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Abstract: This paper deals with the estimation of the trajectory of a target in constant velocity mo- 12 

tion at an unknown constant depth, from measurements of conical angles supplied by a linear array. 13 

Sound emitted by the target does not navigate necessarily along a direct path toward the antenna, 14 

but can bounce on the sea bottom and/or on the surface. Observability is thoroughly analyzed to 15 

identify the ghost targets before proposing an efficient way to estimate the trajectory of the target 16 

of interest and of the ghost targets when they exist. 17 

Keywords: Target motion analysis, observability, Fisher information matrix, Cramér-Rao lower 18 

bound, conical angles, nonlinear estimation. 19 

 20 

1. Introduction 21 

Bearings-only target motion analysis (BOTMA) is a problem that has been widely 22 

studied and various solutions have been proposed in the literature: batch [1-5] or recursive 23 

filter (such as extended Kalman filter [6-8], unscented Kalman filter [9], particle filter [10], 24 

modified instrumental variable [11-13]), or a mix of recursive and batch methods [14]. 25 

Citing all the papers dealing with this topic is now a hard task. Among the abundant lit- 26 

erature, most papers share the same assumption: the target is moving in a straight line 27 

with a constant speed, while the passive observer is maneuvering adequately in order to 28 

ensure observability of the target [15-17]. The bearings are the measurements. 29 

In this paper we are concerned with the same problem except that the available meas- 30 

urements are the cosine of the relative bearings, called also conical angles because the 31 

target belongs to the cone of ambiguity whose revolution axis is the line along which the 32 

towed array is moving (see [18] p. 39). Implicitly, we consider a target moving in 3D at a 33 

constant and unknown depth in near field; in this case, the two more energetic rays are 34 

the direct and the reflected paths (bottom or surface). Most of the cases, the sound is 35 

bounced by the sea bottom. Therefore, we extend our analysis to surface and sea bottom 36 

bounced rays. 37 

Indeed, the array detects the cosine of the relative angle of the direction of arrival by 38 

a suitable spatial filtering such as beamforming, or more sophisticated techniques (see 39 

[19]). In the near field, sound can propagate to the sensor array along the direct path 40 

and/or the bottom-reflected path, and/or the surface-reflected path. Most of the time, at 41 

most two rays coming from the same target are detected [18, 20].  42 

Unlike Gong [21] and Blanc-Benon [22], who address the three-dimensional target 43 

motion analysis (TMA) from a sequence of time differences of arrival (TDOA) of a signal 44 
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traveling by two different paths coupled with a sequence of azimuths, we assume in this 45 

paper that the available measurements are the cosines of the conical angles only. In [23], 46 

a similar problem was addressed, but observability was not studied. We will consider two 47 

situations: the first case is devoted to TMA when sound propagates along a non-direct 48 

path at each sampling time. This will be the topic of section 3: we will conduct observabil- 49 

ity analysis and identify all the ghost targets, given a set of noise-free measurements. We 50 

will prove that an assumption on the target’s depth makes the target’s trajectory observa- 51 

ble, but not estimable (in the sense that the asymptotic performance given by the Cramér‒ 52 

Rao lower bound – CRLB - of the estimator of the depth is out of the physical constraints, 53 

that is, the source is navigating between the surface and the sea bottom). 54 

In the fourth section, we will consider scenarios in which the antenna changes its own 55 

route. We will prove that the trajectory of the target is almost certainly observable. 56 

In the fifth section, we will assume that sound will propagate along the direct path 57 

and the bottom-reflected path. The two rays will be assumed detected. Observability anal- 58 

ysis will reveal that only three ghost targets at most exist without maneuvering of the 59 

antenna. We will check that in this case the depth is not “estimable”. We will give a palli- 60 

ative allowing us to propose an estimator which is operationally acceptable, the price be- 61 

ing a small bias. Convincing simulations will be given at the end of this section, proving 62 

that, even when the duration of the scenario is short, the estimated trajectory is very close 63 

to the true one. A conclusion ends the paper. 64 

2. Notation and problem formulation 65 

We consider two underwater vehicles moving at their own constant depth. The first 66 

mobile is a surface vessel or a submarine towing a horizontal sensor array, and the second 67 

one is the target of interest. Given a Cartesian coordinate system, the acoustic center of the 68 

array is located at time t at (𝑥𝑂(𝑡) 𝑦𝑂(𝑡) 𝑧𝑂)𝑇 . At the same time, the target is at 69 

(𝑥𝑇(𝑡) 𝑦𝑇(𝑡) 𝑧𝑇)𝑇 . The respective horizontal positions of the target of interest and of 70 

the center of the array at time t are denoted by 𝑃𝑇(𝑡) = (𝑥𝑇(𝑡) 𝑦𝑇(𝑡))𝑇  and       71 

𝑃𝑂(𝑡) = (𝑥𝑂(𝑡) 𝑦𝑂(𝑡))𝑇. The sea bottom depth (assumed to be a constant) is denoted D. 72 

The source is said to be endfire to the line array if its trajectory is in the same line as the 73 

array (which implies that the array and the source are at the same depth, and share the 74 

same route). It is broadside to the antenna if it navigates in the vertical plane orthogonal 75 

to the line array and passing by the acoustic center of the array. The sensors array detects 76 

the line of sight of the target; more precisely, an ad-hoc array processing (or spatial filter- 77 

ing) delivers at time t the cosine of the conical angle 𝑐𝑎(𝑡)  given by                78 

cos(𝑐𝑎(𝑡)) = cos(𝜃(𝑡) − ℎ(𝑡)) cos(𝜙(𝑡)) ≜ 𝑚(𝑡) , where 𝜃(𝑡)  and 𝜙(𝑡)  are respectively 79 

the azimuth (or bearing) and the elevation of the path along which the sound emitted by 80 

the source propagates. The angle ℎ(𝑡) is the heading of the sensor array. Denoting the 81 

relative position coordinates of the source with reference to the acoustic center of the array 82 

by 𝑥𝑂𝑇(𝑡) = 𝑥𝑇(𝑡) − 𝑥𝑂(𝑡)  and 𝑦𝑂𝑇(𝑡) = 𝑦𝑇(𝑡) − 𝑦𝑂(𝑡) , we have                    83 

𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥𝑂𝑇(𝑡), 𝑦𝑂𝑇(𝑡)). Figure 1 displays the different angles and the two actors 84 

(the observer reduced to the linear array, and the target). 85 
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 86 

Figure 1. A typical scenario, viewed from the sky. 87 

The ray of the sound (or signal) emitted by the source can be reflected by the bottom 88 

and/or the surface or travels in the surface or deep channel. The sound-speed profile 89 

makes the paths curve. In this paper, we will consider that the target is in the near field 90 

(the distance between the source and the array is less than 20 km), and the bottom depth 91 

is in the range [2000 m, 5000 m]. Due to the large curvature of the ray (about 80 km), we 92 

will approximate the path of the sound as a set of zigzags defined by the reflections on 93 

the bottom or on the surface. So, we implicitly use the Snell law widely employed in geo- 94 

metrical optics. An image-source is created whose depth 휁𝑇  will be called “image-depth”. 95 

A path is then defined by the triplet (𝛿, 𝑛𝐵 , 𝑛𝑆), where  96 

 𝛿 indicates the direction of the path of the sound emitted by the source: if the path is 97 

toward the surface, 𝛿 = −1, otherwise 𝛿 = +1, 98 

 𝑛𝐵 is the number of bottom reflections, and 99 

 𝑛𝑆 is the number of surface reflections. 100 

Figure 2 illustrates three different paths  101 

 102 

Figure 2. Three examples of ray path: in solid line, the direct path (𝛿, 𝑛𝐵, 𝑛𝑆) = (+1,0,0), in dashed‒ 103 

dotted line the bottom reflected path (𝛿, 𝑛𝐵, 𝑛𝑆) = (+1,1,0), and in dashed line the bottom-surface- 104 

bottom reflected path (𝛿, 𝑛𝐵, 𝑛𝑆) = (+1,2,1). 105 

We have to consider the depth difference between the array and the image-source 106 

defined by 휁𝑂𝑇 ≜ 휁𝑇 − 𝑧𝑂 if the ray has been reflected (by the sea bottom or by the sur- 107 

face), or 휁𝑂𝑇 ≜ 𝑧𝑇 − 𝑧𝑂 if the sound wave uses the direct path.  108 

A general expression of 휁𝑂𝑇  based on the triplet (𝛿, 𝑛𝐵, 𝑛𝑆)  is given by 109 

휁𝑂𝑇(𝛿, 𝑛𝐵, 𝑛𝑆) = −2𝛿𝑛𝐵(−1)𝑛𝑆+𝑛𝐵𝐷 − 𝑧𝑂 + (−1)𝑛𝑆+𝑛𝐵𝑧𝑇. Note that, given the path, the link 110 

between 휁𝑂𝑇(𝛿, 𝑛𝐵, 𝑛𝑆) and 𝑧𝑇  is linear: 휁𝑂𝑇(𝛿, 𝑛𝐵 , 𝑛𝑆) = 𝑎𝑧𝑇 + 𝑏 , the constants being a 111 

function of the triplet (𝛿, 𝑛𝐵 , 𝑛𝑆), 𝐷, and 𝑧𝑂. Moreover, 휁𝑂𝑇(𝛿, 𝑛𝐵, 𝑛𝑆) is null if and only if 112 
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the antenna and the target are navigating at the same depth (𝑧𝑇 = 𝑧𝑂), and sound is trav- 113 

eling in the direct path. In this case, cos(𝜙(𝑡)) = 1. For the sake of simplicity of the nota- 114 

tions, we will simply subsequently denote 휁𝑂𝑇  instead of 휁𝑂𝑇(𝛿, 𝑛𝐵, 𝑛𝑆). 115 

For the above examples, we have 휁𝑂𝑇(1,0,0) = 𝑧𝑇 − 𝑧𝑂  (direct path),    116 

휁𝑂𝑇(+1,1,0) = 2𝐷 − (𝑧𝑇 + 𝑧𝑂) (bottom-reflected path), and 휁𝑂𝑇(+1,2,1) = 4𝐷 − (𝑧𝑇 + 𝑧𝑂) 117 

(bottom-surface-bottom reflected path). Note that 휁𝑂𝑇(𝛿, 𝑛𝐵, 𝑛𝑆) can be negative (the im- 118 

age-source is above the surface). Consequently, the cosine of the elevation is                      119 

cos(𝜙(𝑡)) =
√𝑥𝑂𝑇

2 (𝑡)+𝑦𝑂𝑇
2 (𝑡)

√𝑥𝑂𝑇
2 (𝑡)+𝑦𝑂𝑇

2 (𝑡)+𝜁𝑂𝑇
2 (𝛿,𝑛𝐵,𝑛𝑆)

. 120 

Figure 3 (a) displays the cone of ambiguity, defined by the set of sources sharing the 121 

same cos(𝜙(𝑡)). In Figure 3 (b), we have plotted a direct ray and a bottom-bounced ray, 122 

which allows us to figure out the various angles with which we will work. 123 

 124 

  

(a) (b) 

Figure 3. Cones of ambiguity (a) The cones that the target belongs to, and the one that the image-target belongs to. (b) 125 

Example of conical angles of the target and of the image-target, for a bottom-reflected ray: 𝜙𝐷 and 𝜙𝐵 are the elevations 126 

of the direct path and of the bottom-reflected path, respectively.  127 

We assume that the source is moving in constant velocity (CV) motion during the 128 

scenario. Our challenge is to estimate its trajectory, i.e. the state vector defining it,                    129 

𝑋 ≜ (𝑥𝑇(𝑡∗) 𝑦𝑇(𝑡∗) 𝑧𝑇 �̇�𝑇 �̇�𝑇)𝑇 , for a chosen 𝑡∗, from noisy measurements. 130 

We consider two situations: 131 

1. Only one ray is detected by the array during the scenario; in this case, we have at 132 

each time t a measurement 𝑚(𝑡), given the path along which the wave propagates. 133 

2. Two rays (traveling on two different paths) arrive at the sensors antenna. In this case, 134 

the available measurement at time t is a couple of measurements, say (𝑚1(𝑡), 𝑚2(𝑡)), 135 

given the two paths along which the wave propagates. 136 

After the spatial filtering, the antenna supplies a noisy measurement of 𝑚(𝑡) or a 137 

noisy measurement of (𝑚1(𝑡), 𝑚2(𝑡)). The noisy measurements are regularly acquired at 138 

𝑡𝑘 = (𝑘 − 1)Δ𝑡, 𝑘 ∈ {1, … , 𝑁}, for a fixed sampling time Δ𝑡. 139 

Before attempting to estimate 𝑋, we must answer several questions: 140 

1. Is the vector 𝑋  observable from the set of measurements {𝑚(𝑡), 𝑡 ∈ [0, 𝑇]}? Note 141 

that, in TMA problems, observability is often analyzed in continuous time (see [15] 142 

and [17], for example), even though the noisy measurements are given in discrete 143 

time. 144 
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2. If not, what are the ghost targets (those which could be detected at the same set of 145 

measurements {𝑚(𝑡), 𝑡 ∈ [0, 𝑇]})? 146 

3. How do we make 𝑋 observable or with which new information? 147 

4. Is the vector 𝑋 observable from the set of couples {(𝑚1(𝑡), 𝑚2(𝑡)), 𝑡 ∈ [0, 𝑇]}? 148 

For the cases where 𝑋 is observable, we have then to compute the asymptotical per- 149 

formance of an unbiased estimator (given by the CRLB [24]), and the performance of our 150 

estimators in terms of bias and the covariance matrix. It is worth noting that using the FIM 151 

to prove observability can lead to a wrong conclusion [25]. This why we use an analytic 152 

approach. 153 

3. TMA from one ray 154 

In this section, we consider the case where the array collects the cosine of a conical 155 

angle, the path of the ray being known by the operator. We start by analyzing the observ- 156 

ability of the trajectory of the source of interest.  157 

3.1. Observability analysis 158 

Theorem 1. Let a linear antenna measure the cosine of a conical angle in the direction of a source, 159 

both in CV motion. The path of the sound emitted by the source is known, as is also the sea bottom 160 

depth. 161 

1. If the target is broadside to the antenna, then the set of ghost targets is composed of virtual 162 

sources broadside to the antenna. 163 

2. If the target is endfire to the antenna, the set of ghost targets is composed of virtual sources 164 

endfire to the antenna. 165 

3. If the target has the same heading as the array (but is not endfire to it), then the set of ghost 166 

targets is composed of virtual targets having the same heading as the antenna. More precisely, 167 

the ghost image of each ghost target is moving on a cylinder whose axis is the antenna axis, 168 

and whose radius is a positive scalar 𝛽. The relative ghost target velocity is equal to 𝛽 times 169 

the target’s velocity. The initial distance between the ghost image and the center of the antenna 170 

is equal to 𝛽 times the initial distance between the target-image and the center of the antenna. 171 

4. In any other cases, for a chosen image-depth 휁𝐺 , the set of ghost targets is composed of virtual 172 

targets whose motion relative to the array is defined by 𝑃𝑂𝐺(𝑡) = 𝛽𝑃𝑂𝑇(𝑡)  or         173 

𝑃𝑂𝐺(𝑡) = 𝛽𝑺𝑃𝑂𝑇(𝑡), where 𝑺 is the 2D axial symmetry around the line of the array, and 𝛽 174 

is a positive scalar. The scalar 𝛽 is equal to 
|𝜁𝑂𝐺|

|𝜁𝑂𝑇|
 if 휁𝑂𝑇 ≠ 0. If 휁𝑂𝑇 = 0 (which can happen 175 

with a direct path only), 𝛽 can have any positive value. 176 

Preamble: In the following proof, we choose 𝑡∗ = 0. Instead of working with the state 177 

vector 𝑋 = (𝑥𝑇(0) 𝑦𝑇(0) 𝑧𝑇 �̇�𝑇 �̇�𝑇)𝑇, we will use the relative state vector of the im- 178 

age source, which is 𝑌 ≜ (𝑥0𝑇(0) 𝑦𝑂𝑇(0) 휁𝑂𝑇 �̇�𝑂𝑇 �̇�𝑂𝑇)𝑇. The reason is that we are 179 

able to recover 𝑋 from 𝑌 without ambiguity. 180 

We will prove this theorem in the special case where the heading of the antenna is 181 

equal to 0°, and the value 𝑦𝑂𝑇(𝑡) is positive. This can be easily obtained with an ad-hoc 182 

rotation of the whole scenario. This will simplify the expression of the measurement, with- 183 

out loss of generality. 184 

Proof of Theorem 1. We are seeking the ghost target whose horizontal position at time t 185 

is (𝑥𝐺(𝑡) 𝑦𝐺(𝑡))𝑇, detected in the same cosine of the conical angle, that is 186 
𝑦𝑂𝑇(𝑡)

√𝑥𝑂𝑇
2 (𝑡)+𝑦𝑂𝑇

2 (𝑡)+𝜁𝑂𝑇
2

=
𝑦𝑂𝐺(𝑡)

√𝑥𝑂𝐺
2 (𝑡)+𝑦𝑂𝐺

2 (𝑡)+𝜁𝑂𝐺
2

, with 𝑥𝑂𝐺(𝑡) = 𝑥𝐺(𝑡) − 𝑥𝑂(𝑡) ,                187 

𝑦𝑂𝐺 (𝑡) = 𝑦𝐺 (𝑡) − 𝑦𝑂(𝑡), and 휁𝑂𝐺  is the image-depth of the ghost target. This equality is 188 

equivalent to 189 

𝑦𝑂𝑇
2 (𝑡)

𝑥𝑂𝑇
2 (𝑡)+𝑦𝑂𝑇

2 (𝑡)+𝜁𝑂𝑇
2 =

𝑦𝑂𝐺
2 (𝑡)

𝑥𝑂𝐺
2 (𝑡)+𝑦𝑂𝐺

2 (𝑡)+𝜁𝑂𝐺
2 . (1) 
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 Note that because the target is moving (as is the ghost target also), the denominators of 190 

the left term and of the right term of (1) are two polynomial functions of degree 2. 191 

Case 1: 𝑦𝑂𝑇(𝑡) is a zero function, i.e. ∀𝑡 𝑦𝑂𝑇(𝑡) = 0. 192 

This means the source is broadside to the antenna: 𝑌𝑇 = (𝑥0𝑇(0) 0 휁𝑂𝑇 �̇�𝑂𝑇 0)𝑇. 193 

In this case, 𝑦𝑂𝑇(𝑡) = 0, ∀𝑡 ∈ [0, 𝑇]. Hence, the set of ghost targets is composed of the vir- 194 

tual targets broadside to the antenna: 𝑌𝐺 = (𝑥0𝐺(0) 0 휁𝑂𝐺 �̇�𝑂𝐺 0)𝑇. 195 

Case 2: 𝑦𝑂𝑇(𝑡) is not a zero function. 196 

If �̇�𝑂𝑇 = 0, then 𝑦𝑂𝑇(𝑡) is a constant. To respect the degrees of the terms of (1), 𝑦𝑂𝐺(𝑡) is 197 

a constant too. 198 

If �̇�𝑂𝑇 ≠ 0, then there is a root, say �̃�, such as 𝑦𝑂𝑇(�̃�) = 0, since 𝑦𝑂𝑇(𝑡) is a polynomial 199 

function of degree 1. Consequently, 𝑦𝑂𝐺(�̃�) = 0, and ∀𝑡 ≠ �̃�, 𝑦𝑂𝐺(𝑡) ≠ 0. 200 

We deduce that, in both cases (�̇�𝑂𝑇 = 0, and �̇�𝑂𝑇 ≠ 0), there exists a positive value 𝛽 such 201 

that 𝑦𝑂𝐺(𝑡) = 𝛽𝑦𝑂𝑇(𝑡). 202 

(1) ⇔ {[𝑥𝑂𝐺
2 (𝑡) + 𝑦𝑂𝐺

2 (𝑡) + 휁𝑂𝐺
2 ] − 𝛽2[𝑥𝑂𝑇

2 (𝑡) + 𝑦𝑂𝑇
2 (𝑡) + 휁𝑂𝑇

2 ]}𝑦𝑂𝑇
2 (𝑡) = 0 

⇔ 𝑥𝑂𝐺
2 (𝑡) + 휁𝑂𝐺

2 = 𝛽2[𝑥𝑂𝑇
2 (𝑡) + 휁𝑂𝑇

2 ] (2) 

The quantity 𝑥𝑂𝑇
2 (𝑡) + 휁𝑂𝑇

2  can be equal to zero at any time, or at one time or never. 203 

Subcase 1: ∀𝑡, 𝑥𝑂𝑇
2 (𝑡) + 휁𝑂𝑇

2 = 0. 204 

Then 𝑥𝑂𝑇(𝑡) = 0, ∀𝑡 and 휁𝑂𝑇 = 0. Note that this case is the one when the target is travel- 205 

ing in the endfire to the array and at the same depth as the antenna and the path is the 206 

direct one. For the same reason, 𝑥𝑂𝐺(𝑡) = 0, ∀𝑡 and 휁𝑂𝐺 = 0. The set of ghost targets is 207 

hence composed of virtual targets traveling in the endfire to the array and at the same 208 

depth as the antenna. 209 

Subcase 2: ∃�̆� such that 𝑥𝑂𝑇
2 (�̆�) + 휁𝑂𝑇

2 ≠ 0. 210 

We deduce from (2) that 211 

{

𝑥𝑂𝐺
2 (0) = 𝛽2𝑥𝑂𝑇

2 (0) + 𝛽2휁𝑂𝑇
2 − 휁𝑂𝐺

2

𝑥𝑂𝐺 (0)�̇�𝑂𝐺 = 𝛽2𝑥𝑂𝑇(0)�̇�𝑂𝑇        

�̇�𝑂𝐺
2 = 𝛽2�̇�𝑂𝑇

2                    

 

(3-a) 

(3-b) 

(3-c) 

If �̇�𝑂𝑇 = 0, then 212 

𝑌𝐺 = (±√𝛽2𝑥𝑂𝑇
2 (0) + 𝛽2휁𝑂𝑇

2 − 휁𝑂𝐺
2 𝛽𝑦𝑂𝑇(0) 휁𝑂𝐺 0 𝛽�̇�𝑂𝑇)

𝑇
, for any positive constant 213 

𝛽 and any positive constant 휁𝑂𝐺  less than √𝛽2𝑥𝑂𝑇
2 (0) + 𝛽2휁𝑂𝑇

2 . Note that, when �̇�𝑂𝑇 = 0, 214 

the target is motionless relative to the center of the array (both have the same velocity); 215 

and when �̇�𝑂𝑇 ≠ 0, the target has the same heading as the array. 216 

If �̇�𝑂𝑇 ≠ 0, then squaring the elements of (3-b), and using (3-c), we draw from (3-a) that 217 

𝛽2휁𝑂𝑇
2 = 휁𝑂𝐺

2 . If 휁𝑂𝑇 = 0, then 휁𝑂𝐺 = 0, and the scalar 𝛽 can take any positive value; else 218 

𝛽 =
|𝜁𝑂𝐺|

|𝜁𝑂𝑇|
. In both cases, the trajectory of a ghost target is defined by the state vector    219 

𝑌𝐺 = (±𝛽𝑥𝑂𝑇(0) 𝛽𝑦𝑂𝑇(0) 𝛽휁𝑂𝑇 ±𝛽�̇�𝑂𝑇 𝛽�̇�𝑂𝑇)𝑇. □ 220 

Remarks: 221 

1. When the source and the observer are at the same depth, and the path is direct, The- 222 

orem 1 recovers the conclusions given in [26]. 223 

2. The cases (1), (2) and (3) of Theorem 1 are “rare events” since the events of dealing 224 

with a source in endfire, broadside or having the same heading as the antenna during 225 

the scenario occur with a probability equal to 0. However, when the target has a tra- 226 

jectory close to one of these special cases, the estimates will have a poor behavior. 227 

3. For cases (4), when the detected ray is not a direct path, for example, when the ray is 228 

bottom-reflected, a hypothesis about the source is sufficient to get one solution, cor- 229 

responding to a ghost target. Indeed, if we suppose that the depth of the target is 𝑧𝐴𝑠 230 

(whereas the true value is 𝑧𝑇), then we have 𝛽 =
2𝐷−(𝑧𝐴𝑠+𝑧𝑂)

2𝐷−(𝑧𝑇+𝑧𝑂)
, whose biggest value 231 
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𝛽𝑀𝑎𝑥 =
2𝐷−𝑧𝑂

2𝐷−(𝑧𝑇+𝑧𝑂)
, and the minimum value is 𝛽𝑀𝑖𝑛 =

2𝐷−(𝑧𝑀𝑎𝑥+𝑧𝑂)

2𝐷−(𝑧𝑇+𝑧𝑂)
 where 𝑧𝑀𝑎𝑥 is the 232 

largest depth of a submarine vehicle. Typically, in deep water, 𝐷 ≥ 4000m. A rea- 233 

sonable choice of 𝑧𝑀𝑎𝑥  could be 400 m. We can then have a range of 𝛽 : 234 

[𝛽𝑀𝑖𝑛 , 𝛽𝑀𝑎𝑥] = [
7600−𝑧𝑂

8000−(𝑧𝑇+𝑧𝑂)
,

8000−𝑧𝑂

8000−(𝑧𝑇+𝑧𝑂)
] . For instance, when the depths of the an- 235 

tenna and the target are respectively 200 m and 100 m, we have         236 

[𝛽𝑀𝑖𝑛 , 𝛽𝑀𝑎𝑥] = [0.974,1.013]. In this way, we bound the set of ghost targets, and we 237 

can expect that the bias induced by a wrong choice of 𝑧𝐴𝑠 is very low.  238 

4. For cases (4) again, with a direct path, if the target is not at the same depth as the 239 

antenna, 𝛽 =
𝑧𝐴𝑠−𝑧𝑂

𝑧𝑇−𝑧𝑂
. Because 𝛽 is a positive number, 𝑧𝐴𝑠 − 𝑧𝑂 has the same sign as 240 

𝑧𝑇 − 𝑧𝑂: if 𝑧𝑇 > 𝑧𝑂, then 𝑧𝑂 < 𝑧𝐴𝑠 ≤ 𝑧𝑀𝑎𝑥 , and [𝛽𝑀𝑖𝑛 , 𝛽𝑀𝑎𝑥] = ]0,
𝑧𝑀𝑎𝑥−𝑧𝑂

𝑧𝑇−𝑧𝑂
]; if 𝑧𝑇 < 𝑧𝑂, 241 

then 0 ≤ 𝑧𝐴𝑠 < 𝑧𝑂, and [𝛽𝑀𝑖𝑛 , 𝛽𝑀𝑎𝑥] = [0,
𝑧𝑂

𝑧𝑇−𝑧𝑂
]. In both cases, the range [𝛽𝑀𝑖𝑛 , 𝛽𝑀𝑎𝑥] 242 

is too wide to be useful. 243 

If the target and the antenna are at the same depth, 𝛽 can take any positive value. 244 

3.2. Estimation of the trajectory 245 

We run 500 Monte Carlo simulations for a typical scenario described as follows: 246 

The observer starts from (0 0)𝑇 at the depth 𝑧𝑂 = 200m. Its speed and heading are 247 

respectively 5 m/s and 0°. The initial position of the target is (5000 7000)𝑇 and its depth 248 

is 𝑧𝑇 = 100m. Its route is 45° and its speed is 4 m/s. 249 

 The measurements are collected every 4 seconds (∆𝑡 = 4s). The scenario lasts 20 min. 250 

 The sea bottom depth is 4000 m. The detected ray is a bottom-reflected ray. 251 

 The assumed target depth is 𝑧𝐴𝑠 = 200m (whereas the true one is 100 m). 252 

 First, the measurements have been corrupted with an additive Gaussian noise whose 253 

standard deviation is 𝜎 = 1.7 10−2. 254 

Then we choose the least squares estimator, which is identical to the maximum like- 255 

lihood estimator with these assumptions. Note that, in open literature about TMA, the 256 

confidence regions are given by the confidence ellipsoid obtained with the covariance ma- 257 

trix of the estimate. Since the maximum likelihood estimate is asymptotically efficient un- 258 

der nonrestrictive conditions, we use here the Cramér-Rao lower bound to compute such 259 

confidence regions. 260 

The result of the simulation is presented in Table 1 and illustrated in Figure 4. Obvi- 261 

ously, even if the assumption made on the target’s depth makes the state vector observa- 262 

ble, it remains inestimable: the hugeness of the diagonal elements of the CRLB does not 263 

allow this kind of TMA to be employed. We note in Figure 4 that the cloud of horizontal 264 

estimates is hyperbola-shaped. This is because the state vector is “weakly” estimable. The 265 

parametric equation of this hyperbola is 266 

{
𝑥(𝜔) = 휁𝐴𝑠 sinh(𝜔)   

𝑦(𝜔) =
𝜁𝐴𝑠𝑚

√1−𝑚2
cosh(𝜔) , with 휁𝐴𝑠 = 2𝐷 − (𝑧𝐴𝑠 + 𝑧𝑂), and 𝑚 =

𝑦𝑂𝑇(0)

√𝑥𝑂𝑇
2 (0)+𝑦𝑂𝑇

2 (0)+𝜁𝑂𝑇
2

. 267 

We further reduced the standard deviation to 𝜎 = 1.7 10−4 in order to appreciate 268 

the behavior of the MLE. With this (unrealistic) value, the MLE is efficient, as shown in 269 

Table 2 and in Figure 5 (which validates our observability analysis). 270 

Our conclusion is that the state vector is not estimable, even though it is observable 271 

with an assumption on the target’s depth. 272 

This is why we propose to maneuver the antenna in order to render the state vector 273 

observable with no assumption on the target’s depth, and to augment the information 274 

about it. 275 
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 276 

Figure 4. The cloud of estimated position (in green), a piece of the hyperbola (intersection of the 277 

cone of ambiguity and the plane 𝑧 = 𝑧𝐴𝑠(= 200 𝑚), for 𝜎 = 1.7 10−2. 278 

Table 1. Performance of the estimator of the reduced state vector when 𝜎 = 1.7 10−2, in 279 

terms of bias, sample standard deviation and the one given by the square root of the di- 280 

agonal of the CRLB 281 

𝑿𝒓 Bias 𝝈𝒔𝒂𝒎𝒑 𝝈𝑪𝑹𝑳𝑩 

5000 m -3525 6962 13356 

7000 m -2367 4052 5599 

2.83 m/s -1.37 1.81 4.35 

2.83 m/s 0.53 1.62 2.75 

 282 

Figure 5. The cloud of estimated position (in green) for 𝜎 = 1.7 10−4. The cloud is no longer hy- 283 

perbola-shaped. The small black segment is the 90%-confidence ellipsoid. 284 

Table 2. Performance of the estimator of the reduced state vector with 𝜎 = 1.7 10−4. 285 

𝑿𝒓 Bias 𝝈𝒔𝒂𝒎𝒑 𝝈𝑪𝑹𝑳𝑩 

5000 m 60.40 138.67 133.56 

7000 m 88.20 58.42 55.99 

2.83 m/s 0.043 0.044 0.044 

2.83 m/s 0.037 0.028 0.028 

4. TMA with one ray when the array maneuvers 286 

In this section, the antenna maneuvers, i.e. it changes its own heading. We start by 287 

proving that the state vector is observable (without any assumption on the target’s depth). 288 
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Then we have recourse to Monte Carlo simulations to evaluate the performance of the 289 

MLE. 290 

4.1. Observability Analysis 291 

Theorem 2. Suppose the antenna’s trajectory is composed of two successive legs at constant ve- 292 

locity (however with the same speed). Let the target be in CV motion. The linear array acquires the 293 

conical angles of the wave emitted from the target, the path of the ray being known as well as the 294 

sea bottom depth. If the target is broadside or endfire to the antenna during a leg, then there is at 295 

most a ghost target. Otherwise, there is no ghost target. 296 

Due to its length, the proof of this theorem is given in the Appendix. 297 

4.2. Estimation 298 

In this subsection, we present the result of 500 Monte Carlo simulations that are run 299 

to illustrate the behavior of the proposed estimators. First, we give the scenario used here.  300 

The center of the array and the initial position of the source are respectively at 301 

(0 0 200)𝑇  and (5000 7000 100)𝑇at the very beginning of the scenario. The speed 302 

of the array is a constant along the scenario and is equal to 5 m/s. The trajectory of the 303 

array is composed of two legs linked by an arc of a circle. The first leg lasts 1 min 40 s, 304 

during which the array’s heading is 135°. Then the array turns to the right with a turn rate 305 

equal to 20°/min to adopt a new heading equal to 270°. The duration of the maneuver is 306 

hence equal to 6 min 44 s. The second leg lasts 5 min, so the total duration of the scenario 307 

is 13 min and 20 s. Meanwhile, the target is navigating with a heading equal to 45° and a 308 

speed of 4 m/s. The bottom depth is 𝐷 = 4000m. 309 

The state vector we have to estimate is hence                                         310 

𝑋 = (5000 7000 100 2.83 2.83)𝑇 . 311 

The array is assumed to measure the cosines of the conical angles of the bottom-re- 312 

flected path given by 313 

𝑚(𝑡𝑘) =
𝑦𝑂𝑇(𝑡𝑘)

√𝑥𝑂𝑇
2 (𝑡𝑘) + 𝑦𝑂𝑇

2 (𝑡𝑘) + [2𝐷 − (𝑧𝑇 + 𝑧𝑂)]2
+ 휀𝑘. 314 

Measurements are acquired every ∆𝑡 = 4s, with 𝑡𝑘 = (𝑘 − 1)∆𝑡. 315 

The noise vector 휀𝑘 is assumed to be Gaussian, 0-mean and its standard deviation 316 

equal to 𝜎 = 1.7 10−2. The vectors 휀𝑘 are also assumed to be temporally independent. 317 

Again, we choose the least squares estimator. 318 

4.2.1. Estimation of 𝑋 319 

The 500 obtained estimates of the initial horizontal position are plotted in Figure 6, 320 

together with the trajectory of the target, the 90%-confidence ellipse and the trajectory of 321 

the array. Again, the view is from the sky. 322 

The performance of the estimator (bias and standard deviation of each component) 323 

is presented in Table 3. 324 

 325 
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 326 

Figure 6. The cloud of the 500 initial positions estimates and the 90%-confidence ellipse. 327 

Table 3. Performance of the estimator of the plain state vector 328 

𝑿 Bias 𝝈𝒔𝒂𝒎𝒑 𝝈𝑪𝑹𝑳𝑩 

5000 m -44.77 854.72 868.12 

7000 m -68.16 1162.1 1173.60 

100 m 7.14 558.55 545.99 

2.83 m/s 0.092 1.67 1.65 

2.83 m/s 0.194 2.72 2.68 

A convenient way to evaluate the behavior of an estimator is to compute the so-called 329 

normalized estimation error squared (NEES) [27], defined as 𝑁𝑙 = (�̂�𝑙 − 𝑋)
𝑇

𝐹(�̂�𝑙 − 𝑋), 330 

where 𝐹 is the FIM, and �̂�𝑙  is the estimate computed at the 𝑙-th simulation.  If �̂�𝑙  is 331 

Gaussian-distributed with 𝑋 as the mathematical expectation and the CRLB as the covar- 332 

iance matrix, then 𝑁𝑙 is Chi-square distributed with d degrees of freedom (𝜒𝑑
2), where d 333 

is the dimension of 𝑋  (here 5). From the central limit theorem, the averaged NEES    334 

𝑁𝑆 ≜
1

𝑁𝑆𝑖𝑚
∑ 𝑁𝑙

𝑁𝑆𝑖𝑚
𝑙=1  is approximately Gaussian; its mathematical expectation is d, and its 335 

standard deviation equal to √
2𝑑

𝑁𝑆𝑖𝑚
. 336 

From our simulations, we obtain 𝑁𝑆 = 5.34. 337 

In conclusion, the estimator can be declared efficient. However, the minimum stand- 338 

ard deviation of the target’s depth is not compatible with the physical constraints: with 339 

the standard deviation given in Table 3, the target could be up above the sea surface!  340 

Therefore, a palliative of this is to impose a depth on the target. Indeed, we saw in sub- 341 

section 3.1 that a supposed depth creates a small bias in estimation of the horizontal posi- 342 

tion of the target. 343 

4.2.2. Estimation of 𝑋 reduced when the depth of the target is fixed. 344 

Now, the third component of 𝑋 has not to be estimated. The new state vector is the 345 

denoted 𝑋𝑟 = (𝑥𝑇(0) 𝑦𝑇(0) �̇�𝑇 �̇�𝑇)𝑇 . We impose that 𝑧𝐴𝑠 = 200m (whereas the true 346 

depth is still 100 m). Hence, we introduce a bias. 347 

Figure 7 displays the position’s estimates in the same manner as Figure 6. The bias is 348 

not visible to the naked eye. However, Table 4 reveals this bias, which may be acceptable 349 

in a real situation. Even though the averaged NEES (=7.31) is out of its 90% confidence 350 

interval, its value remains acceptable. 351 
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 352 

Figure 7. The cloud of the 500 initial positions estimates with the reduced state vector and the 353 

90%-confidence ellipse. 354 

Table 4. Performance of the estimator of the reduced state vector. 355 

𝑿𝒓 Bias 𝝈𝒔𝒂𝒎𝒑 𝝈𝑪𝑹𝑳𝑩 

5000 m 65.40 655.61 606.41 

7000 m 93.05 831.75 762.56 

2.83 m/s 0.034 1.71 1.58 

2.83 m/s 0.063 2.76 2.52 

The main interest of assuming the depth to be known is to economize on the CPU 356 

time, and reduce the standard deviation of the remaining components to estimate. We are 357 

in the presence of the well-known bias–variance tradeoff. 358 

4.2.3. Estimation of the reduced state vector by the conventional BOTMA 359 

In such a scenario, the conventional BOTMA can be run by neglecting the site effect, 360 

so by imposing that cos(𝜙(𝑡)) = 1, ∀𝑡. The (incorrect) noise-free measurement model is 361 

then 362 

cos(𝛼(𝑡)) = cos(𝜃(𝑡) − ℎ(𝑡)). 363 

The results are plotted in Figure 8. Obviously a huge bias appears, leading to an av- 364 

eraged NEES equal to 1960. More precisely, the bias on the components of the reduced 365 

state vector is (−3062.8 −2319.9 14.4 15.8)𝑇 , rendering the BOTMA inoperative. 366 

Clearly, the conventional BOTMA cannot be recommended for the near field. This justifies 367 

a posteriori the interest in taking the site effect and the nature of the wave ray into account, 368 

as previously pointed out in the introduction of [23]. 369 

 370 

 371 

 372 
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 373 

Figure 8. The cloud (in green) of the 500 initial positions estimates given by the classic BOTMA 374 

together with the 90%-confidence ellipse. 375 

 5. TMA from the direct path and the bottom-reflected path 376 

We assume in this section that the sound wave emitted by the target travels on the 377 

direct path and the bottom-reflected path. 378 

5.1. Observability 379 

Theorem 3. Let a linear antenna and a source both be in CV motion. 380 

The antenna acquires the cosines of the conical angles of the direct path and of the bottom-reflected 381 

path. 382 

1. If the target is broadside to the array, then the set of ghost targets is uncountable: it is com- 383 

posed of all the (virtual) targets at broadside to the array. 384 

2. If the target is endfire to the antenna, the set of ghost targets is composed of virtual sources at 385 

endfire to the antenna. 386 

3. If the route of the antenna and the route of the target are parallel, then the set of ghost targets 387 

is uncountable: at each depth 𝑧𝐺 , there are two ghost targets moving on a cylinder whose axis 388 

is the antenna axis, and the radius is a positive scalar 𝛽 = √
𝐷−𝑧𝐺

𝐷−𝑧𝑇
. The relative ghost target 389 

velocity is equal to 𝛽 times the target’s velocity. The initial distance between the ghost image 390 

and the center of the antenna is equal to 𝛽 times the initial distance between the ghost image 391 

and the center of the antenna. 392 

4. If the route of the antenna and the route of the target are not parallel, then there are three 393 

ghost targets whose motion relative to the antenna is 𝑃𝑂𝐺(𝑡) = 𝑺𝑃𝑂𝑇(𝑡), 𝑃𝑂𝐺 (𝑡) = 𝛽𝑃𝑂𝑇(𝑡), 394 

and 𝑃𝑂𝐺(𝑡) = 𝛽𝑺𝑃𝑂𝑇(𝑡), where 𝑺 is the matrix of the axial symmetry around the line of the 395 

antenna, and 𝛽 ≜
𝐷−𝑧𝑂

𝐷−𝑧𝑇
. If the depth of the antenna is equal to the depth of the source, then 396 

there is one single ghost target given by 𝑃𝑂𝐺(𝑡) = 𝑺𝑃𝑂𝑇(𝑡). 397 

Proof of Theorem 3. With no loss of generality, we will again assume that the axis of the 398 

sensors array is toward North and that the target is in the half-space where the second 399 

component y  of any vector is positive. A convenient rotation helps us to be in this case. 400 

So the noise-free measurements at time t are 𝑚1(𝑡) =
𝑦𝑂𝑇(𝑡)

√𝑥𝑂𝑇
2 (𝑡)+𝑦𝑂𝑇

2 (𝑡)+𝑧𝑂𝑇
2

, and       401 

𝑚2(𝑡) =
𝑦𝑂𝑇(𝑡)

√𝑥𝑂𝑇
2 (𝑡)+𝑦𝑂𝑇

2 (𝑡)+[2𝐷−(𝑧𝑇+𝑧𝑂)]2
. 402 

We have to seek a 5-dimensional state vector 𝑋𝐺 = (𝑥𝐺(0) 𝑦𝐺(0) 𝑧𝐺 �̇�𝐺 �̇�𝐺)𝑇 defin- 403 

ing the trajectory of a ghost target, i.e., producing the same noise-free measurement as 𝑋, 404 

that is 𝑚1(𝑡) =
𝑦𝑂𝐺(𝑡)

√𝑥𝑂𝐺
2 (𝑡)+𝑦𝑂𝐺

2 (𝑡)+𝑧𝑂𝐺
2

, and 𝑚2(𝑡) =
𝑦𝑂𝐺(𝑡)

√𝑥𝑂𝐺
2 (𝑡)+𝑦𝑂𝐺

2 (𝑡)+[2𝐷−(𝑧𝐺+𝑧𝑂)]2
. 405 

hence satisfying the two following equalities (in time): 406 
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𝑦𝑂𝑇(𝑡)

√𝑥𝑂𝑇
2 (𝑡) + 𝑦𝑂𝑇

2 (𝑡) + 𝑧𝑂𝑇
2

=
𝑦𝑂𝐺(𝑡)

√𝑥𝑂𝐺
2 (𝑡) + 𝑦𝑂𝐺

2 (𝑡) + 𝑧𝑂𝐺
2

 (4) 

𝑦𝑂𝑇(𝑡)

√𝑥𝑂𝑇
2 (𝑡) + 𝑦𝑂𝑇

2 (𝑡) + [2𝐷 − (𝑧𝑇 + 𝑧𝑂)]2
=

𝑦𝑂𝐺(𝑡)

√𝑥𝑂𝐺
2 (𝑡) + 𝑦𝑂𝐺

2 (𝑡) + [2𝐷 − (𝑧𝐺 + 𝑧𝑂)]2
 (5) 

under the constraint that 𝑧𝐺 is in [0, 𝐷]. 407 

Case 1: 𝑦𝑂𝑇(𝑡) is a zero function, i.e. ∀𝑡 𝑦𝑂𝑇(𝑡) = 0. 408 

The target is broadside to the antenna, so any ghost targets will be too (see Case 1 in the 409 

proof of theorem 1). 410 

Case 2: 𝑦𝑂𝑇(𝑡) is not a zero function.  411 

From Case 2 of the proof of theorem 1, there is a positive scalar 𝛽  such that        412 

𝑦𝑂𝐺 (𝑡) = 𝛽𝑦𝑂𝑇(𝑡). 413 

 414 

(4) ⟺ √𝑥𝑂𝐺
2 (𝑡) + 𝑦𝑂𝐺

2 (𝑡) + 𝑧𝑂𝐺
2 = 𝛽√𝑥𝑂𝑇

2 (𝑡) + 𝑦𝑂𝑇
2 (𝑡) + 𝑧𝑂𝑇

2  

⟺ [𝑥𝑂𝐺
2 (𝑡) + 𝑦𝑂𝐺

2 (𝑡) + 𝑧𝑂𝐺
2 ] = 𝛽2[𝑥𝑂𝑇

2 (𝑡) + 𝑦𝑂𝑇
2 (𝑡) + 𝑧𝑂𝑇

2 ] 

 

(6) 

(5) ⟺ [𝑥𝑂𝐺
2 (𝑡) + 𝑦𝑂𝐺

2 (𝑡) + [2𝐷 − (𝑧𝐺 + 𝑧𝑂)]2] = 𝛽2[𝑥𝑂𝑇
2 (𝑡) + 𝑦𝑂𝑇

2 (𝑡) + [2𝐷 − (𝑧𝑇 + 𝑧𝑂)]2] (7) 

Subtracting (7) from (6), we get 𝑧𝑂𝐺
2 − [2𝐷 − (𝑧𝐺 + 𝑧𝑂)]2 = 𝛽2[𝑧𝑂𝑇

2 − [2𝐷 − (𝑧𝑇 + 𝑧𝑂)]2]. 415 

Now, we simplify the expressions of these two terms: 416 

𝑧𝑂𝐺
2 − [2𝐷 − (𝑧𝐺 + 𝑧𝑂)]2 = −4(𝐷 − 𝑧𝐺)(𝐷 − 𝑧𝑂)  417 

𝑧𝑂𝑇
2 − [2𝐷 − (𝑧𝑇 + 𝑧𝑂)]2 = −4(𝐷 − 𝑧𝑇)(𝐷 − 𝑧𝑂). 418 

We deduce from this that 419 

𝛽 = √
𝐷 − 𝑧𝐺

𝐷 − 𝑧𝑇

 (8) 

Note that 𝛽 = 1 iif 𝑧𝐺 = 𝑧𝑇. 420 

(6) ⟺ 𝑥𝑂𝐺
2 (𝑡) + 𝑦𝑂𝐺

2 (𝑡) + 𝑧𝑂𝐺
2 = 𝛽2[𝑥𝑂𝑇

2 (𝑡) + 𝑦𝑂𝑇
2 (𝑡) + 𝑧𝑂𝑇

2 ] 

⟺ 𝑥𝑂𝐺
2 (𝑡) − 𝛽2𝑥𝑂𝑇

2 (𝑡) = 𝛽2𝑧𝑂𝑇
2 − 𝑧𝑂𝐺

2  (9) 

Since 𝑥𝑂𝐺
2 (𝑡) − 𝛽2𝑥𝑂𝑇

2 (𝑡) is a polynomial function of degree 2, (9) is equivalent to 421 

{

𝑥𝑂𝐺
2 (0) = 𝛽2𝑥𝑂𝑇

2 (0) + 𝛽2𝑧𝑂𝑇
2 − 𝑧𝑂𝐺

2

𝑥𝑂𝐺 (0)�̇�𝑂𝐺 = 𝛽2𝑥𝑂𝑇(0)�̇�𝑂𝑇        

�̇�𝑂𝐺
2 = 𝛽2�̇�𝑂𝑇

2                    

 

(10-a) 

(10-b) 

(10-c) 

First case ẋOT = 0 422 

Eq. (10-c) implies that �̇�𝑂𝐺 = 0. 423 

Consequently, for any 𝑧𝐺  in [0, 𝐷] , the vector                                        424 

𝑋𝑂𝐺 = (±√𝛽2𝑥𝑂𝑇
2 (0) + 𝛽2𝑧𝑂𝑇

2 − 𝑧𝑂𝐺
2 𝛽𝑦𝑂𝑇(0) 𝑧𝑂𝐺 0 𝛽�̇�𝑂𝑇)

𝑇
 (with 𝛽 = √

𝐷−𝑧𝐺

𝐷−𝑧𝑇
) de- 425 

fines the trajectory of a ghost target. 426 

Second case ẋOT ≠ 0 427 

Using (10-c), and squaring the terms of (10-b), we get 𝑥𝑂𝐺
2 (0) = 𝛽2𝑥𝑂𝑇

2 (0). 428 

Reporting this in (10-a), we obtain finally 𝛽2𝑧𝑂𝑇
2 = 𝑧𝑂𝐺

2 , i.e.  429 

𝛽2 = (
𝑧𝑂𝐺

𝑧𝑂𝑇

)
2

 (11) 
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If 𝑧𝑇 = 𝑧𝑂 , then 𝑧𝐺 = 𝑧𝑂 . In this case, 𝛽 = 1 , and consequently 𝑦𝑂𝐺 (𝑡) = 𝑦𝑂𝑇(𝑡)  and 430 

𝑥𝑂𝐺
2 (𝑡) = 𝑥𝑂𝑇

2 (𝑡) from (9). The source’s trajectory is observable up to the axial symmetry 431 

around the (Oy)-axis. 432 

Eq. (8) and (11) give us 
𝐷−𝑧𝐺

𝐷−𝑧𝑇
= (

𝑧𝑂𝐺

𝑧𝑂𝑇
)

2

. 433 

The unknown 𝑧𝐺 is hence a root of the following equation of degree 2: 434 

(𝑧𝐺 − 𝑧𝑂)2 −
(𝑧𝑇−𝑧𝑂)2

𝐷−𝑧𝑇
(𝐷 − 𝑧𝐺) = 0  which can be expanded as follows:                 435 

𝑧𝐺
2 + 𝑧𝐺 [−2𝑧𝑂 +

(𝑧𝑇−𝑧𝑂)2

𝐷−𝑧𝑇
] −

𝐷(𝑧𝑇−𝑧𝑂)2

𝐷−𝑧𝑇
+ 𝑧𝑂

2 = 0. 436 

Of course, 𝑧𝑇 is a root of this equation. For this value, 𝑧𝐺 = 𝑧𝑇, hence 𝛽 = 1. 437 

The second root (𝑧𝐺 itself) is hence 2𝑧𝑂 − 𝑧𝑇 −
(𝑧𝑇−𝑧𝑂)2

𝐷−𝑧𝑇
≜ 𝑧𝐺 . We can check readily that 438 

𝑧𝐺 − 𝑧𝑂 = 𝑧𝑂 − 𝑧𝑇 −
(𝑧𝑇−𝑧𝑂)2

𝐷−𝑧𝑇
=

(𝑧𝑂−𝑧𝑇)(𝐷−𝑧𝑇)−(𝑧𝑇−𝑧𝑂)2

𝐷−𝑧𝑇
. 439 

Hence, 
𝑧𝐺−𝑧𝑂

𝑧𝑇−𝑧𝑂
=

𝑧𝑂−𝐷

𝐷−𝑧𝑇
 (which is negative). 440 

We deduce from this that: 441 

1. when the target’s depth is larger than the array’s depth, there is a ghost whose depth 442 

is smaller than the array’s depth, and vice-versa. 443 

2. 𝛽, which is a positive coefficient, is equal to 
𝐷−𝑧𝑂

𝐷−𝑧𝑇
, or 1. 444 

Therefore, we have identified three ghost targets: 445 

the first one is defined by 𝑋𝑂𝐺 = (−𝑥𝑂𝑇(0) 𝑦𝑂𝑇(0) 𝑧𝑂𝑇 −�̇�𝑂𝑇 �̇�𝑂𝑇)𝑇, 446 

the second is defined by 𝑋𝑂𝐺 = (𝛽𝑥𝑂𝑇(0) 𝛽𝑦𝑂𝑇(0) −𝛽𝑧𝑂𝑇 𝛽�̇�𝑂𝑇 𝛽�̇�𝑂𝑇)𝑇, 447 

and the third by 𝑋𝑂𝐺 = (−𝛽𝑥𝑂𝑇(0) 𝛽𝑦𝑂𝑇(0) −𝛽𝑧𝑂𝑇 −𝛽�̇�𝑂𝑇 𝛽�̇�𝑂𝑇)𝑇. □ 448 

Remark: 449 

Most of the time, the depth of a submarine vehicle is under the operational constraint: 450 

values of 𝑧𝑇  are in [0, 𝑧𝑀𝑎𝑥]  and 𝑧𝑀𝑎𝑥 ≪ 𝐷 . For example, 𝑧𝑀𝑎𝑥 = 400 m, while         451 

𝐷 = 4000m. 452 

The proof of the previous theorem must be adapted to this new constraint. 453 

First, we use the fact that the function 𝑢 ↦ 𝑓(𝑢) ≜ 2𝑧𝑂 − 𝑢 −
(𝑢−𝑧𝑂)2

𝐷−𝑢
 is an involution, i.e. 454 

𝑓(𝑓(𝑢)) = 𝑢. 455 

Since 𝑓(0) = 2𝑧𝑂 −
𝑧0

2

𝐷
, 𝑓 (2𝑧𝑂 −

𝑧0
2

𝐷
) = 0. 456 

Now the question is: what are the values of 𝑧𝑂 for which the following inequality holds: 457 

2𝑧𝑂 −
𝑧0

2

𝐷
≤ 𝑧𝑀𝑎𝑥 , the greatest value of 𝑧𝑂  guaranteeing that 2𝑧𝑂 −

𝑧0
2

𝐷−𝑧𝑇
≤ 𝑧𝑀𝑎𝑥  is      458 

𝐷 − 𝐷√1 −
𝑧𝑀𝑎𝑥

𝐷
 (which is less than 𝑧𝑀𝑎𝑥). 459 

If 𝑧𝑂 > 𝐷 − 𝐷√1 −
𝑧𝑀𝑎𝑥

𝐷
, then 𝑧𝐺 > 𝑧𝑀𝑎𝑥 . In this case, there is a unique ghost target given 460 

by 𝑋𝐺 = (−𝑥𝑇(0) 𝑦𝑇(0) 𝑧𝑇 −�̇�𝑇 �̇�𝑇)𝑇. 461 

If 𝑧𝑂 ≤ 𝐷 − 𝐷√1 −
𝑧𝑀𝑎𝑥

𝐷
, then 𝑧𝐺 ≤ 𝑧𝑀𝑎𝑥 . In this case, there are three ghost targets: 462 

one is defined by 𝑋𝐺 = (−𝑥𝑇(0) 𝑦𝑇(0) 𝑧𝑇 −�̇�𝑇 �̇�𝑇)𝑇, 463 

the second is defined by 𝑋𝐺 = (𝛽𝑥𝑇(0) 𝛽𝑦𝑇(0) 𝑓(𝑧𝑇) 𝛽�̇�𝑇 𝛽�̇�𝑇)𝑇, 464 

and the third by 𝑋𝐺 = (−𝛽𝑥𝑇(0) 𝛽𝑦𝑇(0) 𝑓(𝑧𝑇) −𝛽�̇�𝑇 𝛽�̇�𝑇)𝑇. 465 

Note that the operational constraint allows us to benefit from the following range:  466 
𝐷−𝑧𝑀𝑎𝑥

𝐷
≤ 𝛽 ≤

𝐷

𝐷−𝑧𝑀𝑎𝑥
. For example, when 𝑧𝑀𝑎𝑥 =

𝐷

10
, 0.9 ≤ 𝛽 ≤ 1.11. Consequently, the 467 

ghost target is very close to the target of interest. 468 

5.2. Estimation of the trajectory 469 

This section is devoted to the estimation of the target’s trajectory, or in other words, 470 

the estimation of 𝑋 with 𝑡∗ = 0 (the first time). Before going into detail, we compute the 471 

so-called Cramér‒Rao lower bound to evaluate the asymptotical performance of any un- 472 

biased estimator. 473 
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We have considered two typical scenarios. In both, the array is assumed motionless 474 

(or, more realistically, all the mobiles are referenced to it) at the depth 𝑧𝑂 = 200m, and 475 

the state vector defining the target’s trajectory is given by the state vector               476 

𝑋 = (5000 7000 100 2.83 2.83)𝑇 . The standard deviation of the measurement is      477 

𝜎 = 1.7 10−2 . The total duration of the scenario is 5 min, and the sampling time is      478 

Δ𝑡 = 4s; consequently, the number of measurement couples is 𝑁 = 75. 479 

In the first scenario, the bottom depth is 𝐷 = 2000 m, while in the second         480 

𝐷 = 4000m. 481 

Note that in the first scenario 𝛽 = 0.89 and in the second one 𝛽 = 0.97. The ghost 482 

target is hence very close to the target of interest. 483 

5.2.1. Estimability  484 

As pointed in section 1, the state vector 𝑋 is “estimable” if its asymptotical perfor- 485 

mance given by the CRLB is compatible with the physical constraints. Typically, if the 486 

minimum standard deviation defined by the square root of the third diagonal element of 487 

the CRLB (hence of the depth) is much larger than the depth, then 𝑋 is declared non- 488 

estimable. 489 

1. First scenario 490 

For this scenario, the square root of the diagonal of the CRLB                  491 

𝜎𝐶𝑅𝐿𝐵 = (1.16 106 1.59 106 8.22 105 637.9 646.1)𝑇 . 492 

2. Second scenario 493 

With the bottom depth, things are not much better, since                      494 

𝜎𝐶𝑅𝐿𝐵 = (6.59 105 8.96 105 9.73 105 352.6 362.2)𝑇 . 495 

In both cases, the minimum standard deviations are huge. We can conclude that the state 496 

vector is not estimable. Computations of minimum standard deviations were made for 497 

various scenarios; in all, the state vector is not estimable. 498 

A palliative of this is to fix the depth of the source at an arbitrary and realistic value, 499 

say 𝑧𝐴𝑠  and compute the CRLB of the reduced state vector                              500 

𝑋𝑟 ≜ (𝑥𝑇(0) 𝑦𝑇(0) �̇�𝑇 �̇�𝑇)𝑇  when we assume that 𝑧𝑇 = 𝑧𝐴𝑠 . For example, for             501 

𝑧𝐴𝑠 = 300m, the minimum standard deviations are 502 

𝜎𝐶𝑅𝐿𝐵 = (281.17 319.37 1.78 2.02)𝑇  for the first scenario, and 503 

𝜎𝐶𝑅𝐿𝐵 = (130.1 115.3 0.80 0.71)𝑇 for the second one. 504 

Therefore, we propose to estimate the state vector with this hypothesis (𝑧𝐴𝑠 = 300m). 505 

In so doing, we introduce a bias. The next subsection gives us the result of the 500 Monte 506 

Carlo simulations. 507 

5.2.2. Monte Carlo simulations 508 

The computation of the maximum likelihood estimator (MLE) is made with the 509 

Gauss‒Newton routine. No numerical issue was encountered.  510 

1. First scenario 511 

The performance of the MLE is summarized in Table 5. We have numerically com- 512 

puted the bias and the empirical standard deviation (given respectively in the second and 513 

third column of the table). We can see that the empirical standard deviation is very close 514 

to the one given by the CRLB. However, as expected, the MLE is biased (of course, there 515 

is no bias if we choose 𝑧𝐴𝑠 = 𝑧𝑇). In Figure 9, the 90%-confidence ellipse has been drawn, 516 

together with the cloud of the 500 estimates (in pink).  517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 
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Table 5. Performance of the estimator of the reduced state vector. 525 

𝑿𝒓 Bias 𝝈𝒔𝒂𝒎𝒑 𝝈𝑪𝑹𝑳𝑩 

5000 m 401.12 281.85 281.17 

7000 m 557.24 330.87 319.37 

2.83 m/s 0.13 1.58 1.78 

2.83 m/s 0.12 1.81 2.02 

 526 

Figure 9. The location of the sensor array (in black), the cloud of the 500 estimates and the 90%- 527 

confidence ellipse when 𝐷 = 2000m, 𝑧𝐴𝑠 = 300m, and 𝑧𝑇 = 100m. The symmetrical cloud is plot- 528 

ted too. 529 

2. Second scenario: Bottom depth 𝐷 = 4000m. 530 

Again, the performance is presented in Table 6. The bias of the estimator is similar to 531 

the one obtained for the first scenario. Only the empirical standard deviations of 532 

(𝑥𝑇(0) 𝑦𝑇(0))𝑇  are larger than the one computed from the CRLB. However, figure 10 533 

shows us that the cloud of estimates is close to the true value and not spread. 534 

Table 6. Performance of the estimator. 535 

𝑿𝒓 Bias 𝝈𝒔𝒂𝒎𝒑 𝝈𝑪𝑹𝑳𝑩 

5000 m 306.81 219.28 130.08 

7000 m 432.46 276.61 115.26 

2.83 m/s 0.18 0.74 0.80 

2.83 m/s 0.18 0.66 0.71 

 536 

 537 
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 538 

Figure 10. The location of the sensor array (in black), the cloud of the 500 estimates of the initial 539 

positions, and the 90%-confidence ellipse when 𝐷 = 4000m, 𝑧𝐴𝑠 = 300m, and 𝑧𝐴𝑠 = 100m, to- 540 

gether with the symmetrical cloud. 541 

What is remarkable is the short duration and still the very good performance (in 542 

terms of accuracy) of the result. Numerous simulations (not reported here) were per- 543 

formed; all confirm the correct performance of the MLE. The shortness of the scenario is 544 

crucial, because everything that we propose here works properly under the condition that 545 

the sea bottom is a plane. During a short scenario, this assumption is likely. 546 

6. Conclusion 547 

In this paper, conical-angle TMA has been addressed, and various multipaths of 548 

sound have been taken into account. The sensor is a line array. Observability was analyzed 549 

deeply, allowing all the existing ghost targets to be identified. The main results are that, if 550 

the array detects one ray (corresponding to one path), the trajectory is not observable: the 551 

set of ghost targets is composed of trajectories that are homothetic to the trajectory of the 552 

target of interest, and their symmetrical images by the axial symmetry around the line 553 

array. If the array detects two rays (corresponding to two different paths), the number of 554 

ghost targets is reduced to three (except when the target is endfire or broadside to the 555 

antenna). When the antenna maneuvers, the target’s trajectory is observable (apart from 556 

the special scenario where there is one single ghost target). Even for “observable” scenar- 557 

ios, the depth of the target is not estimable (its asymptotical standard deviation is huge). 558 

In these cases, we give a non-restrictive palliative that allows us to provide estimates close 559 

to the truth. 560 

In the future, in this context, many problems remain to be faced: identification of the 561 

paths, maneuvering targets, and fusion of data collected by other sensors as in [28]. The 562 

problem of seeking a “good” maneuver of the observer, as it was solved in 2D environ- 563 

ment [29-31] will be addressed in the future. Some of these are already under investiga- 564 

tion. 565 

Appendix A 566 

Proof of Theorem 2. The proof is made when the first leg is towards North (as previously).  567 

Hence 𝑉1 = [
0
𝑣

], 𝑉2 = [
𝑣 sin(𝛼)

𝑣 cos(𝛼)
], 𝑺1 = [

−1 0
0 1

], and 𝑺2 = [
− cos(2𝛼) sin(2𝛼)

sin(2𝛼) cos(2𝛼)
]. Moreo- 568 

ver, we assume 𝛼 ≠ 𝑘𝜋. 569 

From Theorem 1, we have to consider the four following cases for each leg: 570 

 the target is broadside to the antenna, 571 

 the target is endfire to the antenna, 572 

 the target has the same heading as the array (but is not endfire to it), 573 

 the other cases. 574 
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Note that if the target is in case (1) during the first leg, then in case (2) during the second 575 

one (provided that this situation is possible), the conclusion about observability will be 576 

the same as if the target is in case (2) during the first leg, then in case (1) during the second 577 

leg. To be convinced of this, we have just to reverse the time in the equation. This remark 578 

allows us to shorten the proof. 579 

Case 1: the target is broadside to the antenna during the first leg. 580 

Hence 𝑃𝑇(0) = [
𝑥𝑇(0)

0
] , and 𝑉𝑂𝑇 = [

𝑐𝑇

0
]  during the first leg, which implies         581 

𝑃𝑂𝑇(𝑡) = [
𝑥𝑇(0) + 𝑡𝑐𝑇

0
] for 𝑡 ≤ 𝜏 . The ghost targets are also in the broadside, hence     582 

𝑃𝑂𝐺(𝑡) = [
𝑥𝐺(0) + 𝑡𝑐𝐺

0
] and 𝑉𝑂𝐺 = [

𝑐𝐺

0
]for 𝑡 ≤ 𝜏. 583 

Can the target be endfire to the antenna? If so, the target has the same heading as the 584 

antenna during the second leg or, in other words, 𝑉𝑇 − 𝑉2 = 𝜆𝑉2 , and 𝑃𝑂𝑇(𝑡), which is 585 

equal to 𝑃𝑂𝑇(𝑡) = 𝑃𝑂𝑇(𝜏) + (𝑡 − 𝜏)(𝑉𝑇 − 𝑉2), is collinear with 𝑉2, whenever 𝑡 ≥ 𝜏. The first 586 

condition cannot be satisfied since 𝑉𝑇 = [
𝑐𝑇

𝑣
], and 𝑉2 = [

±𝑣
0

]. There is no ghost. 587 

We skip the case where the target is in case (3) during the second leg. This will be treated 588 

later. Therefore, we have now to consider the other cases during the second leg. There are 589 

two possibilities for the ghost targets: those whose trajectories are defined by (i)   590 

𝑃𝑂𝐺(𝑡) = 𝛽𝑃𝑂𝑇(𝑡), and those whose trajectories are given by (ii) 𝑃𝑂𝐺(𝑡) = 𝛽𝑺2𝑃𝑂𝑇(𝑡), both 591 

for 𝑡 ≥ 𝜏. 592 

The derivative of (i) is 𝑉𝐺 − 𝑉2 = 𝛽𝑉𝑇 − 𝛽𝑉2, hence 𝑉𝐺 = 𝛽𝑉𝑇 + (1 − 𝛽)𝑉2. 593 

⟺ [
𝑐𝐺

𝑣
] = 𝛽 [

𝑐𝑇

𝑣
] + (1 − 𝛽)𝑣 [

sin(𝛼)

cos(𝛼)
], 594 

which implies that (1 − 𝛽) cos(𝛼) = 1 − 𝛽 . Since cos(𝛼) ≠ 1, 𝛽 = 1. There is no ghost 595 

given by (i). 596 

The derivative of (ii) is 𝑉𝐺 − 𝑉2 = 𝛽𝑺2𝑉𝑇 − 𝛽𝑉2, hence 𝑉𝐺 = 𝛽𝑺2𝑉𝑇 + (1 − 𝛽)𝑉2. 597 

⟺ [
𝑐𝐺

𝑣
] = 𝛽 [

−𝑐𝑇 cos(2𝛼) + 𝑣 sin(2𝛼)

𝑐𝑇 sin(2𝛼) + 𝑣 cos(2𝛼)
] + (1 − 𝛽)𝑣 [

sin(𝛼)

cos(𝛼)
]. 598 

We deduce that 𝛽 = 𝑣
1−cos(𝛼)

𝑐𝑇 sin(2𝛼)+𝑣 cos(2𝛼)−𝑣 cos(𝛼)
. 599 

One ghost exists if  𝑐𝑇 sin(2𝛼) + 𝑣 cos(2𝛼) − 𝑣 cos(𝛼) is a positive quantity. If so, we then 600 

compute 𝑐𝐺. There is one ghost at most. 601 

Case 2: the target is endfire to the antenna during the first leg. 602 

Hence 𝑃𝑇(0) = [
0

𝑦𝑇(0)] , and 𝑉𝑂𝑇 = [
0
𝑐𝑇

] , which implies that 𝑃𝑂𝑇(𝑡) = [
0

𝑦𝑇(0) + 𝑡𝑐𝑇
]  for 603 

𝑡 ≤ 𝜏 . During this first leg, the ghost targets are also endfire to the antenna, so       604 

𝑃𝑂𝐺(𝑡) = [
0

𝑦𝐺(0) + 𝑡𝑐𝐺
]for 𝑡 ≤ 𝜏, and 𝑉𝐺 − 𝑉1 = [

0
𝑐𝐺

]. 605 

Again, we skip the case where the target is in case (3) during the second leg. This will be 606 

treated later. So, we have now to consider the other cases during the second leg. There are 607 

two possibilities for the ghost targets: those whose trajectories are defined by (i)   608 

𝑃𝑂𝐺(𝑡) = 𝛽𝑃𝑂𝑇(𝑡) and those whose trajectories are given by (ii) 𝑃𝑂𝐺 (𝑡) = 𝛽𝑺2𝑃𝑂𝑇(𝑡), both 609 

for 𝑡 ≥ 𝜏. 610 

The derivative of (i) is 𝑉𝐺 − 𝑉2 = 𝛽𝑉𝑇 − 𝛽𝑉2, hence 𝑉𝐺 = 𝛽𝑉𝑇 + (1 − 𝛽)𝑉2. 611 

⟺ [
0

𝑐𝐺 + 𝑣
] = 𝛽 [

0
𝑐𝑇 + 𝑣

] + (1 − 𝛽)𝑣 [
sin(𝛼)

cos(𝛼)
]. 612 

We deduce that 𝛽 = 1. There is no ghost. 613 

Now, differentiating (ii)  gives us 𝑉𝐺 − 𝑉2 = 𝛽𝑺2𝑉𝑇 − 𝛽𝑉2 , hence                      614 

𝑉𝐺 = 𝛽𝑺2𝑉𝑇 + (1 − 𝛽)𝑉2.  615 

⟺ [
0

𝑐𝐺 + 𝑣
] = 𝛽(𝑐𝑇 + 𝑣) [

sin(2𝛼)

cos(2𝛼)
] + (1 − 𝛽)𝑣 [

sin(𝛼)

cos(𝛼)
]. 616 

⟹ 𝛽(𝑐𝑇 + 𝑣) sin(2𝛼) + (1 − 𝛽)𝑣 sin(𝛼) = 0. 617 
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We deduce that 𝛽 = −𝑣
sin(𝛼)

𝑐𝑇 sin(2𝛼)+𝑣 sin(2𝛼)−𝑣 sin(𝛼)
. One ghost exists if            618 

𝑐𝑇 sin(2𝛼) + 𝑣 sin(2𝛼) − 𝑣 sin(𝛼) is a negative quantity. If so, we then compute 𝑐𝐺. There 619 

is one ghost at most. 620 

Case 3: the target has the same heading as the array (but is not endfire to it) 621 

As in case (2), 𝑉𝑂𝑇 = [
0
𝑐𝑇

], but here, the first component of 𝑃𝑂𝑇(𝑡) is not zero. Hence,   622 

𝑉𝑇 = [
0

𝑐𝑇 + 𝑣
], and the target cannot be endfire to the antenna during the second leg. In 623 

this case, 𝑉𝑂𝐺 = [
0

𝛽𝑐𝑇
], hence 𝑉𝐺 = [

0
𝛽𝑐𝑇 + 𝑣

]. 624 

Can the target be broadside to the antenna? The answer is positive if 𝑉2 ⊥ 𝑉𝑇 and 𝑉𝑂𝑇  is 625 

collinear to 𝑃𝑂𝑇(𝑡) , when 𝑡 ≥ 𝜏 . The first condition implies that 𝑉2 = [
±𝑣
0

] . Since   626 

𝑃𝑂𝑇(𝑡) = 𝑃𝑂𝑇(𝜏) + (𝑡 − 𝜏)(𝑉𝑇 − 𝑉2), the second condition is satisfied if 𝑃𝑂𝑇(𝜏) is collinear 627 

to 𝑉𝑇 − 𝑉2. This is not the case when the first component of 𝑃𝑂𝑇(𝜏) is zero, while the first 628 

component of 𝑉𝑇 − 𝑉2 is ±𝑣. 629 

So, we have now to consider the other cases during the second leg. There are two possi- 630 

bilities for the ghost targets: those whose trajectories are defined by (i) 𝑃𝑂𝐺(𝑡) = 𝛽𝑃𝑂𝑇(𝑡) 631 

and those whose trajectories are given by (ii) 𝑃𝑂𝐺(𝑡) = 𝛽𝑺2𝑃𝑂𝑇(𝑡), both for 𝑡 ≥ 𝜏. 632 

The derivative of (i) is 𝑉𝐺 − 𝑉2 = 𝛽𝑉𝑇 − 𝛽𝑉2 , hence 𝑉𝐺 = 𝛽𝑉𝑇 + (1 − 𝛽)𝑉2  or, in other 633 

words, 634 

[
0

𝛽𝑐𝑇 + 𝑣
] = [

0
𝛽(𝑐𝑇 + 𝑣)] + (1 − 𝛽)𝑣 [

sin(𝛼)

cos(𝛼)
] . We conclude that 𝛽 = 1 , i.e. there is no 635 

ghost. 636 

If 𝑃𝑂𝐺(𝑡) = 𝛽𝑺2𝑃𝑂𝑇(𝑡), then 𝑉𝐺 = 𝛽𝑺2𝑉𝑇 + (1 − 𝛽)𝑉2 637 

[
0

𝛽𝑐𝑇 + 𝑣
] = 𝛽(𝑐𝑇 + 𝑣) [

sin(2𝛼)

cos(2𝛼)
] + (1 − 𝛽)𝑣 [

sin(𝛼)

cos(𝛼)
]. 638 

This implies that 𝛼 = 0, which must be rejected by assumption. There is no ghost. 639 

The other cases: 640 

In the other cases, the motion of ghost targets is defined during the first leg by  641 

when 𝑡 ≤ 𝜏, 642 

{
𝑃𝑂𝐺(𝑡) = 𝛽1𝑃𝑂𝑇(𝑡)     

or 𝑃𝑂𝐺(𝑡) = 𝛾1𝑺1𝑃𝑂𝑇(𝑡)
 

(12-a) 

(12-b) 

and during the second leg by 643 

when 𝑡 ≥ 𝜏, 644 

{
𝑃𝑂𝐺(𝑡) = 𝛽2𝑃𝑂𝑇(𝑡)     

or 𝑃𝑂𝐺(𝑡) = 𝛾2𝑺2𝑃𝑂𝑇(𝑡)
 

(13-a) 

(13-b) 

Hence at time 𝜏, the position of a ghost target is  645 

𝑃𝑂𝐺(𝜏) = 𝛽1𝑃𝑂𝑇(𝜏) (14-a) 

or 𝑃𝑂𝐺 (𝜏) = 𝛾1𝑺1𝑃𝑂𝑇(𝜏) (14-b) 

and 𝑃𝑂𝐺(𝜏) = 𝛽2𝑃𝑂𝑇(𝜏) (15-a) 

or 𝑃𝑂𝐺 (𝜏) = 𝛾2𝑺2𝑃𝑂𝑇(𝜏) (15-b) 

Of course, (14-a) and (14-b) are not compatible, and neither are (15-a) and (15-b). 646 

Now, let us show that (14-a) is not compatible with (15-b):  647 

Indeed, if 𝑃𝑂𝐺(𝜏) = 𝛽1𝑃𝑂𝑇(𝜏) = 𝛾2𝑺2𝑃𝑂𝑇(𝜏), then 648 

𝛽1

𝛾2

𝑃𝑂𝑇(𝜏) = 𝑺2𝑃𝑂𝑇(𝜏) (16) 

Eq. (16) implies that 𝑃𝑂𝑇(𝜏) is an eigenvector of 𝑺2, with the eigenvalue 
𝛽1

𝛾2
. Since 

𝛽1

𝛾2
 is 649 

positive, this eigenvalue is equal to 1, i.e. 𝛾2 = 𝛽1. Hence 𝑃𝑂𝑇(𝜏) is in the second leg. 650 

Hence, the set of ghost targets is reduced to those whose positions at time 𝜏 are given by 651 

(14-a) or (14-b), and (15-a). Now suppose that a ghost target satisfies (14-b) and (15-a). By 652 
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the same computation, we conclude that 𝑃𝑂𝑇(𝜏) is in the first leg, which is impossible 653 

since 𝑃𝑂𝑇(𝜏) is in the second leg. 654 

We have proven that (14-a) and (15-a) only are compatible. It follows that a ghost target 655 

verifies these two equalities (given by (12-a) and (13-a)): 656 

𝑃𝑂𝐺(𝜏) = 𝛽1𝑃𝑂𝑇(𝜏) = 𝛽2𝑃𝑂𝑇(𝜏). 657 

Hence, 𝛽1 = 𝛽2. 658 

Now taking the derivative of the two members of (12-a) and of (13-a), we obtain 659 

𝑉𝐺 = 𝛽1(𝑉𝑇 − 𝑉1) + 𝑉1 = 𝛽1(𝑉𝑇 − 𝑉2) + 𝑉2, which is equivalent to  660 

(𝛽1 − 1)(𝑉2 − 𝑉1) = 0. 661 

Since 𝑉2 ≠ 𝑉1, 𝛽1 = 1. 662 

Putting this value in (12-a) or in (13-a), we finally get 𝑃𝐺(𝑡) = 𝑃𝑇(𝑡). The “ghost” is the 663 

target of interest. In conclusion, there is no ghost target. □ 664 
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