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This paper is devoted to the analysis of the motion of a target using information from two kinds of cooperative maritime sensors: A wireless network of sonobuoys detecting a signal emitted by a source in motion with constant velocity; Vertical antennas measuring the cosine of the elevation angles of the received signal. We prove that the trajectory of the source is observable, under non-restrictive assumptions concerning the scenario. After thresholding, the data are surrounded by false alarms; therefore, a probabilistic data association model is employed. The joint exploitation of the measurements of the time differences of arrival together with the measurements of the cosines of the elevation angles allow estimating the trajectory of the source. The empirical performance of the maximum likelihood estimator (MLE), evaluated by extensive simulations, reaches the asymptotic performance given by the Cramér-Rao lower bound. Finally, we extend our study to the case where the energy of the data is available, after thresholding. Again, the MLE is efficient and its performance is significantly improved.

I. INTRODUCTION

In this paper, we are concerned with passive threedimensional submarine target tracking. Passive target tracking consists of estimating the parameters that define the trajectory of the target, from sensors which do not emit any signal. Each sensor receives the signal emitted by the moving target. Passive target tracking is of significant importance in coastal waters or submarine surveillance systems [START_REF] Sittler | An optimal data association problem in surveillance theory[END_REF].

Passive target tracking may be performed by using one sensor, for example in [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], but a network of sensors may also be used. Generally, the sensors are spatially separated from each other. Then, different kinds of sensors may be used in the network. We will focus specifically on two of them: vertical linear arrays and sonobuoys [START_REF] Urick | Principles of Underwater Sound[END_REF]. Sonobuoys measure the time difference of arrival (TDOA) between the signal originated by the target and that originated by a reference sonobuoy [START_REF] Arnold | Target parameter estimation using measurements acquired with a small number of sensors[END_REF]. The measurements acquired by a vertical linear array are the cosines of the elevation angles of the target originated wave.

Each of these two kinds of sensors has its own advantages and disadvantages regarding the asymptotic performance of the estimation. The asymptotic performance is given by the Cramér-Rao lower bound (CRLB) [START_REF] Van Trees | Detection, Estimation, and Modulation Theory, Part I[END_REF]. Due to their rather similar depths, the sonobuoys are very unlikely to estimate the depth of the target with relatively low variance [START_REF] Lo | Broadband passive acoustic technique for target motion parameter estimation[END_REF], unless there is a large number of sonobuoys. But vertical linear arrays can estimate the target depth with low variance. In view of these considerations, it would be interesting to combine the measurements coming from both kinds of sensors, to obtain 'the best of both worlds', especially for the estimation of the three-dimensional position vector. By merging these different kinds of sensors, we obtain what we call a 'mixed sensor network'.

In a realistic situation, a detection step is applied to the raw data. One then has to deal with a cluttered environment due to background noise during the tracking. The tracking may then be carried out using the probabilistic data association (PDA) algorithm [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], [START_REF] Bar-Shalom | Tracking in a cluttered environment with probabilistic data association[END_REF], [START_REF] Bar-Shalom | Tracking and Data Association[END_REF], which takes into account the presence of false alarms (which compose the clutter), as well as a non-unity detection probability. It is then possible to estimate the parameters of interest when true detections are drowned in false alarms and do not surely appear at each sampling time. In our study, we will use the PDA with maximum likelihood estimation (ML-PDA) [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], [START_REF] Jauffret | Trajectographie passive, observabilité et prise en compte des fausses alarmes[END_REF], [START_REF] Ciuonzo | Tracking the tracker from its passive sonar ML-PDA estimates[END_REF]. ML-PDA is a batch technique using all available measurements at once. It has been shown that this technique allows the construction of statistically efficient estimators [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], [START_REF] Jauffret | Trajectographie passive, observabilité et prise en compte des fausses alarmes[END_REF]. Later, an extension to the ML-PDA technique using the amplitude information (AI) of each detection was created [START_REF] Kirubarajan | Passive ranging of a low observable ballistic missile in a gravitational field[END_REF], [START_REF] Kirubarajan | Low observable target motion analysis using amplitude information[END_REF]. It allows tracking in situations with very low signal-to-noise ratio (SNR).

With all these considerations, the computation of a maximum likelihood estimator to achieve the target tracking in a passive sensor network will be discussed. We place ourselves in a realistic context due to the statistical assumptions of the ML-PDA. We use both the PDA techniques mentioned above: ML-PDA and ML-PDA with AI. Our paper has 6 main sections. Section II formulates the problem as well as the notation to be used. In Section III, the observability is detailed. Section IV outlines the interest of the sensor fusion by determining the relevant asymptotic performances. Section V presents briefly the ML-PDA technique. Section VI presents some numerical results. Then follow the Conclusion, appendices, and reference list.

II. PROBLEM FORMULATION AND NOTATIONS

The mixed sensor network is composed of N S sonobuoys located on the surface of the sea and N A vertical linear arrays. At each sampling time k = 1 : K, each sonobuoy gets the TDOA of the target signal with respect to a chosen reference sonobuoy. This may be expressed as a range difference, by assuming a constant speed in the sea. Each linear array measures the cosine of the elevation angle: the angle between the direct path and the reflected path. We assume that the waves propagate in straight lines and are only reflected once [START_REF] Blanc-Benon | TMA from bearings and multipath time delays[END_REF], [START_REF] Gong | Multipath target motion analysis: Properties and implication of the multipath process[END_REF]. The reflected path corresponds to the reflection from the seabed. The positions of the sensors in the network are uniformly distributed over a square. However, each position is exactly known and the sensors are motionless during the whole acquisition time.

The target is supposed to travel at a constant velocity (CV) and at a constant depth. Consequently, the state vector defining the target trajectory is given by

X T = (x; y; z; ẋ; ẏ) (1) 
where (x; y; z) is the initial position (given in meters) in a 3dimensional Cartesian space and ( ẋ; ẏ) is the velocity of the target (given in meters per second) in the horizontal plane. So, we may define the target position at each sampling time k = 1 : K with respect to X:

  x k y k z k   =   1 0 0 k∆t 0 0 1 0 0 k∆t 0 0 1 0 0   X (2)
with ∆t being the sampling period. Note that z k = z. Now we can specify the measurements acquired by each sensor. Each sonobuoy is located at the coordinates (x S i ; y S i ; z S i ), where z S i = 0. r i,k is the range between the target and the sonobuoy i at sampling time k:

r i,k = x k -x S i 2 + y k -y S i 2 + z 2 (3) 
Then we get

∆r i,k = r i,k -r i0,k + ε i,k (4) 
∆r i,k is the measurement coming from the sonobuoy i at sampling time k. i 0 denotes the reference sonobuoy 1 , and ε S i,k is a zero-mean additive white Gaussian noise of standard deviation σ ∆ . The measurements collected by the vertical arrays are the following:

c D n,k = cos φ D n,k + ε D n,k = z -z A n (x k -x A n ) 2 + (y k -y A n ) 2 + (z -z A n ) 2 + ε D n,k (5) 
c B n,k = cos φ B n,k + ε B n,k = 2z B -(z A n +z) (x k -x A n ) 2 +(y k -y A n ) 2 +(z+z A n -2z B ) 2 +ε B n,k (6) 
Equation ( 5) defines the measurement coming from the direct path, whereas [START_REF] Lo | Broadband passive acoustic technique for target motion parameter estimation[END_REF] refers to the reflected one. Both are relative to antenna n at sampling time k. Each antenna is located at the coordinates (x A n ; y A n ; z A n ), z A n being the acoustic 1 We arbitrarily choose the nearest sonobuoy from the center of the network as the reference. are zero-mean additive white Gaussian noises of standard deviation σ A . Figure 1 illustrates the elevation angles of the target. Note that the propagation delay is neglected in this study (this assumption was made in [START_REF] Arnold | Target parameter estimation using measurements acquired with a small number of sensors[END_REF], [START_REF] Lo | Broadband passive acoustic technique for target motion parameter estimation[END_REF]).

In the rest of the paper, we will consider a network composed of N S = 3 sonobuoys and N A = 2 vertical linear arrays. The locations of the sensors are uniformly distributed in a square with sides of length 20 km. The number of sampling times is K = 100 and the sampling period is ∆t = 4 s. We will consider two cases of the target velocity: a slow target linked to the true state X L and a fast target linked to X H . The true states are the following:

X T L = (-5000; 3000; -300; 4; 3)

X T H = (-5000; 3000; -300; 25; 12)

The standard deviation of the measurements coming from the sonobuoys is σ ∆ = 30 meters, corresponding to a trade-off between pessimistic [START_REF] Arnold | Target parameter estimation using measurements acquired with a small number of sensors[END_REF] and optimistic [START_REF] Moose | Adaptive underwater target tracking using passive multipath time-delay measurements[END_REF] cases. The standard deviation of the measurements collected by the antennas is σ A = 0.017 (implying a standard deviation of the angle greater than 1 degree 2 ) The acoustic center of the linear arrays z A n is supposed to be 50 m deep. The depth of the seabed z B is assumed to be -2000 m.

Fig. 2 depicts an example of the sensor network as well as the target track, for the fast target defined above. 2 For a measurement m = cos(α) + εm, the corresponding standard

deviation of α is approximatively σ(α) = σ(m) | sin(α)| .

III. ANALYSIS OF OBSERVABILITY

The following analysis will be conducted step-by-step. First, we suppose there are only two vertical antennas. For the sake of simplicity, the two antennas are located at 0; y A ; z A T and 0; -y A ; z A T . For convenience, we define A 1 = (0; y A ) and A 2 = (0; -y A ). The noise-free measurements collected by them, i.e. cos Φ D

1,k , cos Φ D 2,k and cos Φ B 1,k , cos Φ B 2,k
, correspond to the state vector X T = (x, y, z, ẋ, ẏ), and the one defining the trajectory of a ghost target, say X T G = (-x, y, z, -ẋ, ẏ). The trajectory is then observable up to the axial symmetry around the axis (0; y). Now, we add two sonobuoys allowing us to measure the time differences of arrival (TDOA). We define S 1 = (x S 1 ; y S 1 ) and S 2 = (x S 2 ; y S 2 ). The question is: do these new measurements eliminate the ghost? To answer this question, we adopt the approach proposed in [START_REF] Pérez | Observability in target motion analysis from the sum or the difference of ranges with two stationary sensors[END_REF], i.e. the measurements are taken in continuous time:

r 1 (t) = x(t) -x S 1 2 + y(t) -y S 1 2 + z 2 (9) r 2 (t) = x(t) -x S 2 2 + y(t) -y S 2 2 + z 2 (10) r G,1 (t) = x(t) + x S 1 2 + y(t) -y S 1 2 + z 2 (11) r G,2 (t) = x(t) + x S 2 2 + y(t) -y S 2 2 + z 2 (12) 
Suppose that r

1 (t) -r 2 (t) = r G,1 (t) -r G,2 (t). Then [r 1 (t) -r 2 (t)] 2 = [r G,1 (t) -r G,2 (t)] 2 ⇔ r 2 1 (t) + r 2 2 (t) -2r 1 (t)r 2 (t) = r 2 G,1 (t) + r 2 G,2 (t) -2r G,1 (t)r G,2 (t) (13) 
⇔ 2 x S 1 + x S 2 x(t) = r G,1 (t)r G,2 (t) -r 1 (t)r 2 (t) (14) 
We deduce from [START_REF] Gong | Multipath target motion analysis: Properties and implication of the multipath process[END_REF] two remarks:

• The difference r G,1 (t)r G,2 (t)-r 1 (t)r 2 (t) is a polynomial function. • Clearly, r 1 (t)r 2 (t) is a polynomial function iff r G,1 (t)r G,2 ( 
t) is a polynomial function. Our analysis is based on this remark. We examine if the existence of a ghost target is compatible with the different assumptions discussed in the following. Discussion:

A. x S 1 + x S 2 = 0 Multiplying the terms of (14) by r G,1 (t)r G,2 (t)+r 1 (t)r 2 (t) we get [r G,1 (t)r G,2 (t) + r 1 (t)r 2 (t)] x(t) = [r G,1 (t)r G,2 (t)] 2 -[r 1 (t)r 2 (t)] 2 2 x S 1 + x S 2 (15) Hence, [r G,1 (t)r G,2 (t) + r 1 (t)r 2 (t)] x(t) is a polynomial.
1) ẋ = 0, x = 0, i.e. x(t) = x = 0: From ( 14), we have that r G,1 (t)r G,2 (t) -r 1 (t)r 2 (t) is a polynomial, and r G,1 (t)r G,2 (t) + r 1 (t)r 2 (t) as well by [START_REF] Moose | Adaptive underwater target tracking using passive multipath time-delay measurements[END_REF]. This implies that r 1 (t)r 2 (t) and r G,1 (t)r G,2 (t) are two polynomials of degree 2. We define now three other polynomials (of degree 2):

P (t) r 2 1 (t) Q(t) r 2 2 (t) R(t) r 1 (t)r 2 (t) (16) 
We have R 2 = P Q, which is equivalent to R 2 P Q = 1. Hence P and Q divide R. Since the degree of these three polynomials is equal to 2, there is a non-zero number, say α, such that

P = αR and Q = 1 α R. We deduce that P = α 2 Q. The coefficient of t 2 is equal to ẏ2 in P and in Q. Hence α 2 = 1. Consequently, P = Q. Now the equality P -Q = 0 is equivalent to 2y -y S 1 -y S 2 + 2t ẏ y S 1 -y S 2 + 2x -x S 1 -x S 2 + 2t ẋ x S 1 -x S 2 = 0 ⇔      y S 1 = y S 2 and x S 1 = x S 2 or x = x S 1 +x S 2 2 (17) 
The case where x S 1 = x S 2 and y S 1 = y S 2 must be discarded since the sonobuoys are not in the same place. Hence, we retain y S 1 = y S 2 and

x = x S 1 + x S 2 2 (18) 
Now, if we define three new polynomials

P G (t) r 2 G,1 (t) Q G (t) r 2 G,2 (t) R G (t) r G,1 (t)r G,2 (t) (19) 
and if we carry out similar computations, we obtain

x = - x S 1 + x S 2 2 (20) 
Equalities ( 18) and ( 20) are incompatible. We conclude that when x S 1 + x S 2 = 0, the trajectory of the source is observable.

2) ẋ = 0, i.e. x(t) = x + t ẋ: First, from (14), we deduce that r G,1 (t)r G,2 (t)-r 1 (t)r 2 (t) is a polynomial. Let us rewrite x(t) as x(t) = (t -t * ) ẋ, with t * = -x ẋ (15) ⇔ 2(t -t * ) x S 1 + x S 2 [r G,1 (t)r G,2 (t) + r 1 (t)r 2 (t)] ẋ = [r G,1 (t)r G,2 (t)] 2 -[r 1 (t)r 2 (t)] 2 (21) 
The time t * is hence a zero of the polynomial

[r G,1 (t)r G,2 (t)] 2 -[r 1 (t)r 2 (t)] 2 .
It can be written as

[r G,1 (t)r G,2 (t)] 2 -[r 1 (t)r 2 (t)] 2 = (t -t * )S(t), where S(t) is a polynomial. Equality (21) gives us r G,1 (t)r G,2 (t) + r 1 (t)r 2 (t) = 1 2 ẋ x S 1 + x S 2 S(t) (22) 
We deduce from ( 22) that r G,1 (t)r G,2 (t) + r 1 (t)r 2 (t) is again a polynomial. Hence r G,1 (t)r G,2 (t) and r 1 (t)r 2 (t) are both polynomials.

The same reasoning as in 1) yields again the equalities P = Q, which is equivalent to

(x-x S 1 ) 2 +(y-y S 1 ) 2 +z 2 = (x-x S 2 ) 2 +(y-y S 2 ) 2 +z 2 2(x-x S 1 ) ẋ+2(y-y S 1 ) ẏ = 2(x-x S 2 ) ẋ+2(y-y S 2 ) ẏ ⇔ (2x-x S 1 -x S 2 )(x S 1 -x S 2 )+(2y-y S 1 -y S 2 )(y S 1 -y S 2 ) = 0 (x S 1 -x S 2 ) ẋ + (y S 1 -y S 2 ) ẏ = 0 (23) 
We also get

P G = Q G , which is equivalent to (-2x-x S 1 -x S 2 )(x S 1 -x S 2 ) + (2y-y S 1 -y S 2 )(y S 1 -y S 2 ) = 0 -(x S 1 -x S 2 ) ẋ + (y S 1 -y S 2 ) ẏ = 0 (24) 
Equations ( 23) and ( 24) can be rewritten as the following system

    2(x S 1 -x S 2 ) 2(y S 1 -y S 2 ) 0 0 -2(x S 1 -x S 2 ) 2(y S 1 -y S 2 ) 0 0 0 0 (x S 1 -x S 2 ) (y S 1 -y S 2 ) 0 0 -(x S 1 -x S 2 ) (y S 1 -y S 2 )         x y ẋ ẏ    =     (x S 1 ) 2 -(x S 2 ) 2 + (y S 1 ) 2 -(y S 2 ) 2 (x S 1 ) 2 -(x S 2 ) 2 + (y S 1 ) 2 -(y S 2 ) 2 0 0     (25)
Because the target is moving (since ẋ = 0), the determinant of the above matrix, which is 16

(x S 1 -x S 2 )(y S 1 -y S 2 )
2 , must be zero (otherwise ẋ = ẏ = 0). We have hence to consider two possibilities: either x S 1 = x S 2 or y S 1 = y S 2 (we cannot have simultaneously the two equalities, since the sonobuoys are not collocated). If

x S 1 = x S 2 , then y = y S 1 +y S 2 2
and ẏ = 0. In this case, the trajectory of the target is not observable since the two vectors X T = x,

y S 1 +y S 2 2
, z, ẋ, 0 and X T G = -x,

y S 1 +y S 2 2
, z, -ẋ, 0 give the same measurements.

If

y S 1 = y S 2 , then x = x S 1 +x 2 S 2
and ẋ = 0. This must be discarded.

B. x S 1 + x S 2 = 0 1) x S 1 = x S 2 = 0: The measurements are r 1 (t) = x 2 (t) + y(t) -y S 1 2 + z 2 = r G,1 (t) (26) r 2 (t) = x 2 (t) + y(t) -y S 2 2 + z 2 = r G,2 (t) (27) 
The two state vectors X and X G give the same measurements. The trajectory of the target is unobservable.

2) x S 1 = -x S 2 = 0: The measurements are

r 1 (t) = x(t) -x S 1 2 + y(t) -y S 1 2 + z 2 (28) r 2 (t) = x(t) + x S 1 2 + y(t) -y S 2 2 + z 2 (29) r G,1 (t) = x(t) + x S 1 2 + y(t) -y S 1 2 + z 2 (30) r G,2 (t) = x(t) -x S 1 2 + y(t) -y S 2 2 + z 2 (31) 
And, from ( 14), we have r G,

1 (t)r G,2 (t) -r 1 (t)r 2 (t) = 0, i.e. r1(t)r2(t) r G,1 (t) = r G,2 (t), which implies that r1(t)r2(t) r G,1 (t) 2 = r 2 G,2 (t), i.e. P Q P G = Q G (
with the definitions ( 16) and ( 19)). Note that the two polynomials

P (t) = x(t) -x S 1 2 + y(t) -y S 1 2 +z 2 and P G (t) = x(t) + x S 1 2 + y(t) -y S 1 2 +
z 2 are coprime. Hence, thanks to the Gauss Lemma, P G divides Q. Because they have the same degree, there is a real non-zero number, say β, such that P G = βQ. Consequently, P = βQ G . The coefficients of t 2 in P G and βQ being equal, we deduce that

β = 1. Consequently, r 1 (t) = r G,2 (t) and r 2 (t) = r G,1 (t), which implies that r 1 (t) -r 2 (t) = -[r G,1 (t) -r G,2 (t)].
Hence, the two state vectors X and X G do not give the same measurements. The trajectory of the target is observable. Now, we can summarize this discussion by the following theorem Theorem 1:

• If the line (S 1 , S 2 )
is not in the vertical plane containing A 1 and A 2 , then the trajectory of any target travelling in this axis is observable. Otherwise, the trajectory of any target travelling out of this axis is observable up to the axial symmetry around this line. • If the lines (A 1 , A 2 ) and (S 1 , S 2 ) are parallel, but not contained in the same vertical plane, then the trajectory of any target travelling in the perpendicular bisector of [S 1 , S 2 ] is observable up to the axial symmetry around the line (A 1 , A 2 ). • In any other cases, the trajectory of the target is observable. Consequence: If we have three sonobuoys forming a triangle, the trajectory of any target is observable.

IV. ASYMPTOTIC PERFORMANCE

In this section, we present the main concern about the fusion of the sensors in the sense of the asymptotic performance. The asymptotic performances are known from the Cramér-Rao Lower Bound (CRLB), or, similarly, from the Fisher Information Matrix (FIM). We recall the link between the CRLB for unbiased estimators and the FIM:

B = F -1 ( 32 
)
where F is the FIM and B is the CRLB for unbiased estimators. First, we show the expressions for the FIM in a clean environment for each kind of sensor: 

F ∆ = N S i=1 i =i0 K k=1 1 σ 2 ∆ [∇ X r i,k -∇ X r i0,k ] [∇ X r i,k -∇ X r i0,k ] T (33) 
F A = N A j=1 K k=1 1 σ 2 A ∇ X cos φ D j,k ∇ T X cos φ D j,k +∇ X cos φ B j,k ∇ T X cos φ B j,k (34) 
F ∆ and F A are then the FIMs for the sonobuoys and linear arrays, respectively. The FIM F after the fusion of the sensors is then

F = F ∆ + F A (35) 
To illustrate the benefit of fusing the sensors, the following procedure is applied. For the slow target and the numerical values defined in Section II, 5000 random mixed sensors networks are created. Indeed, we recall that the positions of the sensors are uniformly distributed in a square with sides of length 20 km. For each network, F ∆ , F A and F are computed. Then, the empirical mean value of the diagonal elements of each FIM is extracted to allow the comparison. The result is shown in Table I.

It is noticeable that the amount of information coming from the sonobuoys on the depth of the target is very poor. But the other components would be estimated accurately. On the other hand, the linear arrays do not bring much information about the position in the plane nor on the velocity of the target, compared to the sonobuoys. But, the amount of information on the depth is rather important. Then, the mixed sensor network benefits from the best of both kinds of sensors, and thus allows an accurate estimation of the whole state vector.

Let us note that in some cases where the linear arrays are too distant, the gain of information on the depth of the target may be negligible.

V. THE PROBABILISTIC DATA ASSOCIATION MODEL

A. Statistical Assumptions of the Probabilistic Data Association Model 1) General Case: The consideration of a cluttered environment is justified by the technological roughness of the sonobuoys. These sensors cannot embed a sophisticated and complex signal processing chain. Thus, these sensors alone cannot extract the target-originated measurements.

The classic scenario is the following: a sensor gets at time k a collection s k = (s 1,k , • • • s m k ,k ) T of measurements. Some statistical assumptions are necessary to formulate an ML-PDA model. Following [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], [START_REF] Bar-Shalom | Tracking and Data Association[END_REF], these are:

• The vectors s k are independent conditionally on X for k = 1 : K. • The detections due to the target are corrupted by a zeromean additive white Gaussian noise. The power of the noise is σ 2 (a subscript, A or ∆, will be added when applied to the mixed sensor network). These detections are called 'true detections'. • The clutter is composed of the false alarms and is distributed according to an uniform law over a scan space u.

• The number of false alarms at a specific sample k follows a Poisson law µ f a of parameter λu (the expected number of false alarms). • True detections appear at most once at each sampling time, with a detection probability P d . It is then possible to express the likelihood of X given s k , due to the total probability theorem:

L(X|s) = K k=1 1 -P d u m k µ f a (m k ) + P d u m k -1 µ f a (m k -1) m k × m k i=1 1 √ 2πσ exp - 1 2 s i,k -h k (X) σ 2 (36) 
with h k the state model at time k.

2) Extension to the Use of Amplitude Information: The ML-PDA model using AI was introduced in [START_REF] Kirubarajan | Passive ranging of a low observable ballistic missile in a gravitational field[END_REF], [START_REF] Kirubarajan | Low observable target motion analysis using amplitude information[END_REF]. All the previously stated assumptions still hold. The amplitude associated with each detection is then considered. In a similar manner to the previous part and with the same notation, we may express the likelihood of X given s k :

L(X|s, R) = K k=1 1 -P d u m k µ f a (m k ) m k i=1 p τ 0 (R i,k ) + P d u m k -1 µ f a (m k -1) m k m k i=1 p τ 0 (R i,k ) × m k i=1 1 √ 2πσ ρ i,k exp - 1 2 
s i,k -h k (X) σ 2 (37) 
with R i,k the amplitude associated with the detection, τ the detection threshold, and

p τ 0 (R i,k ) = 1 P f a p 0 (R i,k ) (38) 
p τ 1 (R i,k ) = 1 P d p 1 (R i,k ) (39) 
ρ i,k = p τ 1 (R i,k ) p τ 0 (R i,k ) (40) 
where p 0 and p 1 are the probability density functions (pdf) associated to the amplitudes under both hypotheses (there is only noise or there is signal and noise, respectively) and P f a is the probability of a false alarm.

B. Application to the Mixed Sensor Network

The general likelihoods under both architectures have been presented. According to the literature [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], [START_REF] Bar-Shalom | Tracking and Data Association[END_REF], [START_REF] Kirubarajan | Passive ranging of a low observable ballistic missile in a gravitational field[END_REF], [START_REF] Kirubarajan | Low observable target motion analysis using amplitude information[END_REF], the log-likelihood function is chosen as the criterion to be maximized (up to a constant term). The noise is supposed to be independent through the samples and between sensors. The criteria will now be presented by applying the ML-PDA model to our study with the notation described in Section II:

• When the amplitude information is not available, we define the quantities

C 1 (X|∆r i,k ) = log 1 -P d∆ + P d∆ λ ∆ × m i,k j=1 1 √ 2πσ ∆ exp - 1 2 ∆r i,j,k -r i,k +r i0,k σ ∆ 2    (41) C 2 (X|c D l,k ) = log 1 -P dA + P dA λ A × m l,k j=1 1 √ 2πσ A exp   - 1 2   c D l,j,k -cos φ D l,k σ A   2         (42) C 3 (X|c B n,k ) = log 1 -P dA + P dA λ A × m n,k j=1 1 √ 2πσ A exp   - 1 2   c B n,j,k -cos φ B n,k σ A   2         (43) 
where σ 2 is the power of the noise, λ is the expected number of false alarms per unit area, and P d is the detection probability. The subscript ∆ indicates the sonobuoys, and the subscript A indicates the linear arrays.

The criterion to optimize is then

C(X) = N S i=1 i =i0 K k=1 C 1 (X|∆r i,k ) + N A l=1 K k=1 C 2 (X|c D l,k ) + N A n=1 K k=1 C 3 (X|c B n,k ) (44) 
• Similarily, when the amplitude information is available, we define 

C 1 (X|∆r i,k , R i,k ) = log 1 -P d∆ + P d∆ λ ∆ × m i,k j=1 ρ i,j,k √ 2πσ ∆ exp - 1 2 ∆r i,j,k -r i,k +r i0,k σ ∆ 2    (45) C 2 (X|c D l,k , R D l,k ) = log 1 -P dA + P dA λ A × m l,k j=1 ρ l,j,k √ 2πσ A exp   - 1 2   c D l,j,k -cos φ D l,k σ A   2         (46) C 3 (X|c B n,k , R B n,k ) = log 1 -P dA + P dA λ A × m n,k j=1 ρ n,j,k √ 2πσ A exp   - 1 2   c B n,j,k -cos φ B n,k σ A   2         (47) 
The criterion to optimize is then

C(X) = N S i=1 i =i0 K k=1 C 1 (X|∆r i,k , R i,k ) + N A l=1 K k=1 C 2 (X|c D l,k , R D l,k ) + N A n=1 K k=1 C 3 (X|c B n,k , R B n,k ) (48) 
Fig. 3 presents an example of the measurements obtained from each sensor.

Remark: Following [START_REF] Lo | Broadband passive acoustic technique for target motion parameter estimation[END_REF], we neglect the correlation between the TDOA measurements.

C. Numerical Computation and Optimization

All the methods explained hereafter are applied whatever the architecture (ML-PDA or ML-PDA with AI) is.

The maximization of the criterion is carried out by using a quasi-Newton (variable metric) method, as given in [START_REF] Kirubarajan | Low observable target motion analysis using amplitude information[END_REF]. The aim is to compute an approximation of the inverse of the Hessian matrix. The update is done with the Davidon-Fletcher-Powell [START_REF] Lenard | Practical convergence conditions for the Davidon-Fletcher-Powell method[END_REF]- [START_REF] Davidon | Variable metric method for minimization[END_REF] method. The matrix is updated after each iteration of the algorithm. This guarantees that the matrix is symmetric and positive definite. The state is then updated employing the classical Newton-Raphson method:

Xi = Xi-1 -p i H -1 i ∇C( Xi ) (49) 
where

H -1 i
is the approximation of the inverse of the Hessian matrix at step i and p i is the optimal step-size scaling. Note that H -1 i i converges to the inverse of the Hessian matrix. The log-likelihood function being a highly non-convex and multi-modal function [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], [START_REF] Kirubarajan | Low observable target motion analysis using amplitude information[END_REF], several techniques are used to perform the maximization of the criterion. Indeed, due to the multi-modality aspect, the algorithm could converge to a local maximum. To avoid this, a multi-pass approach was performed in [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF] and will be now described.

This technique achieves the maximization in M steps instead of one. The algorithm is first initialized by a rough grid search method over the state space. At step m, instead of maximizing C(X), the maximization is applied to C (m) (X), which is equal to C(X) defined either by ( 44) or (48) where the standard deviations are multiplied by a m (see [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], Section III). The numerical series a m is decreasing such that a 1 = M , a 2 = M -1, ..., a M = 1. The resulting state after maximization at step m is used as the initialization at step m + 1. This method allows the algorithm to have a better 'sight' of the true detections, and ensures convergence towards the global maximum.

Moreover, to avoid convergence to an unrealistic state, a constraint (penalty function) φ(X) is added to C (m) (X) [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF]. This penalty function is about the velocity of the target and is defined as follows:

φ(X) = - 1 2 v(X) - v σ v 2 (50) where v(X) = X(4) 2 + X(5) 2 (51) 
v is a typical value of the target velocity and σ v is the standard deviation around v. At step m = M , the penalty function is relaxed.

D. The Fisher Information Matrix

An expression for the FIM in a clean environment is given in (35). In the presence of clutter, the computation of the FIM will use the statistical assumptions of the ML-PDA model. First, the measurement space is restricted to a gate around the true measurements [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], [START_REF] Bar-Shalom | Tracking and Data Association[END_REF]. The size of the gate 3 is denoted by v g : 3 For a one-dimensional measurement.

v g = 2gσ (52) 
The restriction to a gate around the true measurements allows the inclusion of only the most informative measurements. Indeed, with g = 5, more than 99% of a Gaussian population is within 5 standard deviations of the mean. The measurements located outside the gate contain no additional information about the state vector. By using these assumptions as well as the likelihood computed only with the measurements inside the gate, it is possible to find an expression for the FIM in the presence of clutter. Then, the latter appears to be the FIM in a clean environment multiplied by a scalar factor: the information reduction factor. This factor, called q 2 in the literature on the ML-PDA architecture and q 3 in the ML-PDA with AI architecture, lies between 0 and 1 and represents the loss of information due to the presence of clutter and the non-unity detection probability [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], [START_REF] Bar-Shalom | Tracking and Data Association[END_REF]. The information reduction factor only depends on P d and λv g , the expected number of false alarms in the gate of size v g . It is then clear that the loss of information will increase the CRLB. Here are expressions for q 2 and q 3 :

q 2 (λv g , P d ) = ∞ m=1 2P d √ 2πg m-1 µ f a (m -1) × g 0 • • • g 0 exp(-ξ 2 1 )ξ 2 1 (1-P d ) √ 2πλvg 2gP d + m i=1 exp -1 2 ξ 2 i dξ 1 • • •dξ m (53) 
q 3 (λv g , P d ) = ∞ m=1 2P d √ 2πg m-1 µ f a (m -1) × g 0 • • • g 0 ∞ τ • • • ∞ τ m j=1 p τ 0 (R j )ρ 2 1 exp -ξ 2 1 ξ 2 1 (1-P d ) √ 2πλvg 2gP d + m j=1 ρ j exp -1 2 ξ 2 j × dR 1 • • •dR m dξ 1 • • •dξ m (54) 
The derivation of q 2 is detailed in [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF] and in [START_REF] Jauffret | Trajectographie passive, observabilité et prise en compte des fausses alarmes[END_REF], where it is generalized to a multi-dimensional measurement. The derivation of the q 3 is given in Appendix A, based on [START_REF] Kirubarajan | Passive ranging of a low observable ballistic missile in a gravitational field[END_REF], [START_REF] Kirubarajan | Low observable target motion analysis using amplitude information[END_REF].

Then, it is possible to express the FIM in the presence of clutter in both architectures:

F 1 = q 2 (λ ∆ 2gσ ∆ , P d∆ )F ∆ + q 2 (λ A 2gσ A , P dA )F A (55) F 2 = q 3 (λ ∆ 2gσ ∆ , P d∆ )F ∆ + q 3 (λ A 2gσ A , P dA )F A (56)
where F 1 and F 2 are the FIM in ML-PDA and ML-PDA with AI architectures respectively.

These factors are computed numerically by using Monte Carlo runs [START_REF] Robert | L'analyse statistique bayésienne[END_REF].

E. Test for Track Acceptance

Once the algorithm returns an estimate, it is necessary to decide if the estimated track is correct or not. Indeed, whether there is a target or not, the algorithm computes an estimate. If there is no correct detection, the estimate must be rejected as well as when the algorithm converges towards a local maximum. So we have to choose between two hypotheses:

• H 0 : There is a track and X is the global maximum of the likelihood function. • H 1 : There is no track, or X is a local maximum. The natural reflex would be to use the so-called generalized likelihood ratio (GLR) to construct a test between these two hypotheses. This needs the statistical distributions of the GLR (or a monotonic function of it) under each hypothesis. Determining these distributions is a tough task (from [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], Section IV, "the statistical distribution of [the GLR] is not available"). Following [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], we propose the palliative described below to circumvent this. We give the details for the case where the amplitude information is not available. We consider the following statistic 4 :

T 0,1 ( X) = T 1 + T 2 + T 3 √ V 1 + V 2 + V 3 (57) 
with

T 1 = N S i=1 i =i0 K k=1 C 1 X|∆r * i,k -E C 1 X|∆r * i,k |H 0 (58) 
T 2 = N A l=1 K k=1 C 2 X|c D, * l,k -E C 2 X|c D, * l,k |H 0 (59) 
T 3 = N A n=1 K k=1 C 3 X|c B, * l,k -E C 3 X|c B, * l,k |H 0 (60) V 1 = N S i=1 i =i0 K k=1 Var C 1 X|∆r * i,k |H 0 (61) V 2 = N A l=1 K k=1 Var C 2 X|c D, * l,k |H 0 (62) V 3 = N A l=1 K k=1 Var C 3 X|c B, * l,k |H 0 ( 63 
)
Since X is supposed to be the global maximum, we get the following approximations.

E C 1 X|∆r * i,k |H 0 E C 1 X|∆r * i,k |H 0 = µ 0,1 (64) E C 2 X|c D, * l,k |H 0 E C 2 X|c D, * l,k |H 0 = µ 0,2 (65) 
E C 3 X|c B, * l,k |H 0 E C 3 X|c B, * l,k |H 0 = µ 0,3 (66) 
4 * is for the measurements inside the gate.

Var C 1 X|∆r * i,k |H 0 Var C 1 X|∆r * i,k |H 0 = σ 2 0,1 (67) Var C 2 X|c D, * l,k |H 0 Var C 2 X|c D, * l,k |H 0 = σ 2 0,2 (68) Var C 3 X|c B, * l,k |H 0 Var C 3 X|c B, * l,k |H 0 = σ 2 0,3 (69) 
The statistic (57) can be rewritten as

T 0,1 ( X) = C( X) -(N S -1)Kµ 0,1 -N A K(µ 0,2 + µ 0,3 ) (N S -1)Kσ 2 0,1 + N A K(σ 2 0,2 + σ 2 0,3 ) (70 
) It has been shown empirically that T 0,1 follows the standard Gaussian distribution by using the Central Limit Theorem [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF]. With all these considerations, the test is the following: if T 0,1 > c α H 0 , is accepted. Otherwise, H 0 is rejected. c α is then the threshold with a level of significance α.

When the amplitude information is available, only the values of µ 0,i and σ 0,i will change. The expressions for µ 0,i and σ 0,i are detailed in [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], [START_REF] Jauffret | Trajectographie passive, observabilité et prise en compte des fausses alarmes[END_REF] for the ML-PDA architecture and in Appendix B for the ML-PDA with AI architecture. low. The detection threshold is placed such that P f a = 0.02 and P d = 0.6. The value of K is still 100. For this configuration, 100 Monte Carlo runs are performed. The result of these runs is shown in Tables IV andV. The 95% confidence interval of the NEES for 100 simulations is [4.37; 5.63]. The mean value of the NEES is in the confidence interval and near the theoretical value of 5. Hence, the estimator is efficient.

VII. CONCLUSION

In this paper, we treated the problem of estimating the trajectory of a source in CV motion when the available measurements are a set of TDOA provided by a sonobuoy network, and the cosines of elevation angles acquired by vertical antennas. To begin with, the observability was studied before proposing an estimate. Then, we chose a convenient model for noisy measurements. Due to the simplicity of the system embarked in a sonobuoy (which performs very basic signal processing functions such as thresholding the signal energy), the data were assumed to be composed of correct detections and false alarms. Consequently, we employed the PDA model, well adapted to this situation. The proposed estimator (the MLE) was found to be efficient (the empirical covariance matrix reaches the CRLB) even with only three sonobuoys and two vertical linear arrays. Coupling their energy to these thresholded data improve the accuracy of the MLE, which remains efficient in this case. Nevertheless, two points were neglected: the propagation delay of the waves carrying the signal, and the correlation between the TDOA measurements. Future research will be focused on these two points.

APPENDIX A DERIVATION OF THE INFORMATION REDUCTION FACTOR q 3

We derive q 3 according to the principles detailed in [START_REF] Jauffret | Track formation with bearing and frequency measurements in clutter[END_REF], [START_REF] Jauffret | Trajectographie passive, observabilité et prise en compte des fausses alarmes[END_REF], [START_REF] Kirubarajan | Passive ranging of a low observable ballistic missile in a gravitational field[END_REF], [START_REF] Kirubarajan | Low observable target motion analysis using amplitude information[END_REF]. We first express the likelihood at time k by considering only the measurements inside the gate of size v g . We use the same notation as in Section III.

L(X|s) = 1 -P d u m µ f a (m) m i=1 p τ 0 (R i ) + P d u m-1 µ f a (m -1) m m i=1 p τ 0 (R i ) × m i=1 1 √ 2πσ ρ i exp - 1 2 s i -h(X) σ 2 (71) 
After factorization we get

L(X|s) = µ f a (m) v m g m i=1 p τ 0 (R i ) 1 -P d + P d λ × m i=1 1 √ 2πσ ρ i exp - 1 2 s i -h(X) σ 2 (72) 
We define

Φ(X|s) = 1 -P d + P d λ m i=1 ρ i √ 2πσ exp - 1 2 s i -h(X) σ 2 ( 
73) Then, the information reduction factor q 3 is

q 3 = ∞ m=1 1 2πσ 2 P d λ 2 µ f a (m) v m g × g -g • • • g -g ∞ τ • • • ∞ τ m i=1 p τ 0 (R i ) Φ(X|s) × m i=1 m j=1 ρ i ρ j exp - 1 2 s i -h(X) σ 2 - 1 2 s j -h(X) σ 2 s i -h(X) σ s j -h(X) σ × dR 1 • • • dR m ds 1 • • • ds m ( 74 
)
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 3 Fig. 3. Measurements obtained for each sensor in one run. P d = 0.6, λu = 8.
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TABLE II RESULTS

 II OF 200 MONTE CARLO RUNS WITH ML-PDA ARCHITECTURE FOR THE SLOW TARGET (X = X L )

	(P d ; λu)	(0.8; 2) (0.6; 8)
	x		-5004	-5005.5
	ȳ		2998.9	2995.6
	z	-298.09	-298.55
	x		4.036	4.013
	ȳ		3.015	3.010
	NEES		5.39	5.37
	Acceptance rate	94.5%	84%
		TABLE III	
	RESULTS OF 200 MONTE CARLO RUNS WITH ML-PDA ARCHITECTURE
	FOR THE FAST TARGET (X = X H )
	(P d ; λu)	(0.9; 2) (0.8; 6) (0.6; 8)
	x	-5001.7	-5004.4	-4918.9
	ȳ	2999.1	2999.3	3013.8
	z	-299.77	-300.69	-298.03
	x	24.993	25.011	24.936
	ȳ	11.999	12.002	11.958
	NEES	5.18		5.13	5.36
	Acceptance rate	96.5%	94%	93%

TABLE IV RESULTS

 IV OF 100 MONTE CARLO RUNS WITH ML-PDA WITH AI ARCHITECTURE FOR THE SLOW TARGET (X = X L )

	X	NEES Acceptance rate
	(-5005.9; 2995.5; -303.39; 4.069; 3.043)	5.48	99%
	TABLE V		
	RESULTS OF 100 MONTE CARLO RUNS WITH ML-PDA WITH AI
	ARCHITECTURE FOR THE FAST TARGET (X = X H )	
	X	NEES Acceptance rate
	(-4999.2; 3002.7; -300.19; 24.997; 11.990)	5.01	99%

VI. NUMERICAL RESULTS

In this section, some numerical results of the estimator are presented.

A. Results in ML-PDA Model

We first present the numerical results obtained for the ML-PDA architecture in different configurations. The following assumptions are made:

• P d = P d∆ = P dA • λ ∆ and λ A are set such that the expected number of false alarms λu is the same for each sensor. Each configuration is defined by specific values of (P d ; λu) and by the specific positions of the sensors (according to the uniform law in a square with sides of 20 km). We recall that the number of sampling times is K = 100. Then, 200 Monte Carlo runs are performed for each configuration. The results of the Monte Carlo runs are presented in Tables II andIII.

X is the mean of the estimates. The mean value of the NEES 5 [START_REF] Bar-Shalom | Tracking and Data Association[END_REF] is computed. For 200 simulations, and a 5-dimensional parameter, the confidence interval of the NEES at 95% is [4.55; 5.45]. In each configuration, the NEES is close to the theoretical value [START_REF] Van Trees | Detection, Estimation, and Modulation Theory, Part I[END_REF] and belongs to the confidence region. This indicates that the estimator is efficient, that is, unbiased and meeting the CRLB.

B. Results in ML-PDA with AI Model

As we use the AI, we have to define the pdf of the amplitude under both hypotheses. It is assumed that the energy of the background noise follows a central χ 2 2 distribution, and the target originated signal follows a non-central χ 2 2 distribution. The non-centrality parameter depends on the SNR, which is 5 Normalized Estimation Error Square.

We define

Reintroducing in (74) these notations, we obtain

Then, we use the following principles to simplify the expression for q 3 : it is an odd function with respect to ξ i for ξ j fixed. The cross terms then vanish from the integrals. Next, we use the parity of the function with respect to ξ i . After some manipulations, we finally obtain the expression given in (54).

APPENDIX B DERIVATION OF THE MOMENTS OF THE LOG-LIKELIHOOD FUNCTION UNDER TARGET HYPOTHESIS IN ML-PDA WITH AI We derive µ

(n) 0 in the ML-PDA architecture. The derivation is based upon [START_REF] Kirubarajan | Passive ranging of a low observable ballistic missile in a gravitational field[END_REF], [START_REF] Kirubarajan | Low observable target motion analysis using amplitude information[END_REF]. The criterion is the following:

We want to compute (80) with the likelihood given in (71):

For m = 0 we have

We use the same change of variables given in (75), ( 76), (77) and we get

We then use the parity with respect to ξ i and notice that the integrals are the same for each considered index. After some manipulations we get