in 

particular the coefficient of 
4t , which  is 22

TT yx  . Hence 

the target is fixed. 

The converse is obvious. 

QED 

 

Remark 1: In the proofs of the following lemmas and 
propositions, we will use the following property: 

If the target is moving in the (Ox) axis, then  

   1 Tr t x t a   and    2 Tr t x t a  . Three 

situations can occur: 

 The target is between the two sensors: 

   1 Tr t x t a   and    2 Sr t x t a   . 

 Consequently,      txtrtr T221  , and    1 2 2r t r t a   

 The target is moving in  ,a  , then 

   1 Tr t x t a   and     2 Tr t x t a  . We deduce 

that     atrtr 221  , and      1 2 2 Tr t r t x t  . 

 The target is in   , a  , and we get  

    atrtr 221  , and      1 2 2 Tr t r t x t   . 

 

Lemma 3: 

   trtr 21
 is a polynomial function of degree 2 if, and 

only if the target is moving in the line  21 , OO , or in the 

perpendicular bisector of the segment   21 , OO . 

Proof 

If    trtr 21
 is a polynomial function of degree 2,  then, 

three numbers  ,  ,  exist such that  

        tttrtr 21
. The numbers  ,   can be 

real or not, whereas   is a real number. 

a) If   and   are two real numbers, then 

               2222222
  tttyatxtyatx TTTT

 

Consequently, 

            02222
  TTTT yaxyax . 

Hence    02 Ty  ; for similar reasons   02 Ty . We 

end up with     0  TT yy . 

Let us examine two subcases : 

If   , then 

             422222
  ttyatxtyatx TTTT

.  

As a consequence       
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ttyatx

TT

TT , 

with 2

21   . 

We deduce that   axT   and   axT  , which is 

incompatible. 

Hence   . The polynomial function  Ty t   - of 

degree  0 or 1 -  is null for two different values. It is 
necessarily the null polynomial function. The target is hence 
moving in the (Ox) axis. 

b)   and   are not two real numbers. Since 

   trtr 21
 is real, *  , and 

      *21   tttrtr . We get 

               2222222
*  tttyatxtyatx TTTT

. 

Necessarily, two real numbers 1  exist 2  such that  



       
       





















21
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22
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tttyatx
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We have      022
  TT yax , 

 and      022
  TT yax . 

We deduce that      22
axax TT   , hence that 

  04 axT  .  But  txT
 is a polynomial function of 

degree 0 or 1.  We conclude that   0txT
, .t  The target 

is moving in the (Oy) axis.  

 

Conversely, if the target is moving in the line  21 , OO , 

then 

               atxatxatxatxtrtr TTTT  
22

21

, with 1 . 

If the target is moving in the perpendicular bisector of 
the segment   21 , OO , then 

       
2

2 2 2 2

1 2 T Tr t r t a y t a y t         
. 

QED 

 
III. RANGE DIFFERENCE 

A. Analysis 

In this section, the available measurement is the 
difference of ranges between each observer and the target. 
The observability analysis will be conducted with 

    2

21 trtr  and its sign. 

 

Proposition 1:  

The range difference is null if, and only if the target is in 
the perpendicular bisector of the segment   21 , OO . In this 

case, the trajectory of the target is not observable. 

Proof 

Suppose that the difference of range is null. 

       2

2

2

121 trtrtrtr  , that is, 

         tyatxtyatx TTTT

2222
 . 

We have hence   0atxT
, that is   0txT

. The target 

is in the (0y) axis. 

Conversely, if the target is in the (0y) axis, the ranges 
are equal. 

QED 

 

Proposition 2:  

The range difference is a non-null constant if, and only if 
the target is motionless out of the perpendicular bisector of 
the segment   21 , OO , or the target is in the line spanned 

by the two sensors, out of the segment  21 , OO . In both 

cases, the trajectory of the target is not observable. 

Nevertheless, we are able to know if the target is on the left 
or on the right of the segment  21 , OO . 

Proof 

If the difference of range is a non-null constant, its 
square is a non-null constant, as well: 

        cste2 21

2

2

2

1  trtrtrtr . Since    2

2

2

1 trtr   is a 

polynomial function,    trtr 21
 is a constant or a polynomial 

of degree 2. 

From Lemma 2, if    trtr 21
 is a constant, then the target 

is stationary. 

From Lemma 3, if    trtr 21
 is a polynomial of degree 2, 

then the target is moving in the axis (Ox) or in the axis (Oy). 
The last case must be discarded since the range difference is 
non-null. Hence the target is moving in the axis (Ox).  
Remark 1 helps us to conclude. 

 

The converse is obvious. 

QED 

 

Proposition 3:  

The range difference is a polynomial function of degree 
1 if, and only if the target is moving between the two 
sensors. In this case, the trajectory of the target is 
observable: their initial abscissa is its half of the first 
difference of range, and its velocity is half of the time 
coefficient.  

Proof 

If the range difference is a polynomial function of 
degree 1, then necessarily    trtr 21

 is a polynomial of 

degree 2. Hence the target is moving in the line  21 , OO , 

or in the perpendicular bisector of the segment   21 , OO  

(see Lemma 3). Since the range difference is non-null, the 
target is in the line  21 , OO . From Remark 1, the target is 

moving between the two sensors. 
The converse is obvious. 

QED 

 

Proposition 4:  

The square of the range difference is neither a 
polynomial function nor a constant function if, and only if 
the target is in CV motion out of the line  21 OO  and the 

perpendicular bisector of the segment   21 , OO . In this 

case, its trajectory is observable up to the axial symmetry 
around the line  21 OO  and up to the perpendicular 

bisector of the segment   21 , OO . 

Proof: 

Let a ghost-target G detected by the same measurements:  

         fGG Tttrtrtrtr ,0,2121   

           fGG Tttrtrtrtr ,0,
2

21

2

21   



               trtrtrtrtrtrtrtr GGGG 21

2

2

2

121

2

2

2

1 22 

   

               trtrtrtrtrtrtrtr GGGG 2121

2

2

2

1

2

2

2

1 22   (1) 

Hence,        trtrtrtr GG 2121   is a polynomial function 

of degree 2. 

But, by assumption,    trtr 21
 is not a polynomial 

function; hence    trtr GG 21
 as well. 

Consequently, it exists two polynomial functions of 

degree 2, say  tP2
and  tQ2

, and a non-polynomial 

function  tg  such that  

       tgtPtrtr  221
,    (2) 

       tgtQtrtr GG  221
.   (3) 

Since    trtr 2

2

2

1
 and    trtr GG

2

2

2

1
 are polynomial 

functions of degree 4, the functions      tgtgtP 2

22   and 

     tgtgtQ 2

22   are polynomial functions of degree 4.  

We deduce that  
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At this point, we have to discuss about the nature of 

   tQtP 22  : 

1) If     022  tQtP  
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  is a rational 

fraction (the ratio of two polynomial functions), say 

  
 
 tS

tR
tg

4

4  (irreducible fraction).  (4) 

Now, eq (1) implies that 
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which means that        trtrtrtr GG 2121
 is a polynomial 

function of degree 4. 

From (2) and (3), 

                    tgtQtPtgtQtPtrtrtrtr GG  22222121
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tQtPtrtrtrtr GG  22

4

4
222121

                  
      tQtPtR

tQtPtrtrtrtrtStgtR GG
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22212144



 . 

Hence,    tgtR4
 is a polynomial function, which is equal to 

 
 tS

tR

4

2

4  (see (4)). Consequently,  tS4
 divides  tR2

4
, which 

means that   tS4
 and  tR4

 have common roots. This is not 

the assumption of (4). This case must be discarded. 

2) Hence     022  tQtP  

From (1), we get readily 

       trtrtrtr GG

2

2

2

1

2

2

2

1    (5) 

       trtrtrtr GG 2121 22     (6) 

Let us develop the left term of (5), then its the right terms : 

       tytxatrtr TT

2222

2

2

1 222  ,  

       tytxatrtr GGGG

2222

2

2

1 222  . 

Consequently, (5) is equivalent to 

         fGGTT Tttytxtytx ,0,2222                      (7) 

which means that the two targets are in the same circle 
whose center is the middle point of  21 OO . 

Now, we exploit (6), which yields  

                   txtyatytxtxtyatytx GGGGTTTT

222222222222 22 

 

Using (7), we get 

        txtytxty GGTT

2222     (8) 

Eq. (7) and (8) allows us to conclude that 

   T Gx t x t  , and     tyty SG  . 

QED. 

The knowledge of the sign of the range difference 
removes the symmetry relatively to the perpendicular 
bisector of the segment   21 , OO , and can state the 

following property: 

Proposition 5:  

The range difference is neither a constant, nor a 

polynomial function of degree 1 if, and only if the target is 

out of the line  21 OO  and out of the perpendicular bisector 

of the segment   21 , OO .  

In this case, its trajectory is observable up to the axial 

symmetry around the line  21 OO . 

 

Remark 2: with noisy measurements, a statistical test 
allows us to decide if the difference of range is always null, 
constant and non-null, linear or non-linear. Depending on 
the response of the test, we can know, before tenting to 
estimate the trajectory, if it is observable or not. 

B. Application: TDOA [6] 

In a TDOA, the measurement is the difference of ranges up 

to a multiplicative constant that is the speed of the wave (in 

the medium of interest). So, the previous analysis is directly 

applicable. Proposition 3 and Proposition 5 give us 

necessary and sufficient conditions of observability. 

Moreover, if a third observer is added to the scenario, the 

trajectory of any target in CV motion is observable from 

TDOA. 

IV. RANGE SUM 



A. Analysis 

Here also, the observability analysis will be based upon 
the square of    trtr 21   : 

            trtrtrtrtrtr 21

2

2

2

1

2

21 2 . 

Note that the sum is always positive. 

We can straightforwardly give the following result: 

 

Proposition 6:  

The square of the range sum is a polynomial function of 
degree 2 if, and only if the target is either in the line 

 21 OO  but out of the segment  21 , OO , or in the 

perpendicular bisector of the segment   21 , OO . 

Proof 

From Lemma 1 and Lemma 3, if the square of the range 
sum is a polynomial function of degree 2,  then the target is 
either in the line  21 OO , or in the perpendicular bisector of 

the segment   21 , OO .  

a) If the target is in the perpendicular bisector of the 

segment   21 , OO , then   ttxT  ,0  and   0tyT
. 

Consequently,      tyatrtr T

22

21 2  , and 

       tyatrtr T

222

21 4  . 

The identification of the coefficients of the polynomial 

function     2

21 trtr  allows us to recover the initial 

position and the velocity of the target.  

b) If the target is in the line  21 OO , Remark 1 allows 

us to finish the proof :  

 If the target is moving in  21 ,OO , then

    atrtrt 221  . This case must be discarded. 

 If the target is moving in the line   21 OO , but out 

of   21 ,OO , then      1 2 2 ,Tr t r t x t t   . 

Conversely, if the target is either in the line  21 OO  but out 

of the segment  21 , OO , or in the perpendicular bisector of 

the segment   21 , OO , the sum is a polynomial function of 

degree 2. 

QED 

During this proof, we got three results: 

Proposition 7:  

The square of the range sum is a polynomial function of 

degree 2 and the range sum is not a polynomial function of 

degree 1 if, and only if the target is in the perpendicular 

bisector of the segment   21 , OO .  

In this case, the trajectory of the target is observable up to 

the symmetry around the center of  21 , OO . 

The proof is the part a) of the proof of Proposition 6. 

 

Proposition 8:  

The range sum is a polynomial function of degree 1 if, 

and only if the target is in the line  21 OO  but out of the 

segment  21 , OO . In this case, the trajectory of the target is 

observable up to the symmetry around the center of 

 21 , OO . 

The proof is the part b) of the proof of Proposition 6 
(second indent). 

 

Proposition 9:  

a) The square of the range sum is neither a constant 
function nor a polynomial function if, and only if the 
target is in CV motion, out of the line  21 OO  and 

out of  the perpendicular bisector of the segment  

 21 , OO .  

b) The target is observable up to the axial symmetries 
around these two lines. 

Proof 

The part a) is a consequence of Proposition 7 and 
Proposition 8. Only, the part b) has to be proved. 

Let a ghost-target G detected by the same measurements:  

         fGG Tttrtrtrtr ,0,2121   

           fGG Tttrtrtrtr ,0,
2

21

2

21   

               trtrtrtrtrtrtrtr GGGG 21
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2

2
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2

2
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1 22 

               trtrtrtrtrtrtrtr GGGG 2121

2

2

2

1

2

2

2

1 22     

Since this last equation is eq. (1) up to the sign of the right 
term, the rest of the proof is the same as the proof of 
Proposition 4: We end up with the two following equalities: 

       
       








tytxtytx

tytxtytx

GGTT

GGTT

2222

2222

 

As a consequence,    txtx TG  , and    tyty TG  . 

Conversely, if    txtx TG  , and    tyty TG  , 

then 

          fGG Tttrtrtrtr ,0,2121  . 

QED. 

 

Proposition 10:  

The range sum is a constant function if, and only if the 
target is either in the segment  21 , OO , or stationary.  In 

this case, the trajectory of the target is not observable. 

 

B. Application: the passive bistatic radar [12] 

In a bistatic configuration, O1 is the transmitter, and O2 is 

the  receiver. 

The transmitter sends a signal continuously and the target 

plays the role of mirror: it reflects the signal emitted by the 

transmitter toward the receiver. If the signal  tsE
 is a single 



tone, that is      tfatsE 02sin , the signal reflected by 

the target is the received signal                       

         with    
  

 
 with i=1,2.   It follows that the 

instantaneous frequency at time t  is 

  
   








 


c

trtr
ftf 21

0 1
 for 0, ft T  



The emitted frequency
0f and the wave speed c are 

assumed to be known.

We have    
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1
21   , with 

        TTTT ytyxatxtP 1
 , and 

       ytyxatxtP TTT
2

, that are two polynomial 

functions of degree 1. 

If a ghost-target G  exists, far from the transmitter and 

receiver  trG1 and  trG2  respectively, then 
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       1 4 4 4 2 4 4 43 1 4 4 44 2 4 4 4 43

. 

A part of the observability study will be conducted with 

the products    trtr 21
 and    trtr GG 21

. 

Proposition 11 

 tf is a constant function, if and only if the target is 

stationary or is moving along the line  21 , OO . The 

trajectory of the target is unobservable. 

Proof 

If  tf is a constant function, then       ttrtr 21
. 

Hence,      2222

21 2   tttrtr . Therefore, 

   trtr 21
 is a constant function or a polynomial function of 

degree 2.  

If    trtr 21
 is a constant function, then the target is 

stationary (see Lemma 2). We have no way to know its 
location. 

If    trtr 21
 is a polynomial function of degree 2, then 

T  is moving in the line  21 , OO , or in the perpendicular 

bisector of the segment   21 , OO (see Lemma 3). If T  is 

moving in the perpendicular bisector of the segment 

 21 , OO , then   0txT
, and consequently 

     tyatrtr T

22

21    which is not a polynomial 

function of degree 1. This case must be rejected. If T  is 
moving in the line  21 , OO .  

The converse is obvious. 

QED 

 

Proposition 12 

 tf is not a constant function, if and only if the target 

is moving out of the line  21 , OO . In this case, and only in 

this case, the trajectory of the target is observable up to the 
axial symmetries around the line  21 OO  and the 

perpendicular bisector of the segment   21 , OO . 

Proof 

The first statement is the converse of Proposition 11. We 
only have to prove that the trajectory of the target is 
observable. 

Two cases must be distinguished: 

1) The target is moving along the perpendicular 
bisector of the segment  21 , OO . Lemma 3 tells us that 

   trtr 21
 is a polynomial function of degree 2. If a ghost-

target G exists,    trtr GG 21
 is necessarily a polynomial 

function of degree 2. Therefore, G is moving in the 
perpendicular bisector of the segment  21 , OO , 

     tyatrtr GGG

22

21   . 

Since        trtrtrtr GG 2121
  , we have 
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         tyaytytyayty TGGGTT

22222222    

         222222222

TGGTGGTT yytytyytyytya    

          0222222222  GGTTGTGT ytyytyayytyty   (10) 

This polynomial function of degree 4 is equal to zero. 

Then all its coefficients are null, in particular the one of 4t , 

that is   022  GTGT yyyy  . Because 0Ty  and 0Gy , 

we have 22

TG yy   . Introducing this equality in (14), we get 

   tyty TG

22  . 

Eq (9) implies that   TT yty   et   GG yty   have the same 

sign. Hence    tyty TG   with 1 . 

2) The target is moving out of the perpendicular 
bisector of the segment  21 , OO .  

The ghost-target is necessarily moving off the 
perpendicular bisector of the segment  21 , OO  too (other 

   trtr GG 21
 would be a polynomial function of degree 2, and 

   trtr 21
 as well). 
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Consequently, 
2121 GG rrrr is a polynomial function. 

Since neither 
21 rr  nor 

21 GG rr  are polynomial functions, a 

positive real number  exists such that 
2121 rrrr GG  . 

Hence, 
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2et0,0   . 

Let us study each case: 
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which implies, by difference, that 
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All the coefficients of this polynomial function are null, 

in particular the one of 
2t  : 

   022  TT yx  , that yields   . Hence, 
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The equality        trtrtrtr GG 2121
   implies that 

1 : 

   trtrG 11   and    trtrG 22  . 

If 
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 , similar computations end up with 

   trtrG 21   and    trtrG 12  . 

These two cases yield        trtrtrtr GG 2121  . 

Proposition 9 completes the proof. 

QED 

Remark 3: In [7], the rank of the FIM was used as 

observability criterion. The conclusion of the authors of [7] 

is that the trajectory is observable if the target does not 

travel toward the transmitter or toward the receiver. But, the 

authors did not care if the rank of the FIM was constant in 

an open vicinity of the parameter of interest. It is not the 

case. Proposition 12 contradicts their conclusion.  

 

V. CONCLUSION 

In this paper, we addressed the question about observability 

of the trajectory of a target in CV motion, when the sum of 

range (between the target and two stationary observers) or 

their difference is available.  

Through an analysis based on the algebraic nature of the 

noise-free measurement, we end up with the following non-

ambiguous answers: 

1) A motionless target is unobservable from the 

knowlegde of the sum or the difference of ranges. 

2) A moving  target is observable under the following 

conditions: 

 In TDOA (two passive sensors), the trajectory of the 

target is observable if, and only if the target does not 

travel in the perpendicular bisector of the segment  

 21 , OO  or in the line  21 OO  minus the segment 

 21 , OO . This is up to the axial symmetry around the 

line  21 OO . 

 In a bistatic situation (a transmitter and a receiver), the 
observability is guaranteed if and only if the target is 
moving out of the line  21 , OO . This is up to the axial 

symmetries around the line  21 OO  and the 

perpendicular bisector of the segment   21 , OO . 
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