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Passive Target Motion Analysis by Fusion of Linear
Arrays and Sonobuoys in a Cluttered Environment

Jérémy Payan∗†, Antoine Lebon∗†, Annie-Claude Pérez∗, Claude Jauffret∗, Dann Laneuville†

Abstract—This paper is devoted to the analysis of the motion
of a target using information from two kinds of cooperative
maritime sensors: A wireless network of sonobuoys detecting
a signal emitted by a source in motion with constant velocity;
Vertical antennas measuring the cosine of the elevation angles of
the received signal. We prove that the trajectory of the source
is observable, under non-restrictive assumptions concerning the
scenario. After thresholding, the data are surrounded by false
alarms; therefore, a probabilistic data association model is
employed. The joint exploitation of the measurements of the
time differences of arrival together with the measurements of
the cosines of the elevation angles allow estimating the trajectory
of the source. The empirical performance of the maximum
likelihood estimator (MLE), evaluated by extensive simulations,
reaches the asymptotic performance given by the Cramér–Rao
lower bound. Finally, we extend our study to the case where the
energy of the data is available, after thresholding. Again, the
MLE is efficient and its performance is significantly improved.

Index Terms—Fisher information matrix, multipath, observ-
ability, probabilistic data association with maximum likelihood
estimation (ML-PDA), sonobuoy, target motion analysis, time
difference of arrival (TDOA), vertical array.

I. INTRODUCTION

In this paper, we are concerned with passive three-
dimensional submarine target tracking. Passive target tracking
consists of estimating the parameters that define the trajectory
of the target, from sensors which do not emit any signal. Each
sensor receives the signal emitted by the moving target. Passive
target tracking is of significant importance in coastal waters
or submarine surveillance systems [1].

Passive target tracking may be performed by using one
sensor, for example in [2], but a network of sensors may also
be used. Generally, the sensors are spatially separated from
each other. Then, different kinds of sensors may be used in the
network. We will focus specifically on two of them: vertical
linear arrays and sonobuoys [3]. Sonobuoys measure the time
difference of arrival (TDOA) between the signal originated by
the target and that originated by a reference sonobuoy [4].
The measurements acquired by a vertical linear array are the
cosines of the elevation angles of the target originated wave.

Each of these two kinds of sensors has its own advantages
and disadvantages regarding the asymptotic performance of
the estimation. The asymptotic performance is given by the
Cramér–Rao lower bound (CRLB) [5]. Due to their rather
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similar depths, the sonobuoys are very unlikely to estimate
the depth of the target with relatively low variance [6], unless
there is a large number of sonobuoys. But vertical linear arrays
can estimate the target depth with low variance. In view of
these considerations, it would be interesting to combine the
measurements coming from both kinds of sensors, to obtain
‘the best of both worlds’, especially for the estimation of the
three-dimensional position vector. By merging these different
kinds of sensors, we obtain what we call a ‘mixed sensor
network’.

In a realistic situation, a detection step is applied to the raw
data. One then has to deal with a cluttered environment due to
background noise during the tracking. The tracking may then
be carried out using the probabilistic data association (PDA)
algorithm [2], [7], [8], which takes into account the presence
of false alarms (which compose the clutter), as well as a
non-unity detection probability. It is then possible to estimate
the parameters of interest when true detections are drowned
in false alarms and do not surely appear at each sampling
time. In our study, we will use the PDA with maximum
likelihood estimation (ML-PDA) [2], [9], [10]. ML-PDA is
a batch technique using all available measurements at once. It
has been shown that this technique allows the construction of
statistically efficient estimators [2], [9]. Later, an extension to
the ML-PDA technique using the amplitude information (AI)
of each detection was created [11], [12]. It allows tracking in
situations with very low signal-to-noise ratio (SNR).

With all these considerations, the computation of a maxi-
mum likelihood estimator to achieve the target tracking in a
passive sensor network will be discussed. We place ourselves
in a realistic context due to the statistical assumptions of
the ML-PDA. We use both the PDA techniques mentioned
above: ML-PDA and ML-PDA with AI. Our paper has 6
main sections. Section II formulates the problem as well
as the notation to be used. In Section III, the observability
is detailed. Section IV outlines the interest of the sensor
fusion by determining the relevant asymptotic performances.
Section V presents briefly the ML-PDA technique. Section VI
presents some numerical results. Then follow the Conclusion,
appendices, and reference list.

II. PROBLEM FORMULATION AND NOTATIONS

The mixed sensor network is composed of NS sonobuoys
located on the surface of the sea and NA vertical linear arrays.
At each sampling time k = 1 : K, each sonobuoy gets the
TDOA of the target signal with respect to a chosen reference
sonobuoy. This may be expressed as a range difference, by
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assuming a constant speed in the sea. Each linear array
measures the cosine of the elevation angle: the angle between
the direct path and the reflected path. We assume that the
waves propagate in straight lines and are only reflected once
[13], [14]. The reflected path corresponds to the reflection from
the seabed. The positions of the sensors in the network are
uniformly distributed over a square. However, each position
is exactly known and the sensors are motionless during the
whole acquisition time.

The target is supposed to travel at a constant velocity (CV)
and at a constant depth. Consequently, the state vector defining
the target trajectory is given by

XT = (x; y; z; ẋ; ẏ) (1)

where (x; y; z) is the initial position (given in meters) in a 3-
dimensional Cartesian space and (ẋ; ẏ) is the velocity of the
target (given in meters per second) in the horizontal plane.
So, we may define the target position at each sampling time
k = 1 : K with respect to X: xk

yk
zk

 =

 1 0 0 k∆t 0
0 1 0 0 k∆t
0 0 1 0 0

X (2)

with ∆t being the sampling period. Note that zk = z.
Now we can specify the measurements acquired by

each sensor. Each sonobuoy is located at the coordinates
(xSi ; ySi ; zSi ), where zSi = 0. ri,k is the range between the
target and the sonobuoy i at sampling time k:

ri,k =

√(
xk − xSi

)2
+
(
yk − ySi

)2
+ z2 (3)

Then we get

∆ri,k = ri,k − ri0,k + εi,k (4)

∆ri,k is the measurement coming from the sonobuoy i at
sampling time k. i0 denotes the reference sonobuoy1, and
εSi,k is a zero-mean additive white Gaussian noise of standard
deviation σ∆. The measurements collected by the vertical
arrays are the following:

cDn,k = cos
(
φDn,k

)
+ εDn,k

=
z − zAn√

(xk − xAn )2 + (yk − yAn )2 + (z − zAn )2
+ εDn,k

(5)

cBn,k = cos
(
φBn,k

)
+ εBn,k

=
2zB−(zAn +z)√

(xk−xAn )2+(yk−yAn )2+(z+zAn −2zB)2
+εBn,k

(6)

Equation (5) defines the measurement coming from the
direct path, whereas (6) refers to the reflected one. Both are
relative to antenna n at sampling time k. Each antenna is
located at the coordinates (xAn ; yAn ; zAn ), zAn being the acoustic

1We arbitrarily choose the nearest sonobuoy from the center of the network
as the reference.
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Fig. 1. Elevations of the direct path and of the reflected path.

Fig. 2. Example of a mixed-sensor network. Dots: sonobuoys. Vertical lines:
linear arrays. Stars: Acoustic center of linear array. Arrow: Target.

center and zB being the depth of the seabed. εDn,k and εBn,k
are zero-mean additive white Gaussian noises of standard
deviation σA. Figure 1 illustrates the elevation angles of the
target.

Note that the propagation delay is neglected in this study
(this assumption was made in [4], [6]).

In the rest of the paper, we will consider a network
composed of NS = 3 sonobuoys and NA = 2 vertical linear
arrays. The locations of the sensors are uniformly distributed in
a square with sides of length 20 km. The number of sampling
times is K = 100 and the sampling period is ∆t = 4 s. We
will consider two cases of the target velocity: a slow target
linked to the true state XL and a fast target linked to XH .
The true states are the following:

XT
L = (−5000; 3000;−300; 4; 3) (7)

XT
H = (−5000; 3000;−300; 25; 12) (8)

The standard deviation of the measurements coming from
the sonobuoys is σ∆ = 30 meters, corresponding to a trade-off
between pessimistic [4] and optimistic [15] cases. The standard
deviation of the measurements collected by the antennas is
σA = 0.017 (implying a standard deviation of the angle greater
than 1 degree2) The acoustic center of the linear arrays zAn is
supposed to be 50 m deep. The depth of the seabed zB is
assumed to be −2000 m.

Fig. 2 depicts an example of the sensor network as well as
the target track, for the fast target defined above.

2For a measurement m = cos(α) + εm, the corresponding standard
deviation of α is approximatively σ(α) =

σ(m)
| sin(α)| .
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III. ANALYSIS OF OBSERVABILITY

The following analysis will be conducted step-by-step.
First, we suppose there are only two vertical antennas.

For the sake of simplicity, the two antennas are located at(
0; yA; zA

)T
and

(
0;−yA; zA

)T
. For convenience, we define

A1 = (0; yA) and A2 = (0;−yA). The noise-free mea-
surements collected by them, i.e.

(
cos
(

ΦD1,k

)
, cos

(
ΦD2,k

))
and

(
cos
(

ΦB1,k

)
, cos

(
ΦB2,k

))
, correspond to the state vector

XT = (x, y, z, ẋ, ẏ), and the one defining the trajectory of
a ghost target, say XT

G = (−x, y, z,−ẋ, ẏ). The trajectory
is then observable up to the axial symmetry around the axis
(0; y).

Now, we add two sonobuoys allowing us to measure the
time differences of arrival (TDOA). We define S1 = (xS1 ; yS1 )
and S2 = (xS2 ; yS2 ). The question is: do these new measure-
ments eliminate the ghost? To answer this question, we adopt
the approach proposed in [16], i.e. the measurements are taken
in continuous time:

r1(t) =

√(
x(t)− xS1

)2
+
(
y(t)− yS1

)2
+ z2 (9)

r2(t) =

√(
x(t)− xS2

)2
+
(
y(t)− yS2

)2
+ z2 (10)

rG,1(t) =

√(
x(t) + xS1

)2
+
(
y(t)− yS1

)2
+ z2 (11)

rG,2(t) =

√(
x(t) + xS2

)2
+
(
y(t)− yS2

)2
+ z2 (12)

Suppose that r1(t)− r2(t) = rG,1(t)− rG,2(t). Then

[r1(t)− r2(t)]
2

= [rG,1(t)− rG,2(t)]
2

⇔ r2
1(t) + r2

2(t)− 2r1(t)r2(t)

= r2
G,1(t) + r2

G,2(t)− 2rG,1(t)rG,2(t)

(13)

⇔ 2
(
xS1 + xS2

)
x(t) = rG,1(t)rG,2(t)− r1(t)r2(t) (14)

We deduce from (14) two remarks:
• The difference rG,1(t)rG,2(t)−r1(t)r2(t) is a polynomial

function.
• Clearly, r1(t)r2(t) is a polynomial function iff
rG,1(t)rG,2(t) is a polynomial function.

Our analysis is based on this remark. We examine if the
existence of a ghost target is compatible with the different
assumptions discussed in the following.

Discussion:

A. xS1 + xS2 6= 0

Multiplying the terms of (14) by rG,1(t)rG,2(t)+r1(t)r2(t)
we get

[rG,1(t)rG,2(t) + r1(t)r2(t)]x(t)

=
[rG,1(t)rG,2(t)]

2 − [r1(t)r2(t)]
2

2
(
xS1 + xS2

) (15)

Hence, [rG,1(t)rG,2(t) + r1(t)r2(t)]x(t) is a polynomial.

1) ẋ = 0, x 6= 0, i.e. x(t) = x 6= 0: From (14), we
have that rG,1(t)rG,2(t) − r1(t)r2(t) is a polynomial, and
rG,1(t)rG,2(t) + r1(t)r2(t) as well by (15). This implies that
r1(t)r2(t) and rG,1(t)rG,2(t) are two polynomials of degree
2. We define now three other polynomials (of degree 2):

P (t) , r2
1(t)

Q(t) , r2
2(t)

R(t) , r1(t)r2(t)

(16)

We have R2 = PQ, which is equivalent to R2

PQ = 1. Hence
P and Q divide R. Since the degree of these three polynomials
is equal to 2, there is a non-zero number, say α, such that
P = αR and Q = 1

αR. We deduce that P = α2Q. The
coefficient of t2 is equal to ẏ2 in P and in Q. Hence α2 =
1. Consequently, P = Q. Now the equality P − Q = 0 is
equivalent to

(
2y − yS1 − yS2 + 2tẏ

) (
yS1 − yS2

)
+
(
2x− xS1 − xS2 + 2tẋ

) (
xS1 − xS2

)
= 0

⇔


yS1 = yS2
and

xS1 = xS2 or x =
xS
1 +xS

2

2

(17)

The case where xS1 = xS2 and yS1 = yS2 must be discarded
since the sonobuoys are not in the same place. Hence, we
retain yS1 = yS2 and

x =
xS1 + xS2

2
(18)

Now, if we define three new polynomials

PG(t) , r2
G,1(t)

QG(t) , r2
G,2(t)

RG(t) , rG,1(t)rG,2(t)

(19)

and if we carry out similar computations, we obtain

x = −x
S
1 + xS2

2
(20)

Equalities (18) and (20) are incompatible. We conclude that
when xS1 + xS2 6= 0, the trajectory of the source is observable.

2) ẋ 6= 0, i.e. x(t) = x + tẋ: First, from (14), we deduce
that rG,1(t)rG,2(t)−r1(t)r2(t) is a polynomial. Let us rewrite
x(t) as x(t) = (t− t∗)ẋ, with t∗ = −xẋ

(15)⇔ 2(t− t∗)
(
xS1 + xS2

)
[rG,1(t)rG,2(t) + r1(t)r2(t)] ẋ

= [rG,1(t)rG,2(t)]
2 − [r1(t)r2(t)]

2

(21)

The time t∗ is hence a zero of the polynomial
[rG,1(t)rG,2(t)]

2 − [r1(t)r2(t)]
2. It can be written as

[rG,1(t)rG,2(t)]
2 − [r1(t)r2(t)]

2
= (t − t∗)S(t), where S(t)

is a polynomial. Equality (21) gives us

rG,1(t)rG,2(t) + r1(t)r2(t) =
1

2ẋ
(
xS1 + xS2

)S(t) (22)
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We deduce from (22) that rG,1(t)rG,2(t) + r1(t)r2(t) is again
a polynomial. Hence rG,1(t)rG,2(t) and r1(t)r2(t) are both
polynomials.

The same reasoning as in 1) yields again the equalities P =
Q, which is equivalent to

{
(x−xS1 )2+(y−yS1 )2+z2 = (x−xS2 )2+(y−yS2 )2+z2

2(x−xS1 )ẋ+2(y−yS1 )ẏ = 2(x−xS2 )ẋ+2(y−yS2 )ẏ

⇔

{
(2x−xS1 −xS2 )(xS1 −xS2 )+(2y−yS1 −yS2 )(yS1 −yS2 )=0

(xS1 −xS2 )ẋ+ (yS1 −yS2 )ẏ = 0

(23)

We also get PG = QG, which is equivalent to

{
(−2x−xS1 −xS2 )(xS1 −xS2 ) + (2y−yS1 −yS2 )(yS1 −yS2 )=0

−(xS1 −xS2 )ẋ+ (yS1 −yS2 )ẏ = 0

(24)

Equations (23) and (24) can be rewritten as the following
system


2(xS1 −xS2 ) 2(yS1 −yS2 ) 0 0
−2(xS1 −xS2 ) 2(yS1 −yS2 ) 0 0

0 0 (xS1 −xS2 ) (yS1 −yS2 )
0 0 −(xS1 −xS2 ) (yS1 −yS2 )



x
y
ẋ
ẏ



=


(xS1 )2 − (xS2 )2 + (yS1 )2 − (yS2 )2

(xS1 )2 − (xS2 )2 + (yS1 )2 − (yS2 )2

0
0


(25)

Because the target is moving (since ẋ 6= 0), the determinant of
the above matrix, which is 16

[
(xS1 − xS2 )(yS1 − yS2 )

]2
, must

be zero (otherwise ẋ = ẏ = 0).
We have hence to consider two possibilities: either xS1 = xS2

or yS1 = yS2 (we cannot have simultaneously the two equalities,
since the sonobuoys are not collocated). If xS1 = xS2 , then
y =

yS1 +yS2
2 and ẏ = 0. In this case, the trajectory of

the target is not observable since the two vectors XT =(
x,

yS1 +yS2
2 , z, ẋ, 0

)
and XT

G =
(
−x, y

S
1 +yS2

2 , z,−ẋ, 0
)

give
the same measurements.

If yS1 = yS2 , then x =
xS
1 +x2

S

2 and ẋ = 0. This must be
discarded.

B. xS1 + xS2 = 0

1) xS1 = xS2 = 0: The measurements are

r1(t) =

√
x2(t) +

(
y(t)− yS1

)2
+ z2 = rG,1(t) (26)

r2(t) =

√
x2(t) +

(
y(t)− yS2

)2
+ z2 = rG,2(t) (27)

The two state vectors X and XG give the same measurements.
The trajectory of the target is unobservable.

2) xS1 = −xS2 6= 0: The measurements are

r1(t) =

√(
x(t)− xS1

)2
+
(
y(t)− yS1

)2
+ z2 (28)

r2(t) =

√(
x(t) + xS1

)2
+
(
y(t)− yS2

)2
+ z2 (29)

rG,1(t) =

√(
x(t) + xS1

)2
+
(
y(t)− yS1

)2
+ z2 (30)

rG,2(t) =

√(
x(t)− xS1

)2
+
(
y(t)− yS2

)2
+ z2 (31)

And, from (14), we have rG,1(t)rG,2(t) − r1(t)r2(t) = 0,

i.e. r1(t)r2(t)
rG,1(t) = rG,2(t), which implies that

(
r1(t)r2(t)
rG,1(t)

)2

=

r2
G,2(t), i.e. PQPG

= QG (with the definitions (16) and (19)).
Note that the two polynomials P (t) =

(
x(t)− xS1

)2
+(

y(t)− yS1
)2

+z2 and PG(t) =
(
x(t) + xS1

)2
+
(
y(t)− yS1

)2
+

z2 are coprime. Hence, thanks to the Gauss Lemma, PG
divides Q. Because they have the same degree, there is a real
non-zero number, say β, such that PG = βQ. Consequently,
P = βQG. The coefficients of t2 in PG and βQ being
equal, we deduce that β = 1. Consequently, r1(t) = rG,2(t)
and r2(t) = rG,1(t), which implies that r1(t) − r2(t) =
− [rG,1(t)− rG,2(t)]. Hence, the two state vectors X and XG

do not give the same measurements. The trajectory of the
target is observable.

Now, we can summarize this discussion by the following
theorem

Theorem 1:
• If the line (S1, S2) is not in the vertical plane containing
A1 and A2, then the trajectory of any target travelling in
this axis is observable. Otherwise, the trajectory of any
target travelling out of this axis is observable up to the
axial symmetry around this line.

• If the lines (A1, A2) and (S1, S2) are parallel, but not
contained in the same vertical plane, then the trajectory
of any target travelling in the perpendicular bisector of
[S1, S2] is observable up to the axial symmetry around
the line (A1, A2).

• In any other cases, the trajectory of the target is observ-
able.

Consequence: If we have three sonobuoys forming a trian-
gle, the trajectory of any target is observable.

IV. ASYMPTOTIC PERFORMANCE

In this section, we present the main concern about the fusion
of the sensors in the sense of the asymptotic performance.
The asymptotic performances are known from the Cramér–
Rao Lower Bound (CRLB), or, similarly, from the Fisher
Information Matrix (FIM). We recall the link between the
CRLB for unbiased estimators and the FIM:

B = F−1 (32)

where F is the FIM and B is the CRLB for unbiased
estimators.

First, we show the expressions for the FIM in a clean
environment for each kind of sensor:
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TABLE I
EMPIRICAL MEAN VALUES OF THE DIAGONAL ELEMENTS OF THE FISHER

INFORMATION MATRICES

Component Unit Sonobuoys Antennas Mixed network

x m−2 0.0111 2.88×10−4 0.0114

y m−2 0.0457 7.92×10−5 0.0457

z m−2 3.78×10−5 6.8×10−3 6.9×10−3

ẋ m−2.s2 614.48 17.16 631.63

ẏ m−2.s2 2583.5 4.97 2588.4

F∆ =

NS∑
i=1
i 6=i0

K∑
k=1

1

σ2
∆

[∇Xri,k −∇Xri0,k] [∇Xri,k −∇Xri0,k]
T

(33)

FA =

NA∑
j=1

K∑
k=1

1

σ2
A

[
∇X cos

(
φDj,k

)
∇TX cos

(
φDj,k

)
+∇X cos

(
φBj,k

)
∇TX cos

(
φBj,k

)] (34)

F∆ and FA are then the FIMs for the sonobuoys and linear
arrays, respectively. The FIM F after the fusion of the sensors
is then

F = F∆ + FA (35)

To illustrate the benefit of fusing the sensors, the following
procedure is applied. For the slow target and the numerical
values defined in Section II, 5000 random mixed sensors
networks are created. Indeed, we recall that the positions of
the sensors are uniformly distributed in a square with sides of
length 20 km. For each network, F∆, FA and F are computed.
Then, the empirical mean value of the diagonal elements of
each FIM is extracted to allow the comparison. The result is
shown in Table I.

It is noticeable that the amount of information coming from
the sonobuoys on the depth of the target is very poor. But the
other components would be estimated accurately. On the other
hand, the linear arrays do not bring much information about
the position in the plane nor on the velocity of the target,
compared to the sonobuoys. But, the amount of information on
the depth is rather important. Then, the mixed sensor network
benefits from the best of both kinds of sensors, and thus allows
an accurate estimation of the whole state vector.

Let us note that in some cases where the linear arrays are
too distant, the gain of information on the depth of the target
may be negligible.

V. THE PROBABILISTIC DATA ASSOCIATION MODEL

A. Statistical Assumptions of the Probabilistic Data Associa-
tion Model

1) General Case: The consideration of a cluttered envi-
ronment is justified by the technological roughness of the
sonobuoys. These sensors cannot embed a sophisticated and
complex signal processing chain. Thus, these sensors alone
cannot extract the target-originated measurements.

The classic scenario is the following: a sensor gets at time
k a collection sk = (s1,k, · · · smk,k)T of measurements. Some
statistical assumptions are necessary to formulate an ML-PDA
model. Following [2], [8], these are:
• The vectors sk are independent conditionally on X for
k = 1 : K.

• The detections due to the target are corrupted by a zero-
mean additive white Gaussian noise. The power of the
noise is σ2 (a subscript, A or ∆, will be added when
applied to the mixed sensor network). These detections
are called ‘true detections’.

• The clutter is composed of the false alarms and is
distributed according to an uniform law over a scan space
u.

• The number of false alarms at a specific sample k follows
a Poisson law µfa of parameter λu (the expected number
of false alarms).

• True detections appear at most once at each sampling
time, with a detection probability Pd.

It is then possible to express the likelihood of X given sk,
due to the total probability theorem:

L(X|s) =

K∏
k=1

{
1− Pd
umk

µfa(mk) +
Pd

umk−1

µfa(mk − 1)

mk

×
mk∑
i=1

1√
2πσ

exp

[
−1

2

(
si,k − hk(X)

σ

)2
]}

(36)

with hk the state model at time k.
2) Extension to the Use of Amplitude Information: The

ML-PDA model using AI was introduced in [11], [12]. All
the previously stated assumptions still hold. The amplitude
associated with each detection is then considered. In a similar
manner to the previous part and with the same notation, we
may express the likelihood of X given sk:

L(X|s,R) =

K∏
k=1

{
1− Pd
umk

µfa(mk)

mk∏
i=1

pτ0(Ri,k)

+
Pd

umk−1

µfa(mk − 1)

mk

mk∏
i=1

pτ0(Ri,k)

×
mk∑
i=1

1√
2πσ

ρi,k exp

[
−1

2

(
si,k − hk(X)

σ

)2
]}
(37)

with Ri,k the amplitude associated with the detection, τ the
detection threshold, and

pτ0(Ri,k) =
1

Pfa
p0(Ri,k) (38)

pτ1(Ri,k) =
1

Pd
p1(Ri,k) (39)

ρi,k =
pτ1(Ri,k)

pτ0(Ri,k)
(40)
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where p0 and p1 are the probability density functions (pdf)
associated to the amplitudes under both hypotheses (there is
only noise or there is signal and noise, respectively) and Pfa
is the probability of a false alarm.

B. Application to the Mixed Sensor Network

The general likelihoods under both architectures have been
presented. According to the literature [2], [8], [11], [12],
the log-likelihood function is chosen as the criterion to be
maximized (up to a constant term). The noise is supposed to
be independent through the samples and between sensors. The
criteria will now be presented by applying the ML-PDA model
to our study with the notation described in Section II:

• When the amplitude information is not available, we
define the quantities

C1(X|∆ri,k) = log

{
1− Pd∆ +

Pd∆

λ∆

×
mi,k∑
j=1

1√
2πσ∆

exp

[
−1

2

(
∆ri,j,k−ri,k+ri0,k

σ∆

)2
]
(41)

C2(X|cDl,k) = log

{
1− PdA +

PdA
λA

×
ml,k∑
j=1

1√
2πσA

exp

−1

2

cDl,j,k−cos
(
φDl,k

)
σA

2


(42)

C3(X|cBn,k) = log

{
1− PdA +

PdA
λA

×
mn,k∑
j=1

1√
2πσA

exp

−1

2

cBn,j,k−cos
(
φBn,k

)
σA

2



(43)

where σ2 is the power of the noise, λ is the expected num-
ber of false alarms per unit area, and Pd is the detection
probability. The subscript ∆ indicates the sonobuoys, and
the subscript A indicates the linear arrays.
The criterion to optimize is then

C(X) =

NS∑
i=1
i6=i0

K∑
k=1

C1(X|∆ri,k) +

NA∑
l=1

K∑
k=1

C2(X|cDl,k)

+

NA∑
n=1

K∑
k=1

C3(X|cBn,k)

(44)

• Similarily, when the amplitude information is available,
we define
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Fig. 3. Measurements obtained for each sensor in one run. Pd = 0.6, λu = 8.

C1(X|∆ri,k, Ri,k) = log

{
1− Pd∆ +

Pd∆

λ∆

×
mi,k∑
j=1

ρi,j,k√
2πσ∆

exp

[
−1

2

(
∆ri,j,k−ri,k+ri0,k

σ∆

)2
]
(45)

C2(X|cDl,k, RDl,k) = log

{
1− PdA +

PdA
λA

×
ml,k∑
j=1

ρl,j,k√
2πσA

exp

−1

2

cDl,j,k−cos
(
φDl,k

)
σA

2


(46)

C3(X|cBn,k, RBn,k) = log

{
1− PdA +

PdA
λA

×
mn,k∑
j=1

ρn,j,k√
2πσA

exp

−1

2

cBn,j,k−cos
(
φBn,k

)
σA

2



(47)

The criterion to optimize is then

C(X) =

NS∑
i=1
i 6=i0

K∑
k=1

C1(X|∆ri,k, Ri,k)

+

NA∑
l=1

K∑
k=1

C2(X|cDl,k, RDl,k)

+

NA∑
n=1

K∑
k=1

C3(X|cBn,k, RBn,k)

(48)

Fig. 3 presents an example of the measurements obtained
from each sensor.

Remark: Following [6], we neglect the correlation between
the TDOA measurements.
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C. Numerical Computation and Optimization

All the methods explained hereafter are applied whatever
the architecture (ML-PDA or ML-PDA with AI) is.

The maximization of the criterion is carried out by using
a quasi-Newton (variable metric) method, as given in [12].
The aim is to compute an approximation of the inverse of
the Hessian matrix. The update is done with the Davidon–
Fletcher–Powell [17]–[19] method. The matrix is updated after
each iteration of the algorithm. This guarantees that the matrix
is symmetric and positive definite. The state is then updated
employing the classical Newton–Raphson method:

X̂i = X̂i−1 − piH−1
i ∇C(X̂i) (49)

where H−1
i is the approximation of the inverse of the Hessian

matrix at step i and pi is the optimal step-size scaling. Note
that

(
H−1
i

)
i

converges to the inverse of the Hessian matrix.
The log-likelihood function being a highly non-convex and

multi-modal function [2], [12], several techniques are used to
perform the maximization of the criterion. Indeed, due to the
multi-modality aspect, the algorithm could converge to a local
maximum. To avoid this, a multi-pass approach was performed
in [2] and will be now described.

This technique achieves the maximization in M steps in-
stead of one. The algorithm is first initialized by a rough grid
search method over the state space. At step m, instead of
maximizing C(X), the maximization is applied to C(m)(X),
which is equal to C(X) defined either by (44) or (48)
where the standard deviations are multiplied by am (see [2],
Section III). The numerical series am is decreasing such that
a1 = M , a2 = M − 1, ..., aM = 1. The resulting state
after maximization at step m is used as the initialization at
step m+ 1. This method allows the algorithm to have a better
‘sight’ of the true detections, and ensures convergence towards
the global maximum.

Moreover, to avoid convergence to an unrealistic state, a
constraint (penalty function) φ(X) is added to C(m)(X) [2].
This penalty function is about the velocity of the target and is
defined as follows:

φ(X) = −1

2

[
v(X)− v̄

σv

]2

(50)

where
v(X) =

√
X(4)2 +X(5)2 (51)

v̄ is a typical value of the target velocity and σv is the
standard deviation around v̄. At step m = M , the penalty
function is relaxed.

D. The Fisher Information Matrix

An expression for the FIM in a clean environment is given
in (35). In the presence of clutter, the computation of the FIM
will use the statistical assumptions of the ML-PDA model.
First, the measurement space is restricted to a gate around the
true measurements [2], [8]. The size of the gate3 is denoted
by vg:

3For a one-dimensional measurement.

vg = 2gσ (52)

The restriction to a gate around the true measurements
allows the inclusion of only the most informative measure-
ments. Indeed, with g = 5, more than 99% of a Gaussian
population is within 5 standard deviations of the mean. The
measurements located outside the gate contain no additional
information about the state vector. By using these assumptions
as well as the likelihood computed only with the measurements
inside the gate, it is possible to find an expression for the FIM
in the presence of clutter. Then, the latter appears to be the
FIM in a clean environment multiplied by a scalar factor: the
information reduction factor.

This factor, called q2 in the literature on the ML-PDA
architecture and q3 in the ML-PDA with AI architecture, lies
between 0 and 1 and represents the loss of information due to
the presence of clutter and the non-unity detection probability
[2], [8]. The information reduction factor only depends on Pd
and λvg , the expected number of false alarms in the gate of
size vg . It is then clear that the loss of information will increase
the CRLB. Here are expressions for q2 and q3:

q2(λvg, Pd) =

∞∑
m=1

2Pd√
2πgm−1

µfa(m− 1)

×
∫ g

0

· · ·
∫ g

0

exp(−ξ2
1)ξ2

1

(1−Pd)
√

2πλvg
2gPd

+
∑m
i=1 exp

(
− 1

2ξ
2
i

)dξ1· · ·dξm
(53)

q3(λvg, Pd) =

∞∑
m=1

2Pd√
2πgm−1

µfa(m− 1)

×
∫ g

0

· · ·
∫ g

0

∫ ∞
τ

· · ·
∫ ∞
τ

∏m
j=1 p

τ
0(Rj)ρ

2
1 exp

(
−ξ2

1

)
ξ2
1

(1−Pd)
√

2πλvg
2gPd

+
∑m
j=1 ρj exp

(
− 1

2ξ
2
j

)
× dR1· · ·dRmdξ1· · ·dξm

(54)

The derivation of q2 is detailed in [2] and in [9], where
it is generalized to a multi-dimensional measurement. The
derivation of the q3 is given in Appendix A, based on [11],
[12].

Then, it is possible to express the FIM in the presence of
clutter in both architectures:

F1 = q2(λ∆2gσ∆, Pd∆)F∆ + q2(λA2gσA, PdA)FA (55)

F2 = q3(λ∆2gσ∆, Pd∆)F∆ + q3(λA2gσA, PdA)FA (56)

where F1 and F2 are the FIM in ML-PDA and ML-PDA with
AI architectures respectively.

These factors are computed numerically by using Monte
Carlo runs [20].
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E. Test for Track Acceptance

Once the algorithm returns an estimate, it is necessary to
decide if the estimated track is correct or not. Indeed, whether
there is a target or not, the algorithm computes an estimate. If
there is no correct detection, the estimate must be rejected
as well as when the algorithm converges towards a local
maximum. So we have to choose between two hypotheses:
• H0: There is a track and X̂ is the global maximum of

the likelihood function.
• H1: There is no track, or X̂ is a local maximum.
The natural reflex would be to use the so-called generalized

likelihood ratio (GLR) to construct a test between these
two hypotheses. This needs the statistical distributions of the
GLR (or a monotonic function of it) under each hypothesis.
Determining these distributions is a tough task (from [2],
Section IV, “the statistical distribution of [the GLR] is not
available”). Following [2], we propose the palliative described
below to circumvent this. We give the details for the case
where the amplitude information is not available. We consider
the following statistic4:

T0,1(X̂) =
T1 + T2 + T3√
V1 + V2 + V3

(57)

with

T1 =

NS∑
i=1
i 6=i0

K∑
k=1

{
C1

(
X̂|∆r∗i,k

)
− E

[
C1

(
X̂|∆r∗i,k

)
|H0

]}
(58)

T2 =

NA∑
l=1

K∑
k=1

{
C2

(
X̂|cD,∗l,k

)
− E

[
C2

(
X̂|cD,∗l,k

)
|H0

]}
(59)

T3 =

NA∑
n=1

K∑
k=1

{
C3

(
X̂|cB,∗l,k

)
− E

[
C3

(
X̂|cB,∗l,k

)
|H0

]}
(60)

V1 =

NS∑
i=1
i6=i0

K∑
k=1

Var
[
C1

(
X̂|∆r∗i,k

)
|H0

]
(61)

V2 =

NA∑
l=1

K∑
k=1

Var
[
C2

(
X̂|cD,∗l,k

)
|H0

]
(62)

V3 =

NA∑
l=1

K∑
k=1

Var
[
C3

(
X̂|cB,∗l,k

)
|H0

]
(63)

Since X̂ is supposed to be the global maximum, we get the
following approximations.

E
[
C1

(
X̂|∆r∗i,k

)
|H0

]
' E

[
C1

(
X|∆r∗i,k

)
|H0

]
= µ0,1

(64)
E
[
C2

(
X̂|cD,∗l,k

)
|H0

]
' E

[
C2

(
X|cD,∗l,k

)
|H0

]
= µ0,2 (65)

E
[
C3

(
X̂|cB,∗l,k

)
|H0

]
' E

[
C3

(
X|cB,∗l,k

)
|H0

]
= µ0,3 (66)

4∗ is for the measurements inside the gate.

Var
[
C1

(
X̂|∆r∗i,k

)
|H0

]
' Var

[
C1

(
X|∆r∗i,k

)
|H0

]
= σ2

0,1

(67)
Var

[
C2

(
X̂|cD,∗l,k

)
|H0

]
' Var

[
C2

(
X|cD,∗l,k

)
|H0

]
= σ2

0,2

(68)
Var

[
C3

(
X̂|cB,∗l,k

)
|H0

]
' Var

[
C3

(
X|cB,∗l,k

)
|H0

]
= σ2

0,3

(69)
The statistic (57) can be rewritten as

T0,1(X̂) =
C(X̂)− (NS − 1)Kµ0,1 −NAK(µ0,2 + µ0,3)√

(NS − 1)Kσ2
0,1 +NAK(σ2

0,2 + σ2
0,3)

(70)
It has been shown empirically that T0,1 follows the standard

Gaussian distribution by using the Central Limit Theorem
[2]. With all these considerations, the test is the following:
if T0,1 > cα H0, is accepted. Otherwise, H0 is rejected. cα is
then the threshold with a level of significance α.

When the amplitude information is available, only the values
of µ0,i and σ0,i will change. The expressions for µ0,i and σ0,i

are detailed in [2], [9] for the ML-PDA architecture and in
Appendix B for the ML-PDA with AI architecture.

VI. NUMERICAL RESULTS

In this section, some numerical results of the estimator are
presented.

A. Results in ML-PDA Model

We first present the numerical results obtained for the ML-
PDA architecture in different configurations. The following
assumptions are made:
• Pd = Pd∆ = PdA
• λ∆ and λA are set such that the expected number of false

alarms λu is the same for each sensor.
Each configuration is defined by specific values of (Pd;λu)

and by the specific positions of the sensors (according to the
uniform law in a square with sides of 20 km). We recall that
the number of sampling times is K = 100. Then, 200 Monte
Carlo runs are performed for each configuration. The results
of the Monte Carlo runs are presented in Tables II and III. X̄
is the mean of the estimates. The mean value of the NEES5

[8] is computed. For 200 simulations, and a 5-dimensional
parameter, the confidence interval of the NEES at 95% is
[4.55; 5.45]. In each configuration, the NEES is close to the
theoretical value (5) and belongs to the confidence region. This
indicates that the estimator is efficient, that is, unbiased and
meeting the CRLB.

B. Results in ML-PDA with AI Model

As we use the AI, we have to define the pdf of the amplitude
under both hypotheses. It is assumed that the energy of the
background noise follows a central χ2

2 distribution, and the
target originated signal follows a non-central χ2

2 distribution.
The non-centrality parameter depends on the SNR, which is

5Normalized Estimation Error Square.
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TABLE II
RESULTS OF 200 MONTE CARLO RUNS WITH ML-PDA ARCHITECTURE

FOR THE SLOW TARGET (X = XL)

(Pd;λu) (0.8; 2) (0.6; 8)

x̄ -5004 -5005.5

ȳ 2998.9 2995.6

z̄ -298.09 -298.55
¯̇x 4.036 4.013
¯̇y 3.015 3.010

NEES 5.39 5.37

Acceptance rate 94.5% 84%

TABLE III
RESULTS OF 200 MONTE CARLO RUNS WITH ML-PDA ARCHITECTURE

FOR THE FAST TARGET (X = XH )

(Pd;λu) (0.9; 2) (0.8; 6) (0.6; 8)

x̄ -5001.7 -5004.4 -4918.9

ȳ 2999.1 2999.3 3013.8

z̄ -299.77 -300.69 -298.03
¯̇x 24.993 25.011 24.936
¯̇y 11.999 12.002 11.958

NEES 5.18 5.13 5.36

Acceptance rate 96.5% 94% 93%

TABLE IV
RESULTS OF 100 MONTE CARLO RUNS WITH ML-PDA WITH AI

ARCHITECTURE FOR THE SLOW TARGET (X = XL)

X̄ NEES Acceptance rate

(−5005.9; 2995.5;−303.39; 4.069; 3.043) 5.48 99%

TABLE V
RESULTS OF 100 MONTE CARLO RUNS WITH ML-PDA WITH AI

ARCHITECTURE FOR THE FAST TARGET (X = XH )

X̄ NEES Acceptance rate

(−4999.2; 3002.7;−300.19; 24.997; 11.990) 5.01 99%

low. The detection threshold is placed such that Pfa = 0.02
and Pd = 0.6. The value of K is still 100.

For this configuration, 100 Monte Carlo runs are performed.
The result of these runs is shown in Tables IV and V. The
95% confidence interval of the NEES for 100 simulations is
[4.37; 5.63]. The mean value of the NEES is in the confidence
interval and near the theoretical value of 5. Hence, the esti-
mator is efficient.

VII. CONCLUSION

In this paper, we treated the problem of estimating the
trajectory of a source in CV motion when the available
measurements are a set of TDOA provided by a sonobuoy net-
work, and the cosines of elevation angles acquired by vertical
antennas. To begin with, the observability was studied before
proposing an estimate. Then, we chose a convenient model
for noisy measurements. Due to the simplicity of the system
embarked in a sonobuoy (which performs very basic signal

processing functions such as thresholding the signal energy),
the data were assumed to be composed of correct detections
and false alarms. Consequently, we employed the PDA model,
well adapted to this situation. The proposed estimator (the
MLE) was found to be efficient (the empirical covariance
matrix reaches the CRLB) even with only three sonobuoys
and two vertical linear arrays. Coupling their energy to these
thresholded data improve the accuracy of the MLE, which
remains efficient in this case. Nevertheless, two points were
neglected: the propagation delay of the waves carrying the
signal, and the correlation between the TDOA measurements.
Future research will be focused on these two points.

APPENDIX A
DERIVATION OF THE INFORMATION REDUCTION FACTOR

q3

We derive q3 according to the principles detailed in [2],
[9], [11], [12]. We first express the likelihood at time k by
considering only the measurements inside the gate of size vg .
We use the same notation as in Section III.

L(X|s) =
1− Pd
um

µfa(m)

m∏
i=1

pτ0(Ri)

+
Pd
um−1

µfa(m− 1)

m

m∏
i=1

pτ0(Ri)

×
m∑
i=1

1√
2πσ

ρi exp

[
−1

2

(
si − h(X)

σ

)2
] (71)

After factorization we get

L(X|s) =
µfa(m)

vmg

m∏
i=1

pτ0(Ri)

{
1− Pd +

Pd
λ

×
m∑
i=1

1√
2πσ

ρi exp

[
−1

2

(
si − h(X)

σ

)2
]} (72)

We define

Φ(X|s) = 1−Pd+
Pd
λ

m∑
i=1

ρi√
2πσ

exp

[
−1

2

(
si − h(X)

σ

)2
]

(73)
Then, the information reduction factor q3 is

q3 =

∞∑
m=1

1

2πσ2

(
Pd
λ

)2
µfa(m)

vmg

×
∫ g

−g
· · ·
∫ g

−g

∫ ∞
τ

· · ·
∫ ∞
τ

∏m
i=1 p

τ
0(Ri)

Φ(X|s)

×
m∑
i=1

m∑
j=1

ρiρj exp

[
−1

2

(
si − h(X)

σ

)2

−1

2

(
sj − h(X)

σ

)2
]
si − h(X)

σ

sj − h(X)

σ

× dR1 · · · dRmds1 · · · dsm

(74)
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We define

ξi =
si − h(X)

σ
(75)

a = 1− Pd (76)

b =
1√
2πσ

Pd
λ

(77)

Reintroducing in (74) these notations, we obtain

q3 =

∞∑
m=1

b2
µfa(m)

vmg

×
∫
vg

· · ·
∫
vg

∫ ∞
τ

· · ·
∫ ∞
τ

∏m
i=1 p

τ
0(Ri)

a+ b
∑m
i=1 ρi exp(− 1

2ξ
2
i )

.

m∑
i=1

m∑
j=1

ρiρj exp

[
−1

2
ξ2
i −

1

2
ξ2
j

]
ξiξj

× dR1 · · · dRmdξ1 · · · dξm

(78)

Then, we use the following principles to simplify the expres-
sion for q3: it is an odd function with respect to ξi for ξj
fixed. The cross terms then vanish from the integrals. Next,
we use the parity of the function with respect to ξi. After some
manipulations, we finally obtain the expression given in (54).

APPENDIX B
DERIVATION OF THE MOMENTS OF THE LOG-LIKELIHOOD

FUNCTION UNDER TARGET HYPOTHESIS IN ML-PDA
WITH AI

We derive µ(n)
0 in the ML-PDA architecture. The derivation

is based upon [11], [12]. The criterion is the following:

C(X|s) = log

{
1− Pd +

Pd
λ

m∑
i=1

1√
2πσ

ρi exp

[
−1

2

(
si − h(X)

σ

)2
]} (79)

We want to compute (80) with the likelihood given in (71):

µ
(n)
0 =

∞∑
m=0

∫
vg

· · ·
∫
vg

(C(X|s))nL(X|s)ds1 · · · dsm (80)

For m = 0 we have

µ
(n)
0 (0) = (1− Pd) exp(−λvg) logn(1− Pd) (81)

We use the same change of variables given in (75), (76), (77)
and we get

µ
(n)
0 = µ

(n)
0 (0) +

∞∑
m=1

∫ g

−g
· · ·
∫ g

−g

∫ ∞
τ

· · ·
∫ ∞
τ

σm
µfa(m)

vmg

× logn

(
a+ b

m∑
i=1

ρi exp

[
−1

2
ξ2
i

])

×
m∏
i=1

pτ0(Ri)

(
a+ b

m∑
i=1

ρi exp

[
−1

2
ξ2
i

])
× dR1 · · · dRmdξ1 · · · dξm

(82)

We then use the parity with respect to ξi and notice that the
integrals are the same for each considered index. After some
manipulations we get

µ
(n)
0 = µ

(n)
0 (0) +

∞∑
m=1

∫ g

0

· · ·
∫ g

0

∫ ∞
τ

· · ·
∫ ∞
τ

2Pdµfa(m)

gm−1λvg
√

2π

× logn

(
a+ b

m∑
i=1

ρi exp

[
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1
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(83)
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